- 浏览: 985958 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
ThreadLocal解析 :http://donald-draper.iteye.com/blog/2368159
Java NIO ByteBuffer详解:http://donald-draper.iteye.com/blog/2357084
DirectByteBuffer简介:http://donald-draper.iteye.com/blog/2372351
SelectorProvider定义:http://donald-draper.iteye.com/blog/2369615
ServerSocketChannelImpl解析:http://donald-draper.iteye.com/blog/2370912
SocketChannel接口定义:http://donald-draper.iteye.com/blog/2371218
引言:
在SocketChannel接口定义这篇文章中,我们看了socket的连接,完成连接,是否正在建立连接,读缓冲区写到通道,聚集写,读通道写缓冲区,分散读等方法。在NIO包中TCP发送接受字节序列通过SocketChannel。今天我们来看一下SocketChannel的具体
实现。我们从SocketChannel的open方法开始。
//SocketChannel
SelectorProvider.provider()这个过程我们就不详说了实际是加载系统默认的SelectorProvider
实例,则个我们在SelectorProvider定义有提过,简单看一下:
//SelectorProviderImpl
从上面可以看出,SocketChannel的默认实现为SocketChannelImpl。再来看SocketChannelImpl的变量
声明和相关方法的实现。
SocketChannelImpl的构造方法有三种分别如下
1.
2.
3.
我们需要关注的是这两点,
//Net
//IOUtil
这个我们在ServerSocketChannelImpl解析这篇文章接触过Net和IOUtil,这里不具体的解释了
,看一下即可,很容易理解。
//Net
从上面可以看出SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
来看SocketChannelImpl的其他方法
//连接socket地址
connect连接方法有几点要看:
1.
2.
3.尝试连接socket地址
4.检查连接结果
下面分别来看这四点:
1.
2.
3.尝试连接socket地址
//Net
4.检查连接结果
这一点我们需要关注的是IOStatus.check(i)这句:
//IOStatus
从上面可以看出,connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;
然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,
最后尝试连接socket地址。
再来看地址绑定方法bind
下面来看SocketChannelImpl的几个读写方法
先来看从缓冲区读取数据,写到通道
写操作需要关注一下几点,
1.
2.
3.
下面分别来看这三点
1.
2.
//IOUtil
这一步我们有几点要关注:
a.
想要理解这点,先看一下Util的定义
//Util
//IOUtil,变量IOV_MAX
再来看Util的缓冲区的定义BufferCache
//Util
从上面可以看出BufferCache用一个ByteBuffer数组buffers存放写到缓冲区的字节流序列,每次写字节流对应一个ByteBuffer,用count记录当前缓冲区中的有数据或可用的ByteBuffer数量,start记录当前缓冲区buffers的头部;offerFirst方法向缓冲区的头部添加一个字节序列bytebuffer,即写字节序列到缓存区;offerLast与offerFirst恰好相反,写字节序列到缓冲区的尾部(索引start + count);next方法为向后移动缓冲区buffers索引;get(int i)方法为从缓冲区获取可以存放i个字节序列的ByteBuffer,并rewind字节缓冲区ByteBuffer,
限制孔勇空间为ByteBuffer。removeFirst为移除缓冲区头部的bytebuffer,并返回。
看过Util的BufferCache的定义,我们再回到
//Util
获取临时DirectByteBuffer有两点要看
a.1
//Util
//DirectBuffer
a.2
b.
//nativedispatcher参数实际为SocketDispatcher
来看两种方式的写
b.1
//Nativedispatcher
b.2
//SocketDispatcher
从缓冲读取字节序列,写到通道中,实际是通过SocketDispatcher完成实际的写工作,当前默认的写方法为write(FileDescriptor filedescriptor, long l, int i)。
c.
3.
//清除写线程
从以上分析可以看出,从缓冲区读取字节序列写到通道,首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
总结:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
附:
权限检查:SecurityManager为系统的默认安全检查管理器,主要用于检查当前线程是否拥有
某个权限的访问控制权限,比如socket连接,监听,获取类加载等。
//SecurityManager
//SecurityConstants,安全权限常量
Java NIO ByteBuffer详解:http://donald-draper.iteye.com/blog/2357084
DirectByteBuffer简介:http://donald-draper.iteye.com/blog/2372351
SelectorProvider定义:http://donald-draper.iteye.com/blog/2369615
ServerSocketChannelImpl解析:http://donald-draper.iteye.com/blog/2370912
SocketChannel接口定义:http://donald-draper.iteye.com/blog/2371218
引言:
在SocketChannel接口定义这篇文章中,我们看了socket的连接,完成连接,是否正在建立连接,读缓冲区写到通道,聚集写,读通道写缓冲区,分散读等方法。在NIO包中TCP发送接受字节序列通过SocketChannel。今天我们来看一下SocketChannel的具体
实现。我们从SocketChannel的open方法开始。
//SocketChannel
public static SocketChannel open() throws IOException { return SelectorProvider.provider().openSocketChannel(); }
SelectorProvider.provider()这个过程我们就不详说了实际是加载系统默认的SelectorProvider
实例,则个我们在SelectorProvider定义有提过,简单看一下:
//SelectorProviderImpl
public abstract class SelectorProviderImpl extends SelectorProvider { public SocketChannel openSocketChannel() throws IOException { return new SocketChannelImpl(this); } }
从上面可以看出,SocketChannel的默认实现为SocketChannelImpl。再来看SocketChannelImpl的变量
声明和相关方法的实现。
class SocketChannelImpl extends SocketChannel implements SelChImpl { private static NativeDispatcher nd = new SocketDispatcher();//socket的分发器 private final FileDescriptor fd;//文件描述 private final int fdVal;//文件描述id private volatile long readerThread;//读线程 private volatile long writerThread;//写线程 private final Object readLock;//读锁 private final Object writeLock;//写锁 private final Object stateLock;//状态锁 private static final int ST_UNINITIALIZED = -1;//未初始化 private static final int ST_UNCONNECTED = 0;//未连接 private static final int ST_PENDING = 1;//正在连接 private static final int ST_CONNECTED = 2;//已连接 private static final int ST_KILLPENDING = 3;//正在关闭 private static final int ST_KILLED = 4;//关闭 private int state;//通道状态 private SocketAddress localAddress;//socket本地地址 private SocketAddress remoteAddress;//socket远端地址 private boolean isInputOpen;//输入流是否打开 private boolean isOutputOpen;//输出流是否打开 private boolean readyToConnect;//是否正在准备连接 private Socket socket;//通道套接字 static final boolean $assertionsDisabled = !sun/nio/ch/SocketChannelImpl.desiredAssertionStatus(); static { //加载nio,net资源库 Util.load(); } }
SocketChannelImpl的构造方法有三种分别如下
1.
SocketChannelImpl(SelectorProvider selectorprovider) throws IOException { super(selectorprovider); readerThread = 0L; writerThread = 0L; //初始化读写及状态锁 readLock = new Object(); writeLock = new Object(); stateLock = new Object(); state = -1;//状态默认为未初始化 isInputOpen = true; isOutputOpen = true; readyToConnect = false; fd = Net.socket(true);//初始化文件描述符 fdVal = IOUtil.fdVal(fd);//获取文件描述的值 state = 0;//已初始化,未连接 }
2.
SocketChannelImpl(SelectorProvider selectorprovider, FileDescriptor filedescriptor, boolean flag) throws IOException { super(selectorprovider); readerThread = 0L; writerThread = 0L; readLock = new Object(); writeLock = new Object(); stateLock = new Object(); state = -1; isInputOpen = true; isOutputOpen = true; readyToConnect = false; fd = filedescriptor; fdVal = IOUtil.fdVal(filedescriptor); state = 0;//已初始化,未连接 if(flag) //初始化本地地址 localAddress = Net.localAddress(filedescriptor); }
3.
SocketChannelImpl(SelectorProvider selectorprovider, FileDescriptor filedescriptor, InetSocketAddress inetsocketaddress) throws IOException { super(selectorprovider); readerThread = 0L; writerThread = 0L; readLock = new Object(); writeLock = new Object(); stateLock = new Object(); state = -1; isInputOpen = true; isOutputOpen = true; readyToConnect = false; fd = filedescriptor; fdVal = IOUtil.fdVal(filedescriptor); state = 2;//已连接 localAddress = Net.localAddress(filedescriptor); remoteAddress = inetsocketaddress; }
我们需要关注的是这两点,
a.fd = Net.socket(true);//初始化文件描述符
//Net
static FileDescriptor socket(boolean flag) throws IOException { return socket(UNSPEC, flag); } static FileDescriptor socket(ProtocolFamily protocolfamily, boolean flag) throws IOException { boolean flag1 = isIPv6Available() && protocolfamily != StandardProtocolFamily.INET; return IOUtil.newFD(socket0(flag1, flag, false)); } private static native int socket0(boolean flag, boolean flag1, boolean flag2);
//IOUtil
static FileDescriptor newFD(int i) { FileDescriptor filedescriptor = new FileDescriptor(); setfdVal(filedescriptor, i); return filedescriptor; }
这个我们在ServerSocketChannelImpl解析这篇文章接触过Net和IOUtil,这里不具体的解释了
,看一下即可,很容易理解。
b.localAddress = Net.localAddress(filedescriptor);
//Net
static InetSocketAddress localAddress(FileDescriptor filedescriptor) throws IOException { return new InetSocketAddress(localInetAddress(filedescriptor), localPort(filedescriptor)); } private static native int localPort(FileDescriptor filedescriptor) throws IOException; private static native InetAddress localInetAddress(FileDescriptor filedescriptor) throws IOException;
从上面可以看出SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
来看SocketChannelImpl的其他方法
//连接socket地址
public boolean connect(SocketAddress socketaddress) throws IOException { boolean flag = false; Object obj = readLock;//同步读锁 JVM INSTR monitorenter ;//try Object obj1 = writeLock;//同步写锁 JVM INSTR monitorenter ; InetSocketAddress inetsocketaddress; //确保socket通道处于打开状态,没有连接 ensureOpenAndUnconnected(); //检查socketAddress正确与合法性 inetsocketaddress = Net.checkAddress(socketaddress); SecurityManager securitymanager = System.getSecurityManager(); if(securitymanager != null) //检查当前线程是否有Connect方法的访问控制权限 securitymanager.checkConnect(inetsocketaddress.getAddress().getHostAddress(), inetsocketaddress.getPort()); //同步regLock锁,Lock for registration and configureBlocking operations //这个在AbstractSelectableChannel中定义 Object obj2 = blockingLock(); JVM INSTR monitorenter ; int i = 0; //Marks the begin/end of an I/O operation that might block indefinitely. begin();//与end协调使用,用于可能阻塞IO操作 boolean flag1; //同步状态锁 synchronized(stateLock) { if(isOpen()) break MISSING_BLOCK_LABEL_149; flag1 = false; } //清除Reader线程 readerCleanup(); end(i > 0 || i == -2); //断言连接结果大于-2,则连接失败,抛出断言异常 if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); return flag1; if(localAddress == null) //beforeTcpConnect为静态空方法体,这个我们在ServerSocketChannelImpl中有说 NetHooks.beforeTcpConnect(fd, inetsocketaddress.getAddress(), inetsocketaddress.getPort()); //初始化读线程 readerThread = NativeThread.current(); obj3; JVM INSTR monitorexit ; do { InetAddress inetaddress = inetsocketaddress.getAddress(); if(inetaddress.isAnyLocalAddress()) inetaddress = InetAddress.getLocalHost(); //尝试连接socket地址 i = Net.connect(fd, inetaddress, inetsocketaddress.getPort()); } while(i == -3 && isOpen()); readerCleanup(); end(i > 0 || i == -2); if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); break MISSING_BLOCK_LABEL_358; Exception exception1; exception1; readerCleanup(); end(i > 0 || i == -2); if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); else throw exception1; IOException ioexception; ioexception; //出现IO异常,则关闭通道 close(); throw ioexception; Object obj4 = stateLock; JVM INSTR monitorenter ; remoteAddress = inetsocketaddress; if(i <= 0) goto _L2; else goto _L1 _L1: state = 2; if(isOpen()) localAddress = Net.localAddress(fd); true; obj2; JVM INSTR monitorexit ;//退出同步 obj1; JVM INSTR monitorexit ; obj; JVM INSTR monitorexit ; return; _L2: if(!isBlocking()) state = 1; else if(!$assertionsDisabled) throw new AssertionError(); obj4; JVM INSTR monitorexit ; goto _L3 Exception exception2; exception2; obj4; JVM INSTR monitorexit ; throw exception2; _L3: obj2; JVM INSTR monitorexit ; goto _L4 Exception exception3; exception3; obj2; JVM INSTR monitorexit ; throw exception3; _L4: false; obj1; JVM INSTR monitorexit ; obj; JVM INSTR monitorexit ; return; Exception exception4; exception4; throw exception4; Exception exception5; exception5; throw exception5; }
connect连接方法有几点要看:
1.
//确保socket通道处于打开状态,没有连接 ensureOpenAndUnconnected();
2.
//清除Reader线程 readerCleanup();
3.尝试连接socket地址
do { InetAddress inetaddress = inetsocketaddress.getAddress(); if(inetaddress.isAnyLocalAddress()) inetaddress = InetAddress.getLocalHost(); //尝试连接socket地址 i = Net.connect(fd, inetaddress, inetsocketaddress.getPort()); } while(i == -3 && isOpen());
4.检查连接结果
if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); else throw exception1; IOException ioexception; ioexception; //出现IO异常,则关闭通道 close();
下面分别来看这四点:
1.
//确保socket通道处于打开状态,没有连接 ensureOpenAndUnconnected();
void ensureOpenAndUnconnected() throws IOException { synchronized(stateLock) { if(!isOpen())//通道关闭 throw new ClosedChannelException(); if(state == 2)//已经连接 throw new AlreadyConnectedException(); if(state == 1)//正在来接 throw new ConnectionPendingException(); } }
2.
//清除Reader线程 readerCleanup();
private void readerCleanup() throws IOException { synchronized(stateLock) { readerThread = 0L; //连接正在关闭,则调用kill完成实际关闭工作 if(state == 3) kill(); } }
3.尝试连接socket地址
do { InetAddress inetaddress = inetsocketaddress.getAddress(); if(inetaddress.isAnyLocalAddress()) inetaddress = InetAddress.getLocalHost(); //尝试连接socket地址,这里为什么是循序,因为连接操作有可能被中断,及i为-3, //当中断位消除时,继续尝试连接 i = Net.connect(fd, inetaddress, inetsocketaddress.getPort()); } while(i == -3 && isOpen());
//Net
static int connect(FileDescriptor filedescriptor, InetAddress inetaddress, int i) throws IOException { return connect(UNSPEC, filedescriptor, inetaddress, i); } static int connect(ProtocolFamily protocolfamily, FileDescriptor filedescriptor, InetAddress inetaddress, int i) throws IOException { boolean flag = isIPv6Available() && protocolfamily != StandardProtocolFamily.INET; return connect0(flag, filedescriptor, inetaddress, i); } private static native int connect0(boolean flag, FileDescriptor filedescriptor, InetAddress inetaddress, int i) throws IOException;
4.检查连接结果
if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); else throw exception1; IOException ioexception; ioexception; //出现IO异常,则关闭通道 close();
这一点我们需要关注的是IOStatus.check(i)这句:
//IOStatus
package sun.nio.ch; final class IOStatus { static final int EOF = -1;//结束 static final int UNAVAILABLE = -2;//不可用 static final int INTERRUPTED = -3;//操作中断 static final int UNSUPPORTED = -4;//不支持 static final int THROWN = -5;//异常 static final int UNSUPPORTED_CASE = -6; private IOStatus() { } static int normalize(int i) { if(i == -2) return 0; else return i; } //连接结果i大于等于-2,即连接失败 static boolean check(int i) { return i >= -2; } static long normalize(long l) { if(l == -2L) return 0L; else return l; } static boolean check(long l) { return l >= -2L; } static boolean checkAll(long l) { return l > -1L || l < -6L; } }
从上面可以看出,connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;
然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,
最后尝试连接socket地址。
再来看地址绑定方法bind
public SocketChannel bind(SocketAddress socketaddress) throws IOException { //同步读锁,写锁,状态锁 synchronized(readLock) { synchronized(writeLock) { synchronized(stateLock) { if(!isOpen())//通道关闭 throw new ClosedChannelException(); if(state == 1)//正在连接 throw new ConnectionPendingException(); if(localAddress != null) throw new AlreadyBoundException(); //检查地址 InetSocketAddress inetsocketaddress = socketaddress != null ? Net.checkAddress(socketaddress) : new InetSocketAddress(0); NetHooks.beforeTcpBind(fd, inetsocketaddress.getAddress(), inetsocketaddress.getPort()); //绑定地址,这个在ServerSocketChannelImpl篇,一看过不在重复。 Net.bind(fd, inetsocketaddress.getAddress(), inetsocketaddress.getPort()); //初始化localAddress localAddress = Net.localAddress(fd); } } } return this; }
下面来看SocketChannelImpl的几个读写方法
先来看从缓冲区读取数据,写到通道
public int write(ByteBuffer bytebuffer) throws IOException { if(bytebuffer == null) throw new NullPointerException(); Object obj = writeLock;//同步写锁 JVM INSTR monitorenter ;//进入同步 int i; //确保没有关闭输出流 ensureWriteOpen(); i = 0; begin();//end, int k; synchronized(stateLock) { if(isOpen()) break MISSING_BLOCK_LABEL_140; k = 0; } //清除写线程 writerCleanup(); end(i > 0 || i == -2); //同步状态锁,如果通道输出流关闭或写异常,则抛出AsynchronousCloseException synchronized(stateLock) { if(i <= 0 && !isOutputOpen) throw new AsynchronousCloseException(); } //断言,检查写结果 if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); return k; //初始化线程 writerThread = NativeThread.current(); obj1; JVM INSTR monitorexit ; int j; do //写字节流,为什么是循环写,如果字节序列太多,发送缓冲区一次写不完,需要分多次写 i = IOUtil.write(fd, bytebuffer, -1L, nd, writeLock); while(i == -3 && isOpen()); j = IOStatus.normalize(i); writerCleanup(); end(i > 0 || i == -2); synchronized(stateLock) { if(i <= 0 && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); obj; JVM INSTR monitorexit ; return j; Exception exception3; exception3; writerCleanup(); end(i > 0 || i == -2); synchronized(stateLock) { if(i <= 0 && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(i)) throw new AssertionError(); else throw exception3; Exception exception5; exception5; throw exception5; }
写操作需要关注一下几点,
1.
//确保没有关闭输出流 ensureWriteOpen();
2.
//写字节流 do //写字节流 i = IOUtil.write(fd, bytebuffer, -1L, nd, writeLock); while(i == -3 && isOpen())
3.
//清除写线程 writerCleanup();
下面分别来看这三点
1.
//确保没有关闭输出流 ensureWriteOpen(); private void ensureWriteOpen() throws ClosedChannelException { synchronized(stateLock) { if(!isOpen())//通道关闭 throw new ClosedChannelException(); if(!isOutputOpen)//输出流关闭 throw new ClosedChannelException(); if(!isConnected())//还没连接 throw new NotYetConnectedException(); } }
2.
//写字节流 do //写字节流,为什么是循环写,如果字节序列太多,发送缓冲区一次写不完,需要分多次写 i = IOUtil.write(fd, bytebuffer, -1L, nd, writeLock); while(i == -3 && isOpen())
//IOUtil
static int write(FileDescriptor filedescriptor, ByteBuffer bytebuffer, long l, NativeDispatcher nativedispatcher, Object obj) throws IOException { int i; ByteBuffer bytebuffer1; //如果ByteBffer为DirectBuffer,则调用writeFromNativeBuffer if(bytebuffer instanceof DirectBuffer) return writeFromNativeBuffer(filedescriptor, bytebuffer, l, nativedispatcher, obj); //获取缓冲区的当前位置 i = bytebuffer.position(); //获取缓冲区limit位置 int j = bytebuffer.limit(); //断言position是否大于limit,是抛出AssertionError if(!$assertionsDisabled && i > j) throw new AssertionError(); int k = i > j ? 0 : j - i;//需要些的字节数 //获取k个字节的临时DirectBuffer bytebuffer1 = Util.getTemporaryDirectBuffer(k); int j1; 写缓冲区到临时内存缓冲区DirectBuffer-bytebuffer1 bytebuffer1.put(bytebuffer); //转换bytebuffer1写模式,为读模式 bytebuffer1.flip(); bytebuffer.position(i);//重新定位bytebuffer的position位置 //从本地缓冲空间写字节流,i1为已写的字节数 int i1 = writeFromNativeBuffer(filedescriptor, bytebuffer1, l, nativedispatcher, obj); if(i1 > 0) //重新定位bytebuffer的position位置 //为什么重新定位bytebuffer的position位, //如果字节序列太多,发送缓冲区一次写不完,需要分多次写 //将position向前移动i1位置,避免重复写即已写过的字节序列。 bytebuffer.position(i + i1); j1 = i1; //将byteBuffer内存写到当前线程的缓存区 Util.offerFirstTemporaryDirectBuffer(bytebuffer1); return j1; Exception exception; exception; Util.offerFirstTemporaryDirectBuffer(bytebuffer1); throw exception; }
这一步我们有几点要关注:
a.
//获取k个字节的临时DirectBuffer bytebuffer1 = Util.getTemporaryDirectBuffer(k);
想要理解这点,先看一下Util的定义
//Util
class Util { private static final int TEMP_BUF_POOL_SIZE;//临时缓冲区大小 private static ThreadLocal localSelector = new ThreadLocal(); private static ThreadLocal localSelectorWrapper = new ThreadLocal(); private static Unsafe unsafe = Unsafe.getUnsafe(); private static int pageSize = -1; private static volatile Constructor directByteBufferConstructor = null; private static volatile Constructor directByteBufferRConstructor = null; private static volatile String bugLevel = null; private static boolean loaded = false; static final boolean $assertionsDisabled = !sun/nio/ch/Util.desiredAssertionStatus(); static { //初始化临时缓冲区大小,为IOUtil的IOV_MAX,及系统默认最大IO缓冲区大小 //static final int IOV_MAX = iovMax(); //static native int iovMax(); TEMP_BUF_POOL_SIZE = IOUtil.IOV_MAX; } //线程本地缓存区 private static ThreadLocal bufferCache = new ThreadLocal() { protected BufferCache initialValue() { return new BufferCache(); } protected volatile Object initialValue() { return initialValue(); } }; }
//IOUtil,变量IOV_MAX
static native int iovMax(); static final int IOV_MAX = iovMax();
再来看Util的缓冲区的定义BufferCache
//Util
private static class BufferCache { //存放字节序列的缓存数组,可以这么理解buffers为 //当前缓冲区存放的字节序列ByteBuffer //buffers的size,即为当前缓冲区可以接受写多少个字节序列ByteBuffer private ByteBuffer buffers[]; private int count;//当前缓冲区中,有数据的字节序列ByteBuffer的个数,即buffers计数器 private int start;//缓冲区buffers的开始索引,即头部 static final boolean $assertionsDisabled = !sun/nio/ch/Util.desiredAssertionStatus(); BufferCache() { //初始化缓冲区 buffers = new ByteBuffer[Util.TEMP_BUF_POOL_SIZE]; } //向缓冲区的头部添加一个字节序列bytebuffer,即写字节序列到缓存区 boolean offerFirst(ByteBuffer bytebuffer) { if(count >= Util.TEMP_BUF_POOL_SIZE) { //如果当前缓冲区已满,则返回false,即当前不能写字节序列到缓存区 return false; } else { //获取缓冲区byteBuffers的当前头部索引start的前一个索引 start = ((start + Util.TEMP_BUF_POOL_SIZE) - 1) % Util.TEMP_BUF_POOL_SIZE; //写字节序列到缓存区的索引start对应的ByteBuffer buffers[start] = bytebuffer; count++;//缓冲区bytebuffer计数器+1 return true;//写字节序列到缓存区成功 } } //这个与offerFirst恰好相反,写字节序列到缓冲区的尾部(索引start + count) boolean offerLast(ByteBuffer bytebuffer) { if(count >= Util.TEMP_BUF_POOL_SIZE) { return false; } else { int i = (start + count) % Util.TEMP_BUF_POOL_SIZE; buffers[i] = bytebuffer; count++; return true; } } //缓冲区buffers,索引向后移动 private int next(int i) { return (i + 1) % Util.TEMP_BUF_POOL_SIZE; } //注意这个i不是索引的意思,是需要写的字节序列的字节个数, //这个在IOUtil的write方法中调用,如下面两行代码 //获取k个字节的临时DirectBuffer //bytebuffer1 = Util.getTemporaryDirectBuffer(k); ByteBuffer get(int i) { //如果缓存区当前可用的可用的ByteBuffer,返回null if(count == 0) return null; ByteBuffer abytebuffer[] = buffers; ByteBuffer bytebuffer = abytebuffer[start]; //如果当前缓冲区start索引对应的bytebuffer,不够用,即容量不够存放要写的字节序列 //则遍历当前buffers,找到可以存放的bytebuffer if(bytebuffer.capacity() < i) { bytebuffer = null; int j = start; do { if((j = next(j)) == start) //只有一个bytebuffer,break break; ByteBuffer bytebuffer1 = abytebuffer[j]; if(bytebuffer1 == null) //下一个bytebuffer为null,break break; if(bytebuffer1.capacity() < i) //容量不够用,continue continue; //找到可以存放i个字节序列的bytebuffer bytebuffer = bytebuffer1; break; } while(true); if(bytebuffer == null) return null; abytebuffer[j] = abytebuffer[start]; } //清空 abytebuffer[start] = null; start = next(start); count--;//缓冲区bytebuffer计数器-1 //调用rewind,为了从开始位置写字节流 bytebuffer.rewind(); bytebuffer.limit(i);//限制bytebuffer的可用空间limit return bytebuffer; } //缓冲区是否为空 boolean isEmpty() { return count == 0; } //移除缓冲区头部的bytebuffer ByteBuffer removeFirst() { //如果断言开启, 缓冲区为空,抛出断言异常 if(!$assertionsDisabled && count <= 0) { throw new AssertionError(); } else { //有了上面几个方法,下面应该很好理解,就不说了 ByteBuffer bytebuffer = buffers[start]; buffers[start] = null; start = next(start); count--; return bytebuffer; } } }
从上面可以看出BufferCache用一个ByteBuffer数组buffers存放写到缓冲区的字节流序列,每次写字节流对应一个ByteBuffer,用count记录当前缓冲区中的有数据或可用的ByteBuffer数量,start记录当前缓冲区buffers的头部;offerFirst方法向缓冲区的头部添加一个字节序列bytebuffer,即写字节序列到缓存区;offerLast与offerFirst恰好相反,写字节序列到缓冲区的尾部(索引start + count);next方法为向后移动缓冲区buffers索引;get(int i)方法为从缓冲区获取可以存放i个字节序列的ByteBuffer,并rewind字节缓冲区ByteBuffer,
限制孔勇空间为ByteBuffer。removeFirst为移除缓冲区头部的bytebuffer,并返回。
看过Util的BufferCache的定义,我们再回到
//获取k个字节的临时DirectBuffer bytebuffer1 = Util.getTemporaryDirectBuffer(k);
//Util
static ByteBuffer getTemporaryDirectBuffer(int i) { //获取当前线程的缓冲区(ThreadLocal-bufferCache) BufferCache buffercache = (BufferCache)bufferCache.get(); //从缓冲区获取容量第一个大于i的ByteBuffer ByteBuffer bytebuffer = buffercache.get(i); //如果缓冲区存在容量大于i个字节的bytebuffer,直接返回 if(bytebuffer != null) return bytebuffer; //如果缓冲区中不存在容量大于i的bytebuffer,且不为空; //则移除缓冲区头部的bytebuffer if(!buffercache.isEmpty()) { ByteBuffer bytebuffer1 = buffercache.removeFirst(); //释放bytebuffer1 free(bytebuffer1); } //ByteBuffer直接分配一个DirectByteBuffer,存放字节序列 return ByteBuffer.allocateDirect(i); }
获取临时DirectByteBuffer有两点要看
a.1
//释放bytebuffer1 free(bytebuffer1);
//Util
private static void free(ByteBuffer bytebuffer) { //实际委托给DirectBuffer的clean,这个我们在DirectByteBuffer有说, //即释放分配的实际物理内存 ((DirectBuffer)bytebuffer).cleaner().clean(); }
//DirectBuffer
package sun.nio.ch; import sun.misc.Cleaner; public interface DirectBuffer { public abstract long address(); public abstract Object attachment(); public abstract Cleaner cleaner(); }
a.2
public static ByteBuffer allocateDirect(int capacity) { return new DirectByteBuffer(capacity); }
b.
//从本地缓冲空间写字节流,i1为已写的字节数 int i1 = writeFromNativeBuffer(filedescriptor, bytebuffer1, l, nativedispatcher, obj);
//nativedispatcher参数实际为SocketDispatcher
private static int writeFromNativeBuffer(FileDescriptor filedescriptor, ByteBuffer bytebuffer, long l, NativeDispatcher nativedispatcher, Object obj) throws IOException { int i = bytebuffer.position(); int j = bytebuffer.limit(); if(!$assertionsDisabled && i > j) throw new AssertionError(); int k = i > j ? 0 : j - i; int i1 = 0; if(k == 0) return 0; if(l != -1L) //这个方法在Nativedispatcher定义,在SocketDispatcher并没有实现,obj为writeLock i1 = nativedispatcher.pwrite(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k, l, obj); else //默认的写操作 i1 = nativedispatcher.write(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k); if(i1 > 0) //将position向前移动i1位置,避免重复写即已写过的字节序列 bytebuffer.position(i + i1); return i1; }
来看两种方式的写
b.1
if(l != -1L) //这个在Nativedispatcher,在SocketDispatcher并没有实现 i1 = nativedispatcher.pwrite(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k, l, obj);
//Nativedispatcher
int pwrite(FileDescriptor filedescriptor, long l, int i, long l1, Object obj) throws IOException { //操作当前JDK,不支持,留待以后扩展用吧,我的JDK为1.7.0.17 throw new IOException("Operation Unsupported"); }
b.2
else //默认的写操作 i1 = nativedispatcher.write(filedescriptor, ((DirectBuffer)bytebuffer).address() + (long)i, k);
//SocketDispatcher
int write(FileDescriptor filedescriptor, long l, int i) throws IOException { return write0(filedescriptor, l, i); } static native int write0(FileDescriptor filedescriptor, long l, int i) throws IOException;
从缓冲读取字节序列,写到通道中,实际是通过SocketDispatcher完成实际的写工作,当前默认的写方法为write(FileDescriptor filedescriptor, long l, int i)。
c.
//添加bytebuffer到线程当前缓冲区 Util.offerFirstTemporaryDirectBuffer(bytebuffer1);
static void offerFirstTemporaryDirectBuffer(ByteBuffer bytebuffer) { if(!$assertionsDisabled && bytebuffer == null) throw new AssertionError(); //获取当前线程缓冲区 BufferCache buffercache = (BufferCache)bufferCache.get(); //将bytebuffer添加到缓冲区 if(!buffercache.offerFirst(bytebuffer)) free(bytebuffer); }
3.
//清除写线程
writerCleanup(); private void writerCleanup() throws IOException { synchronized(stateLock) { writerThread = 0L; if(state == 3) //这个kill操作,我们会在后面再讲 kill(); } }
从以上分析可以看出,从缓冲区读取字节序列写到通道,首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
总结:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
附:
权限检查:SecurityManager为系统的默认安全检查管理器,主要用于检查当前线程是否拥有
某个权限的访问控制权限,比如socket连接,监听,获取类加载等。
//SecurityManager
//检查socket连接权限 public void checkConnect(String host, int port) { if (host == null) { throw new NullPointerException("host can't be null"); } if (!host.startsWith("[") && host.indexOf(':') != -1) { host = "[" + host + "]"; } if (port == -1) { checkPermission(new SocketPermission(host, SecurityConstants.SOCKET_RESOLVE_ACTION)); } else { //检查是否socket连接访问控制权限 checkPermission(new SocketPermission(host+":"+port, SecurityConstants.SOCKET_CONNECT_ACTION)); } } public void checkPermission(Permission perm) { //检查是否perm的访问控制权限 java.security.AccessController.checkPermission(perm); }
//SecurityConstants,安全权限常量
public final class SecurityConstants { //AWT为创建图形界面相关权限 public static class AWT { private static PermissionFactory permissionFactory() { Class class1; class1 = (Class)AccessController.doPrivileged(new PrivilegedAction() { public Class run() { return Class.forName("sun.awt.AWTPermissionFactory", true, null); ClassNotFoundException classnotfoundexception; classnotfoundexception; return null; } public volatile Object run() { return run(); } }); if(class1 == null) break MISSING_BLOCK_LABEL_52; return (PermissionFactory)class1.newInstance(); Object obj; obj; throw new InternalError(((InstantiationException) (obj)).getMessage()); obj; throw new InternalError(((IllegalAccessException) (obj)).getMessage()); return new FakeAWTPermissionFactory(); } private static Permission newAWTPermission(String s) { return factory.newPermission(s); } private static final String AWTFactory = "sun.awt.AWTPermissionFactory"; private static final PermissionFactory factory = permissionFactory(); public static final Permission TOPLEVEL_WINDOW_PERMISSION = newAWTPermission("showWindowWithoutWarningBanner"); public static final Permission ACCESS_CLIPBOARD_PERMISSION = newAWTPermission("accessClipboard");//访问粘贴板 public static final Permission CHECK_AWT_EVENTQUEUE_PERMISSION = newAWTPermission("accessEventQueue"); public static final Permission TOOLKIT_MODALITY_PERMISSION = newAWTPermission("toolkitModality"); public static final Permission READ_DISPLAY_PIXELS_PERMISSION = newAWTPermission("readDisplayPixels"); public static final Permission CREATE_ROBOT_PERMISSION = newAWTPermission("createRobot"); public static final Permission WATCH_MOUSE_PERMISSION = newAWTPermission("watchMousePointer"); public static final Permission SET_WINDOW_ALWAYS_ON_TOP_PERMISSION = newAWTPermission("setWindowAlwaysOnTop"); public static final Permission ALL_AWT_EVENTS_PERMISSION = newAWTPermission("listenToAllAWTEvents"); public static final Permission ACCESS_SYSTEM_TRAY_PERMISSION = newAWTPermission("accessSystemTray"); private AWT() { } } private static class FakeAWTPermission extends BasicPermission { public String toString() { return (new StringBuilder()).append("(\"java.awt.AWTPermission\" \"").append(getName()).append("\")").toString(); } private static final long serialVersionUID = -1L; public FakeAWTPermission(String s) { super(s); } } private static class FakeAWTPermissionFactory implements PermissionFactory { public FakeAWTPermission newPermission(String s) { return new FakeAWTPermission(s); } public volatile Permission newPermission(String s) { return newPermission(s); } private FakeAWTPermissionFactory() { } } private SecurityConstants() { } public static final String FILE_DELETE_ACTION = "delete";//文件删除 public static final String FILE_EXECUTE_ACTION = "execute";//文件执行 public static final String FILE_READ_ACTION = "read";//文件读 public static final String FILE_WRITE_ACTION = "write";//写文件 public static final String FILE_READLINK_ACTION = "readlink"; public static final String SOCKET_RESOLVE_ACTION = "resolve"; public static final String SOCKET_CONNECT_ACTION = "connect";//socket连接 public static final String SOCKET_LISTEN_ACTION = "listen";//socket监听 public static final String SOCKET_ACCEPT_ACTION = "accept";//socket接受连接 public static final String SOCKET_CONNECT_ACCEPT_ACTION = "connect,accept";//socket连接,接受连接 public static final String PROPERTY_RW_ACTION = "read,write";//读写属性 public static final String PROPERTY_READ_ACTION = "read";//读属性 public static final String PROPERTY_WRITE_ACTION = "write";//写属性 public static final AllPermission ALL_PERMISSION = new AllPermission(); public static final NetPermission SPECIFY_HANDLER_PERMISSION = new NetPermission("specifyStreamHandler"); public static final NetPermission SET_PROXYSELECTOR_PERMISSION = new NetPermission("setProxySelector"); public static final NetPermission GET_PROXYSELECTOR_PERMISSION = new NetPermission("getProxySelector"); public static final NetPermission SET_COOKIEHANDLER_PERMISSION = new NetPermission("setCookieHandler"); public static final NetPermission GET_COOKIEHANDLER_PERMISSION = new NetPermission("getCookieHandler"); public static final NetPermission SET_RESPONSECACHE_PERMISSION = new NetPermission("setResponseCache"); public static final NetPermission GET_RESPONSECACHE_PERMISSION = new NetPermission("getResponseCache"); //创建类加载器 public static final RuntimePermission CREATE_CLASSLOADER_PERMISSION = new RuntimePermission("createClassLoader"); public static final RuntimePermission CHECK_MEMBER_ACCESS_PERMISSION = new RuntimePermission("accessDeclaredMembers"); //修改线程 public static final RuntimePermission MODIFY_THREAD_PERMISSION = new RuntimePermission("modifyThread"); //修改线程分组信息 public static final RuntimePermission MODIFY_THREADGROUP_PERMISSION = new RuntimePermission("modifyThreadGroup"); public static final RuntimePermission GET_PD_PERMISSION = new RuntimePermission("getProtectionDomain"); //获取类加载器 public static final RuntimePermission GET_CLASSLOADER_PERMISSION = new RuntimePermission("getClassLoader"); public static final RuntimePermission STOP_THREAD_PERMISSION = new RuntimePermission("stopThread"); public static final RuntimePermission GET_STACK_TRACE_PERMISSION = new RuntimePermission("getStackTrace"); public static final SecurityPermission CREATE_ACC_PERMISSION = new SecurityPermission("createAccessControlContext"); public static final SecurityPermission GET_COMBINER_PERMISSION = new SecurityPermission("getDomainCombiner"); public static final SecurityPermission GET_POLICY_PERMISSION = new SecurityPermission("getPolicy"); public static final SocketPermission LOCAL_LISTEN_PERMISSION = new SocketPermission("localhost:1024-", "listen"); }
发表评论
-
文件通道解析二(文件锁,关闭通道)
2017-05-16 23:17 1078文件通道解析一(读写操作,通道数据传输等):http://do ... -
文件通道解析一(读写操作,通道数据传输等)
2017-05-16 10:04 1174Reference定义(PhantomRefere ... -
文件通道创建方式综述
2017-05-15 17:39 1079Reference定义(PhantomReference,Cl ... -
文件读写方式简单综述后续(文件,流构造)
2017-05-14 23:04 1498Java Socket通信实例:http://donald-d ... -
文件读写方式简单综述
2017-05-14 11:13 1143Java Socket通信实例:http://donald-d ... -
FileChanne定义
2017-05-12 23:28 950文件读写方式简单综述:http://donald-draper ... -
SeekableByteChannel接口定义
2017-05-11 08:43 1248ByteChannel,分散聚集通道接口的定义(SocketC ... -
FileChannel示例
2017-05-11 08:37 1005前面我们看过socket通道,datagram通道,以管道Pi ... -
PipeImpl解析
2017-05-11 08:41 943ServerSocketChannel定义:http://do ... -
Pipe定义
2017-05-10 09:07 920Channel接口定义:http://donald-drape ... -
NIO-Pipe示例
2017-05-10 08:47 917PipeImpl解析:http://donald-draper ... -
DatagramChannelImpl 解析四(地址绑定,关闭通道等)
2017-05-10 08:27 795DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析三(多播)
2017-05-10 08:20 1935DatagramChannelImpl 解析一(初始化):ht ... -
NIO-UDP实例
2017-05-09 12:32 1596DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析二(报文发送与接收)
2017-05-09 09:03 1420DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析一(初始化)
2017-05-08 21:52 1425Channel接口定义:http://donald-drape ... -
MembershipKeyImpl 简介
2017-05-08 09:11 934MembershipKey定义:http://donald-d ... -
DatagramChannel定义
2017-05-07 23:13 1238Channel接口定义:http://donald-drape ... -
MulticastChanne接口定义
2017-05-07 13:45 1152NetworkChannel接口定义:ht ... -
MembershipKey定义
2017-05-06 16:20 928package java.nio.channels; i ...
相关推荐
此外,Stream API也是1.8的一大亮点,它提供了处理集合的新方式,可以进行数据流的过滤、映射、归约等操作,大大简化了数据处理的代码。 在"jdk-5b86f66575b7"这个压缩包中,很可能包含了JDK 1.8的完整源码,包括...
7 服务器端没有指定adapter的端口和ip,仅仅随便给了一个名字,并使用该名字从配置文件中读取信息: 启动服务器时没有问题正常,但是客户端无法连接 原因: 对象适配器无效 错误信息: 抛出异常: Ice::...
学生信息管理系统-----------无数据库版本。资源来源于网络分享,如有侵权请告知!
2024年福建省村级(居委会)行政区划shp数据集 坐标系:WGS1984
win32汇编环境,对话框中显示bmp图像文件
基于STM8单片机的编程实例,可供参考学习使用,希望对你有所帮助
电动汽车动力系统匹配计算模型:输入整车参数及性能要求,一键生成驱动系统的扭矩功率峰值转速等参数。 2、整车动力经济性计算模型:包含NEDC WLTC CLTC工况,输入整车参数可生成工况电耗、百公里电耗、匀速工况续航、百公里电耗等信息。 实际项目中使用的计算仿真模型.
2020CCF下降2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906词向量https://github.com/Embedding/Chinese-Word-Vectors SGNS(Mixed-large 综合)loss mask相关代码为pu learning策略的实现主要模块版本 python 3.6.9火炬 1.1.0变压器 3.0.2pytorchcrf 1.2.0torchcontrib 0.0.2
计算机系毕业设计
基于STM8单片机的编程实例,可供参考学习使用,希望对你有所帮助
基于SpringBoot+MySQL图书销售管理系统网上书店项目源码+数据库(高分毕业设计&课程设计) 该项目是个人大作业项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 图书管理系统 框架介绍 依赖 版本 Spring Boot 2 Mybatis Plus 3.5.3 jjwt 0.11.2 vue 2.0 ehcache 2.10.9 系统采用前后端分离,前端打包后放在 /resources/static 目录下面 直接启动后端工程即可访问 系统亮点 采用rsa非对称加密算法生成 jwt认证密钥 springboot集成ehcache作为缓存 采用aop方式记录接口访问日志 使用h2内存数据库,启动应用执行自动建表语句和初始化数据 统一异常和响应进行封装 集成springdoc作为接口文档 系统访问 http://wholevoid.com:9090/ 用户名及密码 admin/123456 图书管理系统 框
二极管钳位三电平VSG仿真模型 1.加入中点电位平衡 2.仿真有视频教程 3.THD均<5% 可以在此模型的基础上加入自适应控制、模型预测控制等等
基于Halcon的机器视觉试验平台的设计与研究 20181126
腾讯云开发者工具套件(SDK)3.0,SDK3.0是云 API3.0 平台的配套工具。目前已经支持cvm、vpc、cbs等产品,后续所有的云服务产品都会接入进来。新版SDK实现了统一化,具有各个语言版本的SDK使用方法相同,接口调用方式相同,统一的错误码和返回包格式这些优点。 为方便 Python 开发者调试和接入腾讯云产品 API,这里向您介绍适用于 Python 的腾讯云开发工具包,并提供首次使用开发工具包的简单示例。让您快速获取腾讯云 Python SDK 并开始调用。
说明文档1 队伍简介初赛名次第42名复赛名次第22名队伍名把球给我两名队员全部来自中国科学院大学2 算法思路首先手工标记第一阶段2015年和2017的图像里的建筑物,将大图像划分成小图像,训练多个模型,识别出图像中的建筑物,不对测试集(第二阶段的图像)进行任何标注,直接在图像上预测,分别识别出2015和2017的建筑物,再将所得的两张建筑物图像相减,对结果文件进行边缘平滑和散点去除即可得出最后的结果。切割成160*160、224*224、256*256大小的小图片训练模型基于第一阶段的训练数据,分别训练了deeplabv2、resnet_fcn两个模型,分别在3种大小的图像上训练得到了5个模型(由于resnet最小图像限制为197,只用了224和256两种大小的图像),设定输出概率大于0.5判定为建筑物,小于0.5则为非建筑物未在测试数据上进行建筑物标注,线下建筑物识别准确率82%左右,经过标注,建筑物识别准确率能达到90%。复赛初始提交,泛化成绩0.742。经过数据标注和再训练,最终成绩0.829。数据增强用于模型训练阶段,数据后处理是对
tdm64-gcc-5.1.0-2 (不盈利分享)
python语言mp3pl爬虫程序代码XQZQ