`
Donald_Draper
  • 浏览: 990373 次
社区版块
存档分类
最新评论

SocketChannelImpl 解析三(接收数据)

    博客分类:
  • NIO
nio 
阅读更多
SocketChannelImpl 解析一(通道连接,发送数据):http://donald-draper.iteye.com/blog/2372364
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
引言:
前一篇文章我们看了一下SocketChannelImpl发送多个字节序列的过程,先来回顾一下:
SocketChannelImpl写ByteBuffer数组方法,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
今天我们来看一下接受数据
再来看SocketChannelImpl的读操作
 public int read(ByteBuffer bytebuffer)
        throws IOException
    {
        if(bytebuffer == null)
            throw new NullPointerException();
        Object obj = readLock;//获取读锁
        JVM INSTR monitorenter ;//进入同步,try
        if(!ensureReadOpen())//确保通道,输入流打开,通道连接建立
            return -1;
        int i = 0;
        begin();
        int k;
        Object obj3;
        Exception exception;
        synchronized(stateLock)
        {
            if(isOpen())
                break MISSING_BLOCK_LABEL_146;
            k = 0;
        }
	//清除读线程
        readerCleanup();
        end(i > 0 || i == -2);
        obj3 = stateLock;
        JVM INSTR monitorenter ;
        if(i > 0 || isInputOpen) goto _L2; else goto _L1
_L1:
        -1;
        obj;
        JVM INSTR monitorexit ;
        return;
_L2:
        obj3;
        JVM INSTR monitorexit ;
          goto _L3
        exception;
        obj3;
        JVM INSTR monitorexit ;
        throw exception;
_L3:
        if(!$assertionsDisabled && !IOStatus.check(i))
            throw new AssertionError();
        obj;
        JVM INSTR monitorexit ;
        return k;
	//初始化本地读线程
        readerThread = NativeThread.current();
        obj1;
        JVM INSTR monitorexit ;
        int j;
        do
	   //委托IOUtil从输入流读取字节序列,写到bytebuffer
            i = IOUtil.read(fd, bytebuffer, -1L, nd, readLock);
        while(i == -3 && isOpen());
        ...
 }

从输入流读取字节序列,写到buffer,有几点要关注
1.
 if(!ensureReadOpen())//确保通道,输入流打开,通道连接建立
            return -1;

2.
//清除读线程
readerCleanup();

3.
do
   //委托IOUtil从输入流读取字节序列,写到bytebuffer
    i = IOUtil.read(fd, bytebuffer, -1L, nd, readLock);
while(i == -3 && isOpen());

下面我们分别来看这几点:
1.
 if(!ensureReadOpen())//确保通道,输入流打开,通道连接建立
            return -1;

//确保通道,输入流打开,通道连接建立
 private boolean ensureReadOpen()
        throws ClosedChannelException
    {
        Object obj = stateLock;
        JVM INSTR monitorenter ;
        if(!isOpen())//通道打开
            throw new ClosedChannelException();
        if(!isConnected())//连接建立
            throw new NotYetConnectedException();
        if(!isInputOpen)//输入流打开
            return false;
        true;
        obj;
        JVM INSTR monitorexit ;
        return;
        Exception exception;
        exception;
        throw exception;
    }

2.
//清除读线程
readerCleanup();

private void readerCleanup()
      throws IOException
  {
      //同步通道状态锁,清除读线程,如果通道关闭则,执行清除工作
      synchronized(stateLock)
      {
          readerThread = 0L;
          if(state == 3)
              kill();//这个后面再讲
      }
  }

3.
do
   //委托IOUtil从输入流读取字节序列,写到bytebuffer
    i = IOUtil.read(fd, bytebuffer, -1L, nd, readLock);
while(i == -3 && isOpen());

这里循环的原因,线程读输入流,有可能因为某种原因被中断,中断位消除,继续读取输入流,写到buffer
//IOUtil
static int read(FileDescriptor filedescriptor, ByteBuffer bytebuffer, long l, NativeDispatcher nativedispatcher, Object obj)
       throws IOException
   {
       ByteBuffer bytebuffer1;
       //如果buffer为只读,则抛出IllegalArgumentException
       if(bytebuffer.isReadOnly())
           throw new IllegalArgumentException("Read-only buffer");
       //如果buffer为DirectBuffer,则委托给readIntoNativeBuffer
       if(bytebuffer instanceof DirectBuffer)
           return readIntoNativeBuffer(filedescriptor, bytebuffer, l, nativedispatcher, obj);
       //从当前线程缓存区获取临时的DirectByteBuffer
       bytebuffer1 = Util.getTemporaryDirectBuffer(bytebuffer.remaining());
       int j;
       //委托readIntoNativeBuffer方法,读取输入流数据,到临时DirectByteBuffer
       int i = readIntoNativeBuffer(filedescriptor, bytebuffer1, l, nativedispatcher, obj);
       //读写模式切换
       bytebuffer1.flip();
       if(i > 0)
           //如果有数据被读取,则放到byteBuffer中
           bytebuffer.put(bytebuffer1);
       j = i;//记录读取的字节数
       //添加临时DirectByteBuffer到当前线程的缓冲区,以便重用,
       //因为重新DirectByteBuffer为直接操作物理内存,频繁分配物理内存,将耗费过多的资源。
       Util.offerFirstTemporaryDirectBuffer(bytebuffer1);
       return j;
       Exception exception;
       exception;
       Util.offerFirstTemporaryDirectBuffer(bytebuffer1);
       throw exception;
   }

来看readIntoNativeBuffer方法
private static int readIntoNativeBuffer(FileDescriptor filedescriptor, ByteBuffer bytebuffer, long l, NativeDispatcher nativedispatcher, Object obj)
        throws IOException
    {
        int i = bytebuffer.position();
        int j = bytebuffer.limit();
	//如果断言开启,buffer的position大于limit,则抛出断言错误
        if(!$assertionsDisabled && i > j)
            throw new AssertionError();
	//获取需要读的字节数
        int k = i > j ? 0 : j - i;
        if(k == 0)
            return 0;
        int i1 = 0;
	//从输入流读取k个字节到buffer
        if(l != -1L)
            i1 = nativedispatcher.pread(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k, l, obj);
        else
            i1 = nativedispatcher.read(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k);
	//重新定位buffer的position
        if(i1 > 0)
            bytebuffer.position(i + i1);
        return i1;
    }

readIntoNativeBuffer方法中一点我们需要关注:
//从输入流读取k个字节到buffer
if(l != -1L)
    i1 = nativedispatcher.pread(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k, l, obj);
else
    i1 = nativedispatcher.read(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k);

//NativeDispatcher
 int pread(FileDescriptor filedescriptor, long l, int i, long l1, Object obj)
        throws IOException
    {
        throw new IOException("Operation Unsupported");
    }

从NativeDispatcher的pread方法可以看出,当前JDK版本,还不支持pread操作,我的JDK版本为1.7.0.17。
//SocketDispatcher
 int read(FileDescriptor filedescriptor, long l, int i)
        throws IOException
    {
        return read0(filedescriptor, l, i);
    }
 static native int read0(FileDescriptor filedescriptor, long l, int i)
        throws IOException;

至此读输入流到buffer,已经看完,首先同步读写,确保通道,输入流打开,通道连接建立,
清除原始读线程,获取新的本地读线程,委托IOUtil读输入流到buffer;IOUtil读输入流到buffer,首先确保buffer是可写的,否则抛出IllegalArgumentException,然后判断buffer是否为Direct类型,是则委托给readIntoNativeBuffer,否则通过Util从当前线程缓冲区获取一个临时的DirectByteBuffer,然后通过readIntoNativeBuffer读输入流数据到临时的DirectByteBuffer,这一个过程是通过SocketDispatcher的read方法实现,读写数据到DirectByteBuffer中后,将DirectByteBuffer中数据,写到原始buffer中,并将
DirectByteBuffer添加到添加临时DirectByteBuffer到当前线程的缓冲区,以便重用,
因为重新DirectByteBuffer为直接操作物理内存,频繁分配物理内存,将耗费过多的资源。
在来看从输入流读取数据,写到多个buffer:
public long read(ByteBuffer abytebuffer[], int i, int j)
        throws IOException
    {
        //校验参数
        if(i < 0 || j < 0 || i > abytebuffer.length - j)
            throw new IndexOutOfBoundsException();
        Object obj = readLock;//获取读锁
        JVM INSTR monitorenter ;//进入同步,try
        if(!ensureReadOpen())//确保通道打开,连接建立,输入流打开
            return -1L;
        long l = 0L;
        begin();//与end协同,记录中断器,处理读操作过程中的中断问题
        long l2;
        Object obj3;
        Exception exception;
        synchronized(stateLock)
        {
            if(isOpen())
                break MISSING_BLOCK_LABEL_177;
            l2 = 0L;
        }
	//清除原始读线程
        readerCleanup();
        end(l > 0L || l == -2L);
        obj3 = stateLock;
        JVM INSTR monitorenter ;
        if(l > 0L || isInputOpen) goto _L2; else goto _L1
_L1:
        -1L;
        obj;
        JVM INSTR monitorexit ;
        return;
_L2:
        obj3;
        JVM INSTR monitorexit ;
          goto _L3
        exception;
        obj3;
        JVM INSTR monitorexit ;
        throw exception;
_L3:
        if(!$assertionsDisabled && !IOStatus.check(l))
            throw new AssertionError();
        obj;
        JVM INSTR monitorexit ;
        return l2;
	//获取本地读线程
        readerThread = NativeThread.current();
        obj1;
        JVM INSTR monitorexit ;
        long l1;
        do
	    //委托给IOUtil,从输入流读取数据,写到多个buffer
            l = IOUtil.read(fd, abytebuffer, i, j, nd);
        while(l == -3L && isOpen());
        l1 = IOStatus.normalize(l);
}

从输入流读取数据,写到多个buffer,我们只需要关注下面这点
 do
    //委托给IOUtil,从输入流读取数据,写到多个buffer
    l = IOUtil.read(fd, abytebuffer, i, j, nd);
while(l == -3L && isOpen());

这里循环的原因,线程读输入流,有可能因为某种原因被中断,中断位消除,继续读取输入流,写到buffer;
//IOUtil
static long read(FileDescriptor filedescriptor, ByteBuffer abytebuffer[], int i, int j, NativeDispatcher nativedispatcher)
        throws IOException
    {
        IOVecWrapper iovecwrapper;
        boolean flag;
        int k;
	//获取存放i个byteBuffer的IOVecWrapper
        iovecwrapper = IOVecWrapper.get(j);
        flag = false;
        k = 0;
        long l1;
        int l = i + j;
        for(int i1 = i; i1 < l && k < IOV_MAX; i1++)
        {
            ByteBuffer bytebuffer = abytebuffer[i1];
            if(bytebuffer.isReadOnly())
                throw new IllegalArgumentException("Read-only buffer");
            int j1 = bytebuffer.position();
            int k1 = bytebuffer.limit();
            if(!$assertionsDisabled && j1 > k1)
                throw new AssertionError();
            int j2 = j1 > k1 ? 0 : k1 - j1;
            if(j2 <= 0)
                continue;
	   //将buffer添加到iovecwrapper的字节缓冲区数组中
            iovecwrapper.setBuffer(k, bytebuffer, j1, j2);
            if(!(bytebuffer instanceof DirectBuffer))
            {
	       //获取容量为j2临时DirectByteBuffer
                ByteBuffer bytebuffer2 = Util.getTemporaryDirectBuffer(j2);
		//添加DirectByteBuffer到iovecwrapper的shadow buffer数组
                iovecwrapper.setShadow(k, bytebuffer2);
                bytebuffer = bytebuffer2;
                j1 = bytebuffer2.position();
            }
	    //将字节缓冲区的起始地址写到iovecwrapper
            iovecwrapper.putBase(k, ((DirectBuffer)bytebuffer).address() + (long)j1);
	     //将字节缓冲区的实际容量写到iovecwrapper
            iovecwrapper.putLen(k, j2);
            k++;
        }

        if(k != 0)
            break MISSING_BLOCK_LABEL_263;
        l1 = 0L;
        if(!flag)
        {
            for(int i2 = 0; i2 < k; i2++)
            {   
	        //获取iovecwrapper索引i2对应的字节序列副本
                ByteBuffer bytebuffer1 = iovecwrapper.getShadow(i2);
                if(bytebuffer1 != null)
		//如果字节序列不为空,则添加到当前线程的缓存区中
                    Util.offerLastTemporaryDirectBuffer(bytebuffer1);
		 //清除索引i2对应的字节序列在iovecwrapper中的字节序列数组,及相应副本数组的信息
                iovecwrapper.clearRefs(i2);
            }

        }
        return l1;
        long l4;
	//委托给nativedispatcher,从filedescriptor对应的输入流读取数据,写到iovecwrapper的缓冲区中。
        long l2 = nativedispatcher.readv(filedescriptor, iovecwrapper.address, k);
}

再来看IOUtil写buffer数组的关键点
long l2 = nativedispatcher.readv(filedescriptor, iovecwrapper.address, k);

//SocketDispatcher
 long readv(FileDescriptor filedescriptor, long l, int i)
        throws IOException
    {
        return readv0(filedescriptor, l, i);
    }
     static native long readv0(FileDescriptor filedescriptor, long l, int i)
        throws IOException;

至此我们把SocketChannelImpl从输入流读取数据,写到ByteBuffer数组的read方法看完,首先同步写锁,确保通道,连接建立,输入流打开,委托给IOUtil,从输入流读取数据写到ByteBuffer数组中;IOUtil首先获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将buffer添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,从filedescriptor对应的输入流读取数据,写到iovecwrapper的缓冲区中。
总结:
    读输入流到buffer,首先同步读写,确保通道,输入流打开,通道连接建立,
清除原始读线程,获取新的本地读线程,委托IOUtil读输入流到buffer;IOUtil读输入流到buffer,首先确保buffer是可写的,否则抛出IllegalArgumentException,然后判断buffer是否为Direct类型,是则委托给readIntoNativeBuffer,否则通过Util从当前线程缓冲区获取一个临时的DirectByteBuffer,然后通过readIntoNativeBuffer读输入流数据到临时的DirectByteBuffer,这一个过程是通过SocketDispatcher的read方法实现,读写数据到DirectByteBuffer中后,将DirectByteBuffer中数据,写到原始buffer中,并将
DirectByteBuffer添加到添加临时DirectByteBuffer到当前线程的缓冲区,以便重用,因为重新DirectByteBuffer为直接操作物理内存,频繁分配物理内存,将耗费过多的资源。
    从输入流读取数据,写到ByteBuffer数组的read方法,首先同步写锁,确保通道,连接建立,输入流打开,委托给IOUtil,从输入流读取数据写到ByteBuffer数组中;IOUtil首先获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将buffer添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,从filedescriptor对应的输入流读取数据,写到iovecwrapper的缓冲区中。

SocketChannelImpl 解析四(关闭通道等):http://donald-draper.iteye.com/blog/2372717
分享到:
评论

相关推荐

    jdk 1.8源码包,包含sun源码,绝对真实,自己看大小就懂了,靠谱

    此外,Stream API也是1.8的一大亮点,它提供了处理集合的新方式,可以进行数据流的过滤、映射、归约等操作,大大简化了数据处理的代码。 在"jdk-5b86f66575b7"这个压缩包中,很可能包含了JDK 1.8的完整源码,包括...

    Ice-3.7.4.msi for windows版

    at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:574) at IceInternal.Network.doFinishConnect(Network.java:393) ... 6 more 这种报错是ICE服务端没有起来,telnet服务端ICE的端口不通...

    TinyYolo2实时视频流物体检测ONNX模型

    TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。

    chromedriver-linux64-134.0.6998.23(Beta).zip

    chromedriver-linux64-134.0.6998.23(Beta).zip

    Web开发:ABP框架4-DDD四层架构的详解

    Web开发:ABP框架4-DDD四层架构的详解

    chromedriver-linux64-135.0.7029.0(Canary).zip

    chromedriver-linux64-135.0.7029.0(Canary).zip

    (参考项目)MATLAB人脸门禁系统.zip

    实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。

    rdtyfv、ijij

    yugy

    企业IT治理体系规划.pptx

    企业IT治理体系规划.pptx

    基于Nutz、SSH、SSM的新闻管理系统.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行

    基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合

    DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升

    DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发

    基于ASP.NET MVC+三层架构和EntityFramework的微博门户网站项目.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档 ,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验 ,基于plc的双层自动门控

    基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。

    黑马程序员Java品达通用权限项目,基于SpringCloud SpringBoot 的微服务框架的权限管理解决方案.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    DeepSeek+DeepResearch-让科研像聊天一样简单

    DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。

    基于springboot+uniapp实现的蛋糕商城小程序.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    jdepend-demo-2.9.1-10.el7.x64-86.rpm.tar.gz

    1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    关爱儿童公益网站 web 项目.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。

Global site tag (gtag.js) - Google Analytics