- 浏览: 990387 次
-
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
SocketChannelImpl 解析一(通道连接,发送数据):http://donald-draper.iteye.com/blog/2372364
引言:
上一篇文章我们看了一下SocketChannelImpl的初始化,通道连接(Socket),写操作(write-ByteBuffer)。先回顾一下:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
上一篇文章我们看了写一个ByteBuffer,现在来看一下写多个ByteBuffer
由于我们在前面已经讲过写单个ByteBuffer的方法,此方与write(ByteBuffer)
基本相似,我们只需要关注下面这点几个:
在看上面这句之前我们先看一下IOVecWrapper
//字节序列数组包装类
来看IOVecWrapper的构造
构造中我们需要关注以下节点:
1.创建存储字节数组起始地址的内存空间
//AllocatedNativeObject
//NativeObject
2.获取字节序列数组包装类起始地址
//NativeObject
从构造可以看出,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
再来看其他方法
//获取存放i个字节缓冲区的缓冲区包装类
上面方法有两点要关注:
1.
//AllocatedNativeObject
2.
这一点我们在前面相关文章中有讲,我们简单看一下Deallocator
从 get(int i),可以看出实际上,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
再来其他方法
小节:
IOVecWrapper构造,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
get(int i)方法,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
在看完IOVecWrapper后,我们再回到写字节序列数组函数的关键部分:
//IOUtil
在IOUtil上面的write方法中我们需要关注的是下面这一句
nativedispatcher在SocketChannelImpl中实际为SocketDispatcher
//SocketDispatcher
至此我们把SocketChannelImpl写ByteBuffer数组方法看完,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
总结:
SocketChannelImpl写ByteBuffer数组方法,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
引言:
上一篇文章我们看了一下SocketChannelImpl的初始化,通道连接(Socket),写操作(write-ByteBuffer)。先回顾一下:
SocketChannelImpl构造主要是初始化读写及状态锁和通道socket文件描述。
connect连接方法首先同步读锁和写锁,确保socket通道打开,并没有连接;然后检查socket地址的正确性与合法性,然后检查当前线程是否有Connect方法的访问控制权限,最后尝试连接socket地址。从缓冲区读取字节序列写到通道write(ByteBuffer),首先确保通道打开,且输出流没有关闭,然后委托给IOUtil写字节序列;IOUtil写字节流过程为首先通过Util从当前线程的缓冲区获取可以容下字节序列的临时缓冲区(DirectByteBuffer),如果没有则创建一个DirectByteBuffer,将字节序列写到临时的DirectByteBuffer中,然后将写操作委托给nativedispatcher(SocketDispatcher),将DirectByteBuffer添加到当前线程的缓冲区,
以便重用,因为DirectByteBuffer实际上是存在物理内存中,频繁的分配将会消耗更多的资源。
上一篇文章我们看了写一个ByteBuffer,现在来看一下写多个ByteBuffer
public long write(ByteBuffer abytebuffer[], int i, int j) throws IOException { //检查offset(i),length(j)的合法性 if(i < 0 || j < 0 || i > abytebuffer.length - j) throw new IndexOutOfBoundsException(); Object obj = writeLock;//获取写锁 JVM INSTR monitorenter ;//进入同步,try long l; //确保通道,输出流打开,连接建立 ensureWriteOpen(); l = 0L; begin();//与end方法配合,记录中断器,处理中断 long l2; synchronized(stateLock) { if(isOpen()) break MISSING_BLOCK_LABEL_165; l2 = 0L; } writerCleanup();//清除写线程 end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); return l2; //初始化本地写线程 writerThread = NativeThread.current(); obj1; JVM INSTR monitorexit ; long l1; do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen()); l1 = IOStatus.normalize(l); writerCleanup(); end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); obj; JVM INSTR monitorexit ;//退出同步 return l1; Exception exception3;//有异常则抛出 exception3; writerCleanup(); end(l > 0L || l == -2L); synchronized(stateLock) { if(l <= 0L && !isOutputOpen) throw new AsynchronousCloseException(); } if(!$assertionsDisabled && !IOStatus.check(l)) throw new AssertionError(); else throw exception3; Exception exception5; exception5; throw exception5; }
由于我们在前面已经讲过写单个ByteBuffer的方法,此方与write(ByteBuffer)
基本相似,我们只需要关注下面这点几个:
do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen());
在看上面这句之前我们先看一下IOVecWrapper
//字节序列数组包装类
class IOVecWrapper { private static final int BASE_OFFSET = 0; private static final int LEN_OFFSET; private static final int SIZE_IOVEC;// private final AllocatedNativeObject vecArray;//存放字节数组的地址 private final int size;//字节数据大小 private final ByteBuffer buf[];//存放字节数组 private final int position[];//存放每个字节数组的position private final int remaining[];//存放每个字节数组的字节数量remaining private final ByteBuffer shadow[];//存放字节数组副本 final long address;//字节序列数组包装类的起始地址 static int addressSize;//操作系统物理地址所占的字节数 private static final ThreadLocal cached = new ThreadLocal();//线程本地缓存 static { addressSize = Util.unsafe().addressSize(); LEN_OFFSET = addressSize; //为什么要地址长度的2倍,一个存放字节缓冲的地址,一个存字节缓冲区的实际长度。 SIZE_IOVEC = (short)(addressSize * 2);//存放字节数组的实际地址 } }
来看IOVecWrapper的构造
private IOVecWrapper(int i) { size = i; buf = new ByteBuffer[i]; position = new int[i]; remaining = new int[i]; shadow = new ByteBuffer[i]; //创建存储字节数组起始地址的内存空间 vecArray = new AllocatedNativeObject(i * SIZE_IOVEC, false); //获取字节序列数组包装类起始地址 address = vecArray.address(); }
构造中我们需要关注以下节点:
1.创建存储字节数组起始地址的内存空间
vecArray = new AllocatedNativeObject(i * SIZE_IOVEC, false);
//AllocatedNativeObject
class AllocatedNativeObject extends NativeObject { AllocatedNativeObject(int i, boolean flag) { super(i, flag); } }
//NativeObject
protected NativeObject(int i, boolean flag) { if(!flag) { //分配可以存i个字节的物理内存 allocationAddress = unsafe.allocateMemory(i); //初始化起始地址 address = allocationAddress; } else { //在分配i个字节的基础上,多分配一页内存,这个我们在前面以说,这里不再说 int j = pageSize(); long l = unsafe.allocateMemory(i + j); allocationAddress = l; address = (l + (long)j) - (l & (long)(j - 1)); } }
2.获取字节序列数组包装类起始地址
address = vecArray.address();
//NativeObject
long address() { return address; }
从构造可以看出,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
再来看其他方法
//获取存放i个字节缓冲区的缓冲区包装类
static IOVecWrapper get(int i) { //获取线程本地的iovecwrapper IOVecWrapper iovecwrapper = (IOVecWrapper)cached.get(); if(iovecwrapper != null && iovecwrapper.size < i) { //iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存 iovecwrapper.vecArray.free(); iovecwrapper = null; } if(iovecwrapper == null) { //创建存放i个字节缓冲区的缓冲区包装类 iovecwrapper = new IOVecWrapper(i); //添加iovecwrapper到引用对象Cleaner Cleaner.create(iovecwrapper, new Deallocator(iovecwrapper.vecArray)); //添加iovecwrapper到线程本地缓存 cached.set(iovecwrapper); } return iovecwrapper; }
上面方法有两点要关注:
1.
//iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存 iovecwrapper.vecArray.free();
//AllocatedNativeObject
synchronized void free() { if(allocationAddress != 0L) { //释放物理内存 unsafe.freeMemory(allocationAddress); allocationAddress = 0L; } }
2.
//添加iovecwrapper到引用对象清除器Cleaner Cleaner.create(iovecwrapper, new Deallocator(iovecwrapper.vecArray));
这一点我们在前面相关文章中有讲,我们简单看一下Deallocator
//Deallocator,引用对象清除器 private static class Deallocator implements Runnable { //这个方法为清除器,实际执行的操作,即释放分配给iovecwrapper的物理内存 public void run() { obj.free(); } private final AllocatedNativeObject obj; Deallocator(AllocatedNativeObject allocatednativeobject) { obj = allocatednativeobject; } }
从 get(int i),可以看出实际上,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
再来其他方法
//添加字节数组 void setBuffer(int i, ByteBuffer bytebuffer, int j, int k) { //添加字节缓冲区到字节缓冲区包装类的字节数组中,并将字节缓冲区的position及 容量remaining信息,存放到字节缓冲区包装类相应的数组中 buf[i] = bytebuffer; position[i] = j; remaining[i] = k; } //将字节缓冲区i的起始地址l写到内存中 void putBase(int i, long l) { int j = SIZE_IOVEC * i + 0; if(addressSize == 4) //地址长度为4个字节 vecArray.putInt(j, (int)l); else //地址长度为8个字节 vecArray.putLong(j, l); } //将字节缓冲区i的容量l写到内存中 void putLen(int i, long l) { int j = SIZE_IOVEC * i + LEN_OFFSET; if(addressSize == 4) vecArray.putInt(j, (int)l); else vecArray.putLong(j, l); } //添加字节缓冲区bytebuffer到字节缓冲区包装类的字节缓冲区副本数组中 void setShadow(int i, ByteBuffer bytebuffer) { shadow[i] = bytebuffer; } //获取索引i对应的字节缓冲区 ByteBuffer getBuffer(int i) { return buf[i]; } //获取索引i对应的字节缓冲区Position int getPosition(int i) { return position[i]; } //获取索引i对应的字节缓冲区Remaining int getRemaining(int i) { return remaining[i]; } //获取索引i对应的字节缓冲区副本 ByteBuffer getShadow(int i) { return shadow[i]; } //清除字节缓冲区包装类的字节缓冲区和相应的副本数组索引i对应的字节缓冲区 void clearRefs(int i) { buf[i] = null; shadow[i] = null; }
小节:
IOVecWrapper构造,主要是初始化字节缓冲区包装类的容量,存放字节缓冲区数组,
存放字节缓冲区position数组,存放字节缓冲区容量数组,字节缓冲区副本数组,
创建存储字节数组起始地址的内存空间,初始化字节缓冲区包装类起始地址。
get(int i)方法,先获取线程本地缓存中的iovecwrapper,如果
iovecwrapper不为null,且容量小于i,则释放iovecwrapper内存,置空iovecwrapper;
否则创建容量为i的iovecwrapper,并将iovecwrapper添加的引用对象清除器Cleander,
并添加到线程本地缓存cache中。
在看完IOVecWrapper后,我们再回到写字节序列数组函数的关键部分:
do //委托IOUtil写字节数组序列 l = IOUtil.write(fd, abytebuffer, i, j, nd); while(l == -3L && isOpen());
//IOUtil
static long write(FileDescriptor filedescriptor, ByteBuffer abytebuffer[], int i, int j, NativeDispatcher nativedispatcher) throws IOException { IOVecWrapper iovecwrapper; boolean flag; int k; //获取存放i个字节缓冲区的IOVecWrapper iovecwrapper = IOVecWrapper.get(j); flag = false; k = 0; long l1; int l = i + j; for(int i1 = i; i1 < l && k < IOV_MAX; i1++) { ByteBuffer bytebuffer = abytebuffer[i1]; int j1 = bytebuffer.position(); int k1 = bytebuffer.limit(); if(!$assertionsDisabled && j1 > k1) throw new AssertionError(); int j2 = j1 > k1 ? 0 : k1 - j1; if(j2 <= 0) continue; //将字节缓冲区添加到iovecwrapper的字节缓冲区数组中 iovecwrapper.setBuffer(k, bytebuffer, j1, j2); if(!(bytebuffer instanceof DirectBuffer)) { //获取容量为j2临时DirectByteBuffer ByteBuffer bytebuffer2 = Util.getTemporaryDirectBuffer(j2); //将字节序列写到DirectByteBuffer bytebuffer2.put(bytebuffer); //读写转换 bytebuffer2.flip(); iovecwrapper.setShadow(k, bytebuffer2); bytebuffer.position(j1); bytebuffer = bytebuffer2; j1 = bytebuffer2.position(); } //将字节缓冲区的起始地址写到iovecwrapper iovecwrapper.putBase(k, ((DirectBuffer)bytebuffer).address() + (long)j1); //将字节缓冲区的实际容量写到iovecwrapper iovecwrapper.putLen(k, j2); k++; } if(k != 0) break MISSING_BLOCK_LABEL_267; l1 = 0L; if(!flag) { for(int i2 = 0; i2 < k; i2++) { //获取iovecwrapper索引i2对应的字节序列副本 ByteBuffer bytebuffer1 = iovecwrapper.getShadow(i2); if(bytebuffer1 != null) //如果字节序列不为空,则添加到当前线程的缓存区中 Util.offerLastTemporaryDirectBuffer(bytebuffer1); //清除索引i2对应的字节序列在iovecwrapper中的字节序列数组,及相应副本数组的信息 iovecwrapper.clearRefs(i2); } } return l1; long l4; //委托给nativedispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。 long l2 = nativedispatcher.writev(filedescriptor, iovecwrapper.address, k); ... }
在IOUtil上面的write方法中我们需要关注的是下面这一句
//委托给nativedispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。 long l2 = nativedispatcher.writev(filedescriptor, iovecwrapper.address, k);
nativedispatcher在SocketChannelImpl中实际为SocketDispatcher
//SocketDispatcher
long writev(FileDescriptor filedescriptor, long l, int i) throws IOException { return writev0(filedescriptor, l, i); } static native long writev0(FileDescriptor filedescriptor, long l, int i) throws IOException;
至此我们把SocketChannelImpl写ByteBuffer数组方法看完,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
总结:
SocketChannelImpl写ByteBuffer数组方法,首先同步写锁,确保通道,输出流打开,连接建立委托给IOUtil,将ByteBuffer数组写到输出流中,这一过程为获取存放i个字节缓冲区的IOVecWrapper,遍历ByteBuffer数组m,将字节缓冲区添加到iovecwrapper的字节缓冲区数组中,如果ByteBuffer非Direct类型,委托Util从当前线程的缓冲区获取容量为j2临时DirectByteBuffer,并将ByteBuffer写到DirectByteBuffer,并将DirectByteBuffer添加到iovecwrapper的字节缓冲区(Shadow-Direct)数组中,将字节缓冲区的起始地址写到iovecwrapper,字节缓冲区的实际容量写到iovecwrapper;遍历iovecwrapper的字节缓冲区(Shadow-Direct)数组,将Shadow数组中的DirectByteBuffer通过Util添加到本地线程的缓存区中,并清除DirectByteBuffer在iovecwrapper的相应数组中的信息;最后通过
SocketDispatcher,将iovecwrapper的缓冲区数据,写到filedescriptor对应的输出流中。
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
发表评论
-
文件通道解析二(文件锁,关闭通道)
2017-05-16 23:17 1090文件通道解析一(读写操作,通道数据传输等):http://do ... -
文件通道解析一(读写操作,通道数据传输等)
2017-05-16 10:04 1182Reference定义(PhantomRefere ... -
文件通道创建方式综述
2017-05-15 17:39 1094Reference定义(PhantomReference,Cl ... -
文件读写方式简单综述后续(文件,流构造)
2017-05-14 23:04 1513Java Socket通信实例:http://donald-d ... -
文件读写方式简单综述
2017-05-14 11:13 1158Java Socket通信实例:http://donald-d ... -
FileChanne定义
2017-05-12 23:28 964文件读写方式简单综述:http://donald-draper ... -
SeekableByteChannel接口定义
2017-05-11 08:43 1262ByteChannel,分散聚集通道接口的定义(SocketC ... -
FileChannel示例
2017-05-11 08:37 1013前面我们看过socket通道,datagram通道,以管道Pi ... -
PipeImpl解析
2017-05-11 08:41 957ServerSocketChannel定义:http://do ... -
Pipe定义
2017-05-10 09:07 930Channel接口定义:http://donald-drape ... -
NIO-Pipe示例
2017-05-10 08:47 927PipeImpl解析:http://donald-draper ... -
DatagramChannelImpl 解析四(地址绑定,关闭通道等)
2017-05-10 08:27 818DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析三(多播)
2017-05-10 08:20 1957DatagramChannelImpl 解析一(初始化):ht ... -
NIO-UDP实例
2017-05-09 12:32 1604DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析二(报文发送与接收)
2017-05-09 09:03 1428DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析一(初始化)
2017-05-08 21:52 1448Channel接口定义:http://donald-drape ... -
MembershipKeyImpl 简介
2017-05-08 09:11 947MembershipKey定义:http://donald-d ... -
DatagramChannel定义
2017-05-07 23:13 1247Channel接口定义:http://donald-drape ... -
MulticastChanne接口定义
2017-05-07 13:45 1170NetworkChannel接口定义:ht ... -
MembershipKey定义
2017-05-06 16:20 945package java.nio.channels; i ...
相关推荐
此外,Stream API也是1.8的一大亮点,它提供了处理集合的新方式,可以进行数据流的过滤、映射、归约等操作,大大简化了数据处理的代码。 在"jdk-5b86f66575b7"这个压缩包中,很可能包含了JDK 1.8的完整源码,包括...
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:574) at IceInternal.Network.doFinishConnect(Network.java:393) ... 6 more 这种报错是ICE服务端没有起来,telnet服务端ICE的端口不通...
TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。
chromedriver-linux64-134.0.6998.23(Beta).zip
Web开发:ABP框架4-DDD四层架构的详解
chromedriver-linux64-135.0.7029.0(Canary).zip
实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
yugy
企业IT治理体系规划.pptx
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合
DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。