- 浏览: 996420 次
-
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
SocketChannelImpl 解析一(通道连接,发送数据):http://donald-draper.iteye.com/blog/2372364
引言:
上一篇文章我们看了一下SocketChannelImpl的初始化,通道连接(Socket),写操作(write-ByteBuffer)。先回顾一下:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
上一篇文章我们看了写一个ByteBuffer,现在来看一下写多个ByteBuffer
由于我们在前面已经讲过写单个ByteBuffer的方法,此方与write(ByteBuffer)
基本相似,我们只需要关注下面这点几个:
在看上面这句之前我们先看一下IOVecWrapper
//字节序列数组包装类
来看IOVecWrapper的构造
构造中我们需要关注以下节点:
1.创建存储字节数组起始地址的内存空间
//AllocatedNativeObject
//NativeObject
2.获取字节序列数组包装类起始地址
//NativeObject
从构造可以看出,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
再来看其他方法
//获取存放i个字节缓冲区的缓冲区包装类
上面方法有两点要关注:
1.
//AllocatedNativeObject
2.
这一点我们在前面相关文章中有讲,我们简单看一下Deallocator
从 get(int i),可以看出实际上,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
再来其他方法
小节:
IOVecWrapper构造,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
get(int i)方法,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
在看完IOVecWrapper后,我们再回到写字节序列数组函数的关键部分:
//IOUtil
在IOUtil上面的write方法中我们需要关注的是下面这一句
nativedispatcher在SocketChannelImpl中实际为SocketDispatcher
//SocketDispatcher
至此我们把SocketChannelImpl写ByteBuffer数组方法看完,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
总结:
SocketChannelImpl写ByteBuffer数组方法,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
引言:
上一篇文章我们看了一下SocketChannelImpl的初始化,通道连接(Socket),写操作(write-ByteBuffer)。先回顾一下:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
上一篇文章我们看了写一个ByteBuffer,现在来看一下写多个ByteBuffer
public long write(ByteBuffer abytebuffer[], int i, int j) throws IOException { //检查offset(i),length(j)的合法性 if(i < 0 || j < 0 || i > abytebuffer.length - j) throw new IndexOutOfBoundsException(); Object obj = writeLock;//获取写锁 JVM INSTR monitorenter ;//进入同步,try long l; //确保通道,输出流打开,连接建立 ensureWriteOpen(); l = 0L; begin();//与end方法配合,记录中断器,处理中断 long l2; synchronized(stateLock) { if(isOpen()) break MISSING_BLOCK_LABEL_165; l2 = 0L; } writerCleanup();//清除写线程 end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); return l2; //初始化本地写线程 writerThread = NativeThread.current(); obj1; JVM INSTR monitorexit ; long l1; do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen()); l1 = IOStatus.normalize(l); writerCleanup(); end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); obj; JVM INSTR monitorexit ;//退出同步 return l1; Exception exception3;//有异常则抛出 exception3; writerCleanup(); end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); else throw exception3; Exception exception5; exception5; throw exception5; }
由于我们在前面已经讲过写单个ByteBuffer的方法,此方与write(ByteBuffer)
基本相似,我们只需要关注下面这点几个:
do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen());
在看上面这句之前我们先看一下IOVecWrapper
//字节序列数组包装类
class IOVecWrapper { private static final int BASE_OFFSET = 0; private static final int LEN_OFFSET; private static final int SIZE_IOVEC;// private final AllocatedNativeObject vecArray;//存放字节数组的地址 private final int size;//字节数据大小 private final ByteBuffer buf[];//存放字节数组 private final int position[];//存放每个字节数组的position private final int remaining[];//存放每个字节数组的字节数量remaining private final ByteBuffer shadow[];//存放字节数组副本 final long address;//字节序列数组包装类的起始地址 static int addressSize;//操作系统物理地址所占的字节数 private static final ThreadLocal cached = new ThreadLocal();//线程本地缓存 static { addressSize = Util.unsafe().addressSize(); LEN_OFFSET = addressSize; //为什么要地址长度的2倍,一个存放字节缓冲的地址,一个存字节缓冲区的实际长度。 SIZE_IOVEC = (short)(addressSize * 2);//存放字节数组的实际地址 } }
来看IOVecWrapper的构造
private IOVecWrapper(int i) { size = i; buf = new ByteBuffer[i]; position = new int[i]; remaining = new int[i]; shadow = new ByteBuffer[i]; //创建存储字节数组起始地址的内存空间 vecArray = new AllocatedNativeObject(i * SIZE_IOVEC, false); //获取字节序列数组包装类起始地址 address = vecArray.address(); }
构造中我们需要关注以下节点:
1.创建存储字节数组起始地址的内存空间
vecArray = new AllocatedNativeObject(i * SIZE_IOVEC, false);
//AllocatedNativeObject
class AllocatedNativeObject extends NativeObject { AllocatedNativeObject(int i, boolean flag) { super(i, flag); } }
//NativeObject
protected NativeObject(int i, boolean flag) { if(!flag) { //分配可以存i个字节的物理内存 allocationAddress = unsafe.allocateMemory(i); //初始化起始地址 address = allocationAddress; } else { //在分配i个字节的基础上,多分配一页内存,这个我们在前面以说,这里不再说 int j = pageSize(); long l = unsafe.allocateMemory(i + j); allocationAddress = l; address = (l + (long)j) - (l & (long)(j - 1)); } }
2.获取字节序列数组包装类起始地址
address = vecArray.address();
//NativeObject
long address() { return address; }
从构造可以看出,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
再来看其他方法
//获取存放i个字节缓冲区的缓冲区包装类
static IOVecWrapper get(int i) { //获取线程本地的iovecwrapper IOVecWrapper iovecwrapper = (IOVecWrapper)cached.get(); if(iovecwrapper != null && iovecwrapper.size < i) { //iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存 iovecwrapper.vecArray.free(); iovecwrapper = null; } if(iovecwrapper == null) { //创建存放i个字节缓冲区的缓冲区包装类 iovecwrapper = new IOVecWrapper(i); //添加iovecwrapper到引用对象Cleaner Cleaner.create(iovecwrapper, new Deallocator(iovecwrapper.vecArray)); //添加iovecwrapper到线程本地缓存 cached.set(iovecwrapper); } return iovecwrapper; }
上面方法有两点要关注:
1.
//iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存 iovecwrapper.vecArray.free();
//AllocatedNativeObject
synchronized void free() { if(allocationAddress != 0L) { //释放物理内存 unsafe.freeMemory(allocationAddress); allocationAddress = 0L; } }
2.
//添加iovecwrapper到引用对象清除器Cleaner Cleaner.create(iovecwrapper, new Deallocator(iovecwrapper.vecArray));
这一点我们在前面相关文章中有讲,我们简单看一下Deallocator
//Deallocator,引用对象清除器 private static class Deallocator implements Runnable { //这个方法为清除器,实际执行的操作,即释放分配给iovecwrapper的物理内存 public void run() { obj.free(); } private final AllocatedNativeObject obj; Deallocator(AllocatedNativeObject allocatednativeobject) { obj = allocatednativeobject; } }
从 get(int i),可以看出实际上,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
再来其他方法
//添加字节数组 void setBuffer(int i, ByteBuffer bytebuffer, int j, int k) { //添加字节缓冲区到字节缓冲区包装类的字节数组中,并将字节缓冲区的position及 容量remaining信息,存放到字节缓冲区包装类相应的数组中 buf[i] = bytebuffer; position[i] = j; remaining[i] = k; } //将字节缓冲区i的起始地址l写到内存中 void putBase(int i, long l) { int j = SIZE_IOVEC * i + 0; if(addressSize == 4) //地址长度为4个字节 vecArray.putInt(j, (int)l); else //地址长度为8个字节 vecArray.putLong(j, l); } //将字节缓冲区i的容量l写到内存中 void putLen(int i, long l) { int j = SIZE_IOVEC * i + LEN_OFFSET; if(addressSize == 4) vecArray.putInt(j, (int)l); else vecArray.putLong(j, l); } //添加字节缓冲区bytebuffer到字节缓冲区包装类的字节缓冲区副本数组中 void setShadow(int i, ByteBuffer bytebuffer) { shadow[i] = bytebuffer; } //获取索引i对应的字节缓冲区 ByteBuffer getBuffer(int i) { return buf[i]; } //获取索引i对应的字节缓冲区Position int getPosition(int i) { return position[i]; } //获取索引i对应的字节缓冲区Remaining int getRemaining(int i) { return remaining[i]; } //获取索引i对应的字节缓冲区副本 ByteBuffer getShadow(int i) { return shadow[i]; } //清除字节缓冲区包装类的字节缓冲区和相应的副本数组索引i对应的字节缓冲区 void clearRefs(int i) { buf[i] = null; shadow[i] = null; }
小节:
IOVecWrapper构造,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
get(int i)方法,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
在看完IOVecWrapper后,我们再回到写字节序列数组函数的关键部分:
do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen());
//IOUtil
static long write(FileDescriptor filedescriptor, ByteBuffer abytebuffer[], int i, int j, NativeDispatcher nativedispatcher) throws IOException { IOVecWrapper iovecwrapper; boolean flag; int k; //获取存放i个字节缓冲区的IOVecWrapper iovecwrapper = IOVecWrapper.get(j); flag = false; k = 0; long l1; int l = i + j; for(int i1 = i; i1 < l && k < IOV_MAX; i1++) { ByteBuffer bytebuffer = abytebuffer[i1]; int j1 = bytebuffer.position(); int k1 = bytebuffer.limit(); if(!$assertionsDisabled && j1 > k1) throw new AssertionError(); int j2 = j1 > k1 ? 0 : k1 - j1; if(j2 <= 0) continue; //将字节缓冲区添加到iovecwrapper的字节缓冲区数组中 iovecwrapper.setBuffer(k, bytebuffer, j1, j2); if(!(bytebuffer instanceof DirectBuffer)) { //获取容量为j2临时DirectByteBuffer ByteBuffer bytebuffer2 = Util.getTemporaryDirectBuffer(j2); //将字节序列写到DirectByteBuffer bytebuffer2.put(bytebuffer); //读写转换 bytebuffer2.flip(); iovecwrapper.setShadow(k, bytebuffer2); bytebuffer.position(j1); bytebuffer = bytebuffer2; j1 = bytebuffer2.position(); } //将字节缓冲区的起始地址写到iovecwrapper iovecwrapper.putBase(k, ((DirectBuffer)bytebuffer).address() + (long)j1); //将字节缓冲区的实际容量写到iovecwrapper iovecwrapper.putLen(k, j2); k++; } if(k != 0) break MISSING_BLOCK_LABEL_267; l1 = 0L; if(!flag) { for(int i2 = 0; i2 < k; i2++) { //获取iovecwrapper索引i2对应的字节序列副本 ByteBuffer bytebuffer1 = iovecwrapper.getShadow(i2); if(bytebuffer1 != null) //如果字节序列不为空,则添加到当前线程的缓存区中 Util.offerLastTemporaryDirectBuffer(bytebuffer1); //清除索引i2对应的字节序列在iovecwrapper中的字节序列数组,及相应副本数组的信息 iovecwrapper.clearRefs(i2); } } return l1; long l4; //委托给nativedispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。 long l2 = nativedispatcher.writev(filedescriptor, iovecwrapper.address, k); ... }
在IOUtil上面的write方法中我们需要关注的是下面这一句
//委托给nativedispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。 long l2 = nativedispatcher.writev(filedescriptor, iovecwrapper.address, k);
nativedispatcher在SocketChannelImpl中实际为SocketDispatcher
//SocketDispatcher
long writev(FileDescriptor filedescriptor, long l, int i) throws IOException { return writev0(filedescriptor, l, i); } static native long writev0(FileDescriptor filedescriptor, long l, int i) throws IOException;
至此我们把SocketChannelImpl写ByteBuffer数组方法看完,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
总结:
SocketChannelImpl写ByteBuffer数组方法,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
发表评论
-
文件通道解析二(文件锁,关闭通道)
2017-05-16 23:17 1103文件通道解析一(读写操作,通道数据传输等):http://do ... -
文件通道解析一(读写操作,通道数据传输等)
2017-05-16 10:04 1195Reference定义(PhantomRefere ... -
文件通道创建方式综述
2017-05-15 17:39 1104Reference定义(PhantomReference,Cl ... -
文件读写方式简单综述后续(文件,流构造)
2017-05-14 23:04 1521Java Socket通信实例:http://donald-d ... -
文件读写方式简单综述
2017-05-14 11:13 1165Java Socket通信实例:http://donald-d ... -
FileChanne定义
2017-05-12 23:28 980文件读写方式简单综述:http://donald-draper ... -
SeekableByteChannel接口定义
2017-05-11 08:43 1270ByteChannel,分散聚集通道接口的定义(SocketC ... -
FileChannel示例
2017-05-11 08:37 1019前面我们看过socket通道,datagram通道,以管道Pi ... -
PipeImpl解析
2017-05-11 08:41 967ServerSocketChannel定义:http://do ... -
Pipe定义
2017-05-10 09:07 938Channel接口定义:http://donald-drape ... -
NIO-Pipe示例
2017-05-10 08:47 945PipeImpl解析:http://donald-draper ... -
DatagramChannelImpl 解析四(地址绑定,关闭通道等)
2017-05-10 08:27 826DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析三(多播)
2017-05-10 08:20 1984DatagramChannelImpl 解析一(初始化):ht ... -
NIO-UDP实例
2017-05-09 12:32 1622DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析二(报文发送与接收)
2017-05-09 09:03 1442DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析一(初始化)
2017-05-08 21:52 1459Channel接口定义:http://donald-drape ... -
MembershipKeyImpl 简介
2017-05-08 09:11 956MembershipKey定义:http://donald-d ... -
DatagramChannel定义
2017-05-07 23:13 1261Channel接口定义:http://donald-drape ... -
MulticastChanne接口定义
2017-05-07 13:45 1185NetworkChannel接口定义:ht ... -
MembershipKey定义
2017-05-06 16:20 955package java.nio.channels; i ...
相关推荐
此外,Stream API也是1.8的一大亮点,它提供了处理集合的新方式,可以进行数据流的过滤、映射、归约等操作,大大简化了数据处理的代码。 在"jdk-5b86f66575b7"这个压缩包中,很可能包含了JDK 1.8的完整源码,包括...
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:574) at IceInternal.Network.doFinishConnect(Network.java:393) ... 6 more 这种报错是ICE服务端没有起来,telnet服务端ICE的端口不通...
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
wrf转mp4播放器1.1.1
内容概要:本文档详细介绍了如何在Simulink中设计一个满足特定规格的音频带ADC(模数转换器)。首先选择了三阶单环多位量化Σ-Δ调制器作为设计方案,因为这种结构能在音频带宽内提供高噪声整形效果,并且多位量化可以降低量化噪声。接着,文档展示了具体的Simulink建模步骤,包括创建模型、添加各个组件如积分器、量化器、DAC反馈以及连接它们。此外,还进行了参数设计与计算,特别是过采样率和信噪比的估算,并引入了动态元件匹配技术来减少DAC的非线性误差。性能验证部分则通过理想和非理想的仿真实验评估了系统的稳定性和各项指标,最终证明所设计的ADC能够达到预期的技术标准。 适用人群:电子工程专业学生、从事数据转换器研究或开发的技术人员。 使用场景及目标:适用于希望深入了解Σ-Δ调制器的工作原理及其在音频带ADC应用中的具体实现方法的人群。目标是掌握如何利用MATLAB/Simulink工具进行复杂电路的设计与仿真。 其他说明:文中提供了详细的Matlab代码片段用于指导读者完成整个设计流程,同时附带了一些辅助函数帮助分析仿真结果。
国网台区终端最新规范
《基于YOLOv8的智慧农业水肥一体化控制系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
GSDML-V2.33-LEUZE-AMS3048i-20170622.xml
微信小程序项目课程设计,包含LW+ppt
微信小程序项目课程设计,包含LW+ppt
终端运行进度条脚本
幼儿园预防肺结核教育培训课件资料
python,python相关资源
《基于YOLOv8的智慧校园电动车充电桩状态监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
deepseek 临床之理性软肋.pdf
SM2258XT量产工具(包含16种程序),固态硬盘量产工具使用
RecyclerView.zip
水务大脑让水务运营更智能(23页)
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
大众捷达轿车前轮制动器设计