- 浏览: 987814 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
SocketChannelImpl 解析一(通道连接,发送数据):http://donald-draper.iteye.com/blog/2372364
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
引言:
上一篇文章,我们看了SocketChannelImpl接收数据相关方法,具体为:
读输入流到buffer,首先同步读写,确保通道,输入流打开,通道连接建立,
清除原始读线程,获取新的本地读线程,委托IOUtil读输入流到buffer;IOUtil读输入流到buffer,首先确保buffer是可写的,否则抛出IllegalArgumentException,然后判断buffer是否为Direct类型,是则委托给readIntoNativeBuffer,否则通过Util从当前线程缓冲区获取一个临时的DirectByteBuffer,然后通过readIntoNativeBuffer读输入流数据到临时的DirectByteBuffer,这一个过程是通过SocketDispatcher的read方法实现,读写数据到DirectByteBuffer中后,将DirectByteBuffer中数据,写到原始buffer中,并将
DirectByteBuffer添加到添加临时DirectByteBuffer到当前线程的缓冲区,以便重用,因为重新DirectByteBuffer为直接操作物理内存,频繁分配物理内存,将耗费过多的资源。
从输入流读取数据,写到ByteBuffer数组的read方法,首先同步写锁,确保通道,连接建立,输入流打开,委托给IOUtil,从输入流读取数据写到ByteBuffer数组中;IOUtil首先获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将buffer添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,从filedescriptor对应的输入流读取数据,写到iovecwrapper的缓冲区中。
今天SocketChannelImpl的其他方法
在完成连接方法中,我们需要关注的这下面这段
上面这段之所以,在一个循环内检查连接,主要是为了,在完成连接的过程中,如果由于某种原因 被中断,当中断位消除时,继续完成连接。
再来看其他方法,
//IOUtil
//StandardSocketOptions
//ExtendedSocketOption
设置配置项,需要关注的是
//Net
//Net
//SocketAdaptor,可简单理解为SocketChannelImpl的代理
//SocketAdaptor结构图:
//Net
//NativeThread
//关闭选择通道
关闭选择通道有两点需要关注
1.
//SocketDispatcher
2.
来看
//SocketDispatcher
从上面可以看出:
实际关闭通道,首先同步状态锁,置输入流和输出流打开状态为false,
如果通道没有关闭,则通过SocketDispatcher预先关闭fd,通知读线程,关闭输入流,
通知写线程,输出流关闭,如果当前没有注册到任何选择器,则调用kill完成实际关闭工作,
即SocketDispatcher关闭fd。
总结:
实际关闭通道,同步状态锁,置输入流和输出流打开状态为false,如果通道没有关闭,则通过SocketDispatcher预先关闭fd,通知读线程,关闭输入流,通知写线程,输出流关闭,如果当前没有注册到任何选择器,则调用kill完成实际关闭工作,
即SocketDispatcher关闭fd。
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
引言:
上一篇文章,我们看了SocketChannelImpl接收数据相关方法,具体为:
读输入流到buffer,首先同步读写,确保通道,输入流打开,通道连接建立,
清除原始读线程,获取新的本地读线程,委托IOUtil读输入流到buffer;IOUtil读输入流到buffer,首先确保buffer是可写的,否则抛出IllegalArgumentException,然后判断buffer是否为Direct类型,是则委托给readIntoNativeBuffer,否则通过Util从当前线程缓冲区获取一个临时的DirectByteBuffer,然后通过readIntoNativeBuffer读输入流数据到临时的DirectByteBuffer,这一个过程是通过SocketDispatcher的read方法实现,读写数据到DirectByteBuffer中后,将DirectByteBuffer中数据,写到原始buffer中,并将
DirectByteBuffer添加到添加临时DirectByteBuffer到当前线程的缓冲区,以便重用,因为重新DirectByteBuffer为直接操作物理内存,频繁分配物理内存,将耗费过多的资源。
从输入流读取数据,写到ByteBuffer数组的read方法,首先同步写锁,确保通道,连接建立,输入流打开,委托给IOUtil,从输入流读取数据写到ByteBuffer数组中;IOUtil首先获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将buffer添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,从filedescriptor对应的输入流读取数据,写到iovecwrapper的缓冲区中。
今天SocketChannelImpl的其他方法
//是否正在连接 public boolean isConnectionPending() { //同步状态锁 Object obj = stateLock; JVM INSTR monitorenter ;//进入同步 return state == 1; Exception exception; exception; throw exception;//有异常,则抛出 }
//完成连接 public boolean finishConnect() throws IOException { //同步读写锁及状态锁 Object obj = readLock; JVM INSTR monitorenter ;//进入同步 Object obj1 = writeLock; JVM INSTR monitorenter ; Object obj2 = stateLock; JVM INSTR monitorenter ; if(!isOpen())//通道关闭,则抛出ClosedChannelException throw new ClosedChannelException(); if(state == 2) //如果已经建立连接,则返回true return true; if(state != 1) //如果连接不处于正在建立状态,则抛出NoConnectionPendingException throw new NoConnectionPendingException(); ... int i = 0; begin();//与end方法,协调记录中断器,处理连接中断 boolean flag; synchronized(blockingLock()) { synchronized(stateLock) { if(isOpen()) break MISSING_BLOCK_LABEL_206; flag = false; } } synchronized(stateLock) { readerThread = 0L; if(state == 3) { kill(); i = 0; } } end(i > 0 || i == -2); if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); obj1; JVM INSTR monitorexit ; obj; JVM INSTR monitorexit ; return flag; readerThread = NativeThread.current(); obj7; JVM INSTR monitorexit ; //检查连接 if(!isBlocking()) do i = checkConnect(fd, false, readyToConnect); while(i == -3 && isOpen()); else do i = checkConnect(fd, true, readyToConnect); while(i == 0 || i == -3 && isOpen()); obj4; ... }
在完成连接方法中,我们需要关注的这下面这段
//检查连接 if(!isBlocking()) do i = checkConnect(fd, false, readyToConnect); while(i == -3 && isOpen()); else do i = checkConnect(fd, true, readyToConnect); while(i == 0 || i == -3 && isOpen());
上面这段之所以,在一个循环内检查连接,主要是为了,在完成连接的过程中,如果由于某种原因 被中断,当中断位消除时,继续完成连接。
private static native int checkConnect(FileDescriptor filedescriptor, boolean flag, boolean flag1) throws IOException;
再来看其他方法,
//配置阻塞模式 protected void implConfigureBlocking(boolean flag) throws IOException { IOUtil.configureBlocking(fd, flag); }
//IOUtil
static native void configureBlocking(FileDescriptor filedescriptor, boolean flag) throws IOException;
//socket通道支持的配置选项 public final Set supportedOptions() { return DefaultOptionsHolder.defaultOptions; } //DefaultOptionsHolder private static class DefaultOptionsHolder { private static Set defaultOptions() { HashSet hashset = new HashSet(8); hashset.add(StandardSocketOptions.SO_SNDBUF);//发送缓冲区size hashset.add(StandardSocketOptions.SO_RCVBUF);//接收缓冲区size hashset.add(StandardSocketOptions.SO_KEEPALIVE);// hashset.add(StandardSocketOptions.SO_REUSEADDR);//地址重用 hashset.add(StandardSocketOptions.SO_LINGER);// hashset.add(StandardSocketOptions.TCP_NODELAY);//TCP hashset.add(StandardSocketOptions.IP_TOS); hashset.add(ExtendedSocketOption.SO_OOBINLINE); //返回不可修改的HashSet return Collections.unmodifiableSet(hashset); } static final Set defaultOptions = defaultOptions(); private DefaultOptionsHolder() { } }
//StandardSocketOptions
/** * The size of the socket send buffer.发送缓冲区大小 * @see Socket#setSendBufferSize */ public static final SocketOption<Integer> SO_SNDBUF = new StdSocketOption<Integer>("SO_SNDBUF", Integer.class); /** * The size of the socket receive buffer.接收缓存区大小 * @see Socket#setReceiveBufferSize * @see ServerSocket#setReceiveBufferSize */ public static final SocketOption<Integer> SO_RCVBUF = new StdSocketOption<Integer>("SO_RCVBUF", Integer.class); /** * Keep connection alive.连接是否保活 */ public static final SocketOption<Boolean> SO_KEEPALIVE = new StdSocketOption<Boolean>("SO_KEEPALIVE", Boolean.class); /** * Re-use address.地址重用 * @see ServerSocket#setReuseAddress */ public static final SocketOption<Boolean> SO_REUSEADDR = new StdSocketOption<Boolean>("SO_REUSEADDR", Boolean.class); /** * Linger on close if data is present.如果通道中有数据,延时关闭时间 * @see Socket#setSoLinger */ public static final SocketOption<Integer> SO_LINGER = new StdSocketOption<Integer>("SO_LINGER", Integer.class); /** * Disable the Nagle algorithm.TCP无延时 * @see Socket#setTcpNoDelay */ public static final SocketOption<Boolean> TCP_NODELAY = new StdSocketOption<Boolean>("TCP_NODELAY", Boolean.class); //下面两个配置选择,我们以后碰到再说 /** * The Type of Service (ToS) octet in the Internet Protocol (IP) header. * @see DatagramSocket#setTrafficClass */ public static final SocketOption<Integer> IP_TOS = new StdSocketOption<Integer>("IP_TOS", Integer.class);
//ExtendedSocketOption
package sun.nio.ch; import java.net.SocketOption; class ExtendedSocketOption { private ExtendedSocketOption() { } static final SocketOption SO_OOBINLINE = new SocketOption() { public String name() { return "SO_OOBINLINE"; } public Class type() { return java/lang/Boolean; } public String toString() { return name(); } }; }
//设置配置选项 public SocketChannel setOption(SocketOption socketoption, Object obj) throws IOException { if(socketoption == null) throw new NullPointerException(); //非支持配置选项,则抛出UnsupportedOperationException if(!supportedOptions().contains(socketoption)) throw new UnsupportedOperationException((new StringBuilder()).append("'").append(socketoption).append("' not supported").toString()); //同步状态锁,进入同步 Object obj1 = stateLock; JVM INSTR monitorenter ; if(!isOpen()) //通道关闭,则抛出ClosedChannelException throw new ClosedChannelException(); if(socketoption != StandardSocketOptions.IP_TOS) break MISSING_BLOCK_LABEL_108; if(!Net.isIPv6Available()) //iPv6不可用,则通过Net设置配置项 Net.setSocketOption(fd, StandardProtocolFamily.INET, socketoption, obj); return this; ... JVM INSTR monitorexit ; return; Exception exception; exception; throw exception; }
设置配置项,需要关注的是
if(!Net.isIPv6Available()) //iPv6不可用,则通过Net设置配置项 Net.setSocketOption(fd, StandardProtocolFamily.INET, socketoption, obj);
//Net
//检查IP6是否可用 static boolean isIPv6Available() { if(!checkedIPv6) { isIPv6Available = isIPv6Available0(); checkedIPv6 = true; } return isIPv6Available; } static void setSocketOption(FileDescriptor filedescriptor, ProtocolFamily protocolfamily, SocketOption socketoption, Object obj) throws IOException { if(obj == null) throw new IllegalArgumentException("Invalid option value"); Class class1 = socketoption.type(); //非整形和布尔型,则抛出断言错误 if(class1 != java/lang/Integer && class1 != java/lang/Boolean) throw new AssertionError("Should not reach here"); if(socketoption == StandardSocketOptions.SO_RCVBUF || socketoption == StandardSocketOptions.SO_SNDBUF) { //判断接收和发送缓冲区大小 int i = ((Integer)obj).intValue(); if(i < 0) throw new IllegalArgumentException("Invalid send/receive buffer size"); } //缓冲区有数据,延迟关闭socket的的时间 if(socketoption == StandardSocketOptions.SO_LINGER) { int j = ((Integer)obj).intValue(); if(j < 0) obj = Integer.valueOf(-1); if(j > 65535) obj = Integer.valueOf(65535); } //UDP单播 if(socketoption == StandardSocketOptions.IP_TOS) { int k = ((Integer)obj).intValue(); if(k < 0 || k > 255) throw new IllegalArgumentException("Invalid IP_TOS value"); } //UDP多播 if(socketoption == StandardSocketOptions.IP_MULTICAST_TTL) { int l = ((Integer)obj).intValue(); if(l < 0 || l > 255) throw new IllegalArgumentException("Invalid TTL/hop value"); } OptionKey optionkey = SocketOptionRegistry.findOption(socketoption, protocolfamily); if(optionkey == null) throw new AssertionError("Option not found"); int i1; //转换配置参数值 if(class1 == java/lang/Integer) { i1 = ((Integer)obj).intValue(); } else { boolean flag = ((Boolean)obj).booleanValue(); i1 = flag ? 1 : 0; } boolean flag1 = protocolfamily == UNSPEC; //设置文件描述符的值 setIntOption0(filedescriptor, flag1, optionkey.level(), optionkey.name(), i1); } private static native void setIntOption0(FileDescriptor filedescriptor, boolean flag, int i, int j, int k) throws IOException;
//获取配置选项 public Object getOption(SocketOption socketoption) throws IOException { if(socketoption == null) throw new NullPointerException(); //检查配置 if(!supportedOptions().contains(socketoption)) throw new UnsupportedOperationException((new StringBuilder()).append("'").append(socketoption).append("' not supported").toString()); Object obj = stateLock; JVM INSTR monitorenter ; //检查通道打开状态 if(!isOpen()) throw new ClosedChannelException(); //IP_TOS配置项返回值,如果iP6可用,返回0,否则委托给Net if(socketoption == StandardSocketOptions.IP_TOS) return Net.isIPv6Available() ? Integer.valueOf(0) : Net.getSocketOption(fd, StandardProtocolFamily.INET, socketoption); //获取配置项 Net.getSocketOption(fd, Net.UNSPEC, socketoption); obj; JVM INSTR monitorexit ; return; Exception exception; exception; throw exception; }
//Net
static Object getSocketOption(FileDescriptor filedescriptor, ProtocolFamily protocolfamily, SocketOption socketoption) throws IOException { Class class1 = socketoption.type(); //非整形和布尔型,则抛出断言错误 if(class1 != java/lang/Integer && class1 != java/lang/Boolean) throw new AssertionError("Should not reach here"); OptionKey optionkey = SocketOptionRegistry.findOption(socketoption, protocolfamily); if(optionkey == null) throw new AssertionError("Option not found"); boolean flag = protocolfamily == UNSPEC; //获取文件描述的选项配置 int i = getIntOption0(filedescriptor, flag, optionkey.level(), optionkey.name()); if(class1 == java/lang/Integer) return Integer.valueOf(i); else return i != 0 ? Boolean.TRUE : Boolean.FALSE; } private static native int getIntOption0(FileDescriptor filedescriptor, boolean flag, int i, int j) throws IOException;
//获取通道Socket public Socket socket() { Object obj = stateLock; JVM INSTR monitorenter ; if(socket == null) //创建Socket适配器 socket = SocketAdaptor.create(this); return socket; Exception exception; exception; throw exception; }
//SocketAdaptor,可简单理解为SocketChannelImpl的代理
public class SocketAdaptor extends Socket { private final SocketChannelImpl sc; private volatile int timeout; private InputStream socketInputStream;//输入流 static final boolean $assertionsDisabled = !sun/nio/ch/SocketAdaptor.desiredAssertionStatus(); //创建socket适配器 public static Socket create(SocketChannelImpl socketchannelimpl) { return new SocketAdaptor(socketchannelimpl); SocketException socketexception; socketexception; throw new InternalError("Should not reach here"); } //构造SocketAdaptor private SocketAdaptor(SocketChannelImpl socketchannelimpl) throws SocketException { super((SocketImpl)null); timeout = 0; socketInputStream = null; sc = socketchannelimpl; } public SocketChannel getChannel() { return sc; } public void connect(SocketAddress socketaddress) throws IOException { connect(socketaddress, 0); } public void connect(SocketAddress socketaddress, int i) throws IOException { ... sc.configureBlocking(false); if(!sc.connect(socketaddress)) ... } //绑定地址 public void bind(SocketAddress socketaddress) throws IOException { try { sc.bind(socketaddress); } catch(Exception exception) { Net.translateException(exception); } } //获取远端socket地址 public InetAddress getInetAddress() { SocketAddress socketaddress = sc.remoteAddress(); if(socketaddress == null) return null; else return ((InetSocketAddress)socketaddress).getAddress(); } //获取本地地址 public InetAddress getLocalAddress() { if(sc.isOpen()) { SocketAddress socketaddress = sc.localAddress(); if(socketaddress != null) return ((InetSocketAddress)socketaddress).getAddress(); } return (new InetSocketAddress(0)).getAddress(); } //获取远端socket端口 public int getPort() { SocketAddress socketaddress = sc.remoteAddress(); if(socketaddress == null) return 0; else return ((InetSocketAddress)socketaddress).getPort(); } 还有一些方法,我们这里就不一一列出了,相关方法都是通过内部 socketChannelImpl实例的相应方法实现,所有SocketAdaptor,可简单理解为SocketChannelImpl的代理 }
//SocketAdaptor结构图:
//获取本地socket地址 public SocketAddress getLocalAddress() throws IOException { Object obj = stateLock; JVM INSTR monitorenter ; if(!isOpen()) throw new ClosedChannelException(); return localAddress; Exception exception; exception; throw exception; } //获取远端Socket地址 public SocketAddress getRemoteAddress() throws IOException { Object obj = stateLock; JVM INSTR monitorenter ; if(!isOpen()) throw new ClosedChannelException(); return remoteAddress; Exception exception; exception; throw exception; } //关闭输入流 public SocketChannel shutdownInput() throws IOException { Object obj = stateLock; JVM INSTR monitorenter ; if(!isOpen()) throw new ClosedChannelException(); if(!isConnected()) throw new NotYetConnectedException(); if(isInputOpen) { //为Net关闭fd对应的输入流 Net.shutdown(fd, 0); if(readerThread != 0L) //通知读线程,输入流关闭 NativeThread.signal(readerThread); isInputOpen = false; } return this; Exception exception; exception; throw exception; } //关闭输出流 public SocketChannel shutdownOutput() throws IOException { Object obj = stateLock; JVM INSTR monitorenter ; if(!isOpen()) throw new ClosedChannelException(); if(!isConnected()) throw new NotYetConnectedException(); if(isOutputOpen) { //为Net关闭fd对应的输出流 Net.shutdown(fd, 1); if(writerThread != 0L) //通知写线程,输出流关闭 NativeThread.signal(writerThread); isOutputOpen = false; } return this; Exception exception; exception; throw exception; }
//Net
static native void shutdown(FileDescriptor filedescriptor, int i) throws IOException;
//NativeThread
package sun.nio.ch; class NativeThread { NativeThread() { } static long current() { return 0L; } static void signal(long l) { } }
//输出流是否关闭 public boolean isInputOpen() { Object obj = stateLock; JVM INSTR monitorenter ; return isInputOpen; Exception exception; exception; throw exception; } //输入流是否关闭 public boolean isOutputOpen() { Object obj = stateLock; JVM INSTR monitorenter ; return isOutputOpen; Exception exception; exception; throw exception; } //是否连接 public boolean isConnected() { Object obj = stateLock; JVM INSTR monitorenter ; return state == 2; Exception exception; exception; throw exception; }
//关闭选择通道
protected void implCloseSelectableChannel() throws IOException { synchronized(stateLock)//同步状态锁 { //置输入流和输出流打开状态为false isInputOpen = false; isOutputOpen = false; if(state != 4) //如果通道没有关闭,则预先关闭fd nd.preClose(fd); if(readerThread != 0L) //通知读线程,关闭输入流 NativeThread.signal(readerThread); if(writerThread != 0L) //通知写线程,输出流关闭 NativeThread.signal(writerThread); if(!isRegistered()) //如果当前没有注册到任何选择器,则调用kill完成实际关闭工作 kill(); } }
关闭选择通道有两点需要关注
1.
//如果通道没有关闭,则预先关闭fd nd.preClose(fd);
//SocketDispatcher
void preClose(FileDescriptor filedescriptor) throws IOException { preClose0(filedescriptor); } static native void preClose0(FileDescriptor filedescriptor) throws IOException;
2.
//如果当前没有注册到任何选择器,则调用kill完成实际关闭工作 kill();
public void kill() throws IOException { label0: { synchronized(stateLock) { if(state != 4) break label0; } return; } if(state != -1) break MISSING_BLOCK_LABEL_34; state = 4; obj; JVM INSTR monitorexit ; return; if(!$assertionsDisabled && (isOpen() || isRegistered())) throw new AssertionError(); if(readerThread == 0L && writerThread == 0L) { //委托SocketDispatcher关闭通道 nd.close(fd); state = 4;//已经关闭 } else { //正在关闭 state = 3; } obj; JVM INSTR monitorexit ; goto _L1 exception; throw exception; _L1: }
来看
//委托SocketDispatcher关闭通道 nd.close(fd);
//SocketDispatcher
void close(FileDescriptor filedescriptor) throws IOException { close0(filedescriptor); } static native void close0(FileDescriptor filedescriptor) throws IOException;
从上面可以看出:
实际关闭通道,首先同步状态锁,置输入流和输出流打开状态为false,
如果通道没有关闭,则通过SocketDispatcher预先关闭fd,通知读线程,关闭输入流,
通知写线程,输出流关闭,如果当前没有注册到任何选择器,则调用kill完成实际关闭工作,
即SocketDispatcher关闭fd。
//设置通道兴趣事件 public void translateAndSetInterestOps(int i, SelectionKeyImpl selectionkeyimpl) { int j = 0; if((i & 1) != 0) j |= 1;//读事件 if((i & 4) != 0) j |= 4;//写事件 if((i & 8) != 0) j |= 2;//连接事件 selectionkeyimpl.selector.putEventOps(selectionkeyimpl, j); } //设置就绪事件 public boolean translateAndSetReadyOps(int i, SelectionKeyImpl selectionkeyimpl) { return translateReadyOps(i, 0, selectionkeyimpl); } //更新就绪事件 public boolean translateAndUpdateReadyOps(int i, SelectionKeyImpl selectionkeyimpl) { return translateReadyOps(i, selectionkeyimpl.nioReadyOps(), selectionkeyimpl); } public boolean translateReadyOps(int i, int j, SelectionKeyImpl selectionkeyimpl) { int k = selectionkeyimpl.nioInterestOps(); int l = selectionkeyimpl.nioReadyOps(); int i1 = j; //就绪事件为读1写4连接8,接受连接事件16,不是这四种事件,则返回false if((i & 32) != 0) return false; //下面的这段24,16不是很明白,理解的网友可以给我留言,一起探讨, //莫非为8+16,接受连接,并建立连接 if((i & 24) != 0) { i1 = k; selectionkeyimpl.nioReadyOps(i1); readyToConnect = true;//准备连接 return (i1 & ~l) != 0; } if((i & 1) != 0 && (k & 1) != 0 && state == 2) i1 |= 1;//读事件,已连接 if((i & 2) != 0 && (k & 8) != 0 && (state == 0 || state == 1)) { i1 |= 8;//连接事件,正在连接 readyToConnect = true; } if((i & 4) != 0 && (k & 4) != 0 && state == 2) i1 |= 4;//写事件 selectionkeyimpl.nioReadyOps(i1); return (i1 & ~l) != 0; } //获取通道文件描述 public FileDescriptor getFD() { return fd; } //获取通道文件描述值 public int getFDVal() { return fdVal; }
总结:
实际关闭通道,同步状态锁,置输入流和输出流打开状态为false,如果通道没有关闭,则通过SocketDispatcher预先关闭fd,通知读线程,关闭输入流,通知写线程,输出流关闭,如果当前没有注册到任何选择器,则调用kill完成实际关闭工作,
即SocketDispatcher关闭fd。
发表评论
-
文件通道解析二(文件锁,关闭通道)
2017-05-16 23:17 1084文件通道解析一(读写操作,通道数据传输等):http://do ... -
文件通道解析一(读写操作,通道数据传输等)
2017-05-16 10:04 1176Reference定义(PhantomRefere ... -
文件通道创建方式综述
2017-05-15 17:39 1083Reference定义(PhantomReference,Cl ... -
文件读写方式简单综述后续(文件,流构造)
2017-05-14 23:04 1502Java Socket通信实例:http://donald-d ... -
文件读写方式简单综述
2017-05-14 11:13 1149Java Socket通信实例:http://donald-d ... -
FileChanne定义
2017-05-12 23:28 957文件读写方式简单综述:http://donald-draper ... -
SeekableByteChannel接口定义
2017-05-11 08:43 1253ByteChannel,分散聚集通道接口的定义(SocketC ... -
FileChannel示例
2017-05-11 08:37 1009前面我们看过socket通道,datagram通道,以管道Pi ... -
PipeImpl解析
2017-05-11 08:41 948ServerSocketChannel定义:http://do ... -
Pipe定义
2017-05-10 09:07 922Channel接口定义:http://donald-drape ... -
NIO-Pipe示例
2017-05-10 08:47 920PipeImpl解析:http://donald-draper ... -
DatagramChannelImpl 解析四(地址绑定,关闭通道等)
2017-05-10 08:27 804DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析三(多播)
2017-05-10 08:20 1951DatagramChannelImpl 解析一(初始化):ht ... -
NIO-UDP实例
2017-05-09 12:32 1598DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析二(报文发送与接收)
2017-05-09 09:03 1422DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析一(初始化)
2017-05-08 21:52 1434Channel接口定义:http://donald-drape ... -
MembershipKeyImpl 简介
2017-05-08 09:11 940MembershipKey定义:http://donald-d ... -
DatagramChannel定义
2017-05-07 23:13 1241Channel接口定义:http://donald-drape ... -
MulticastChanne接口定义
2017-05-07 13:45 1160NetworkChannel接口定义:ht ... -
MembershipKey定义
2017-05-06 16:20 937package java.nio.channels; i ...
相关推荐
例如,`java.nio.channels.FileChannel`用于读写文件,`java.nio.Selector`则用于监听多个通道的事件。 JDK 1.8还引入了Lambda表达式,这是一种简洁的匿名函数表示方式,使得函数式编程风格在Java中变得更加便捷。...
6 连接突然断开(比如对方因为段错误而程序停止,或者在连接过程中正常关闭) : 发生在使用代理调用接口的时候(连接丢失) 原因: 已经建立连接的对方突然断开 错误信息: warning: connection exception: ...
MATLAB数字滤波器设计及其在语音信号去噪中的应用:源码详解与报告分享,MATLAB 数字滤波器设计 及其语音信号去噪应用。 (供学习交流)带源码,带注释。 有代码和报告。 ,核心关键词:MATLAB; 数字滤波器设计; 语音信号去噪应用; 源码; 注释; 代码与报告。,"MATLAB数字滤波器设计及其在语音信号去噪中的应用:带源码注释与报告"
COMSOL软件模拟三维电化学腐蚀过程的研究分析,comsol三维电化学腐蚀。 ,核心关键词:Comsol;三维电化学;腐蚀;模型模拟;电化学腐蚀过程。,"Comsol模拟:三维电化学腐蚀过程解析"
基于COMSOL的降雨入渗模型:边坡与渗流边界下的强度折减塑性形变研究,comsol降雨入渗模型,边坡降雨边界与渗流边界 强度折减塑性形变 ,comsol降雨入渗模型; 降雨边界; 渗流边界; 强度折减; 塑性形变,"COMSOL降雨入渗模型:边坡渗流与强度折减塑性形变分析"
2025员工安全意识培训试题及答案.docx
Python自动化办公源码-06在Word表格中将上下行相同内容的单元格自动合并
基于深度学习的神经网络技术在信息通信领域的应用研究.pdf
1.内容概要 通过KNN实现鸢尾花分类,即将新的数据点分配给已知类别中的某一类。该算法的核心思想是通过比较距离来确定最近邻的数据点,然后利用这些邻居的类别信息来决定待分类数据点的类别。 2.KNN算法的伪代码 对未知类别属性的数据集中的每个点依次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离; (2)按照距离递增次序排序; (3)选取与当前点距离最小的k个点; (4)确定前k个点所在类别的出现频率; (5)返回前k个点出现频率最高的类别作为当前点的预测分类。 3.数据集说明 代码使用`pandas`库加载了一个名为`iris.arff.csv`的数据集 4.学习到的知识 通过鸢尾花分类学习了KNN算法,选择样本数据集中前k个最相似的数据,就是KNN算法中k的出处。k值过大,会出现分类结果模糊的情况;k值较小,那么预测的标签比较容易受到样本的影响。在实验过程中,不同的k值也会导致分类器的错误率不同。KNN算法精度高、无数据输入的假定,可以免去训练过程。但是对于数据量较多的训练样本,KNN必须保存全部数据集,可能会存在计算的时间复杂度、空间复杂度高的情况,存在维数灾难问
感应电机控制与矢量控制仿真:磁链闭环、转速闭环与电流闭环的综合应用研究,感应电机控制仿真,矢量控制,异步电机仿真,磁链闭环,转速闭环,电流闭环 ,核心关键词:感应电机控制仿真; 矢量控制; 异步电机仿真; 磁链闭环; 转速闭环; 电流闭环,"感应电机矢量控制仿真:磁链、转速、电流三闭环异步电机模拟"
威纶通TK6071IP触摸屏锁屏宏指令程序详解:注释清晰,便于理解与学习,威纶通触摸屏锁屏宏指令程序 ~ 威纶通触摸屏锁屏宏指令程序,TK6071IP触摸屏 利用宏指令程序来控制,宏指令注释清晰,方便理解程序。 具有很好的学习意义和借鉴价值。 ,关键词:威纶通触摸屏;锁屏宏指令程序;TK6071IP触摸屏;宏指令控制;注释清晰;学习借鉴。,威纶通触摸屏宏指令程序:清晰注释,学习借鉴之利器
2025输血相关法律法规试题考核试题及答案.docx
Python游戏编程源码-2048小游戏
2025最新康复医学概论考试题库(含答案).doc
Python自动化办公源码-09用Python批量往Word文档中指定位置添加图片
高品质车载充电器技术解决方案:含原理图、PCB图、C源代码及DSP控制器资料,附赠CDCDC模块资料,车载充电器 3Kw OBC 车载充电器 含原理图、PCB图、C源代码、变压器参数等生产资料。 附赠15kwdcdc模块资料 1、这款产品的方案采用的是dsp2803x系列。 2、原理图和Pcb采用AD绘制。 此方案仅供学习 ,车载充电器; 3Kw OBC; 原理图; PCB图; C源代码; 变压器参数; 生产资料; dsp2803x系列; AD绘制; 15kwdcdc模块资料,3Kw车载充电器方案:DSP2803x系列原理图、PCB图及C源学习包
2025最新康复医学考试题及答案.docx
内容概要:本文介绍了一种用于视频处理的新型卷积神经网络(CNN)加速器。主要创新点在于引入了混合精度计算、跨帧数据重用控制器及引擎,以及混合位宽差帧数据编码解码器。这些特性有效解决了视频帧间的时空相关性和稀疏性带来的挑战,提高了处理速度并降低了功耗和带宽需求。具体来说,通过对连续帧的数据相似度利用,可以在保持高精度的同时减少计算量和内存访问次数;通过多类型稀疏卷积聚类数组实现了对现代稀疏神经网络的支持;并通过混合位宽度编码减少了离芯片外的数据传输量,最高达到68%。 适用人群:从事深度学习硬件加速设计的研究人员和技术爱好者;关注AI边缘计算领域的从业者。 使用场景及目标:适用于自动驾驶汽车摄像头、监控系统等实时视频流应用场景。旨在为开发者提供高效的低能耗解决方案,在有限的时间和资源下完成大量的图像信号处理任务,如跟踪、分类等。 其他说明:文中还详细描述了芯片的设计细节,测试平台构建,以及不同模型(如MobileNet)在网络上的实际性能表现。
COMSOL电化学喷射腐蚀模拟与解析:技术原理及应用实践,comsol电化学喷射腐蚀 ,核心关键词:comsol; 电化学; 喷射腐蚀; 电化学腐蚀。,"电化学喷射腐蚀研究:comsol模拟与解析"
项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat