阅读更多

0顶
0踩

开源软件

转载新闻 深度学习框架Caffe源码解析

2016-12-14 11:08 by 副主编 mengyidan1988 评论(0) 有5011人浏览
引用

作者:薛云峰(https://github.com/HolidayXue),主要从事视频图像算法的研究,就职于浙江捷尚视觉科技股份有限公司担任深度学习算法研究员。
本文来源微信公众号:深度学习大讲堂。
原文:深度学习框架Caffe源码解析
欢迎技术投稿、约稿、给文章纠错,请发送邮件至heyc@csdn.net

相信社区中很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。本文将从整体架构和底层实现的视角,对Caffe源码进行解析。

Caffe总体架构
Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。每个网络则由若干个Layer构成。每个Layer的输入和输出Feature map表示为Input Blob和Output Blob。Blob是Caffe实际存储数据的结构,是一个不定维的矩阵,在Caffe中一般用来表示一个拉直的四维矩阵,四个维度分别对应Batch Size(N),Feature Map的通道数(C),Feature Map高度(H)和宽度(W)。Proto则基于Google的Protobuf开源项目,是一种类似XML的数据交换格式,用户只需要按格式定义对象的数据成员,可以在多种语言中实现对象的序列化与反序列化,在Caffe中用于网络模型的结构定义、存储和读取。



图1 Caffe源码总体架构图

Blob解析
下面介绍Caffe中的基本数据存储类Blob。Blob使用SyncedMemory类进行数据存储,数据成员 data_指向实际存储数据的内存或显存块,shape_存储了当前blob的维度信息,diff_这个保存了反向传递时候的梯度信息。在Blob中其实不是只有num,channel,height,width这种四维形式,它是一个不定维度的数据结构,将数据展开存储,而维度单独存在一个vector 类型的shape_变量中,这样每个维度都可以任意变化。

来一起看看Blob的关键函数,data_at这个函数可以读取的存储在此类中的数据,diff_at可以用来读取反向传回来的误差。顺便给个提示,尽量使用data_at(const vector& index)来查找数据。Reshape函数可以修改blob的存储大小,count用来返回存储数据的数量。BlobProto类负责了将Blob数据进行打包序列化到Caffe的模型中。

工厂模式说明
接下来介绍一种设计模式Factory Pattern,Caffe 中Solver和Layer对象的创建均使用了此模式,首先看工厂模式的UML的类图:



图2 工厂模式UML类图

如同Factory生成同一功能但是不同型号产品一样,这些产品实现了同样Operation,很多人看了工厂模式的代码,会产生这样的疑问为何不new一个出来呢,这样new一个出来似乎也没什么问题吧。试想如下情况,由于代码重构类的名称改了,或者构造函数参数变化(增加或减少参数)。而你代码中又有N处new了这个类。如果你又没用工厂,就只能一个一个找来改。工厂模式的作用就是让使用者减少对产品本身的了解,降低使用难度。如果用工厂,只需要修改工厂类的创建具体对象方法的实现,而其他代码不会受到影响。

举个例子,写代码少不得饿了要加班去吃夜宵,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory。

Solver解析
接下来切回正题,我们看看Solver这个优化对象在Caffe中是如何实现的。SolverRegistry这个类就是我们看到的上面的factory类,负责给我们一个优化算法的产品,外部只需要把数据和网络结构定义好,它就可以自己优化了。

Solver* CreateSolver(const SolverParameter& param)这个函数就是工厂模式下的CreateProduct的操作, Caffe中这个SolverRegistry工厂类可以提供给我们6种产品(优化算法):



这六种产品的功能都是实现网络的参数更新,只是实现方式不一样。那我们来看看他们的使用流程吧。当然这些产品类似上面Product类中的Operation,每一个Solver都会继承Solve和Step函数,而每个Solver中独有的仅仅是ApplyUpdate这个函数里面执行的内容不一样,接口是一致的,这也和我们之前说的工厂生产出来的产品一样功能一样,细节上有差异,比如大多数电饭煲都有煮饭的功能,但是每一种电饭煲煮饭的加热方式可能不同,有底盘加热的还有立体加热的等。接下里我们看看Solver中的关键函数。

Solver中Solve函数的流程图如下:



图3 Solver类Solve方法流程图

Solver类中Step函数流程图:



图4 Solver类Step方法流程图

Solver中关键的就是调用Sovle函数和Step函数的流程,你只需要对照Solver类中两个函数的具体实现,看懂上面两个流程图就可以理解Caffe训练执行的过程了。

Net类解析
分析过Solver之后我们来分析下Net类的一些关键操作。这个是我们使用Proto创建出来的深度网络对象,这个类负责了深度网络的前向和反向传递。以下是Net类的初始化方法NetInit函数调用流程:



图5 Net类NetInit方法流程图

Net的类中的关键函数简单剖析
  • ForwardBackward:按顺序调用了Forward和Backward。
  • ForwardFromTo(int start, int end):执行从start层到end层的前向传递,采用简单的for循环调用。
  • BackwardFromTo(int start, int end):和前面的ForwardFromTo函数类似,调用从start层到end层的反向传递。
  • ToProto函数完成网络的序列化到文件,循环调用了每个层的ToProto函数。
  • Layer解析
  • Layer是Net的基本组成单元,例如一个卷积层或一个Pooling层。本小节将介绍Layer类的实现。


Layer的继承结构



图6 Layer层的继承结构

Layer的创建
与Solver的创建方式很像,Layer的创建使用的也是工厂模式,这里简单说明下几个宏函数:

REGISTER_LAYER_CREATOR负责将创建层的函数放入LayerRegistry。



我们来看看大多数层创建的函数的生成宏REGISTER_LAYER_CLASS,可以看到宏函数比较简单的,将类型作为函数名称的一部分,这样就可以产生出一个创建函数,并将创建函数放入LayerRegistry。



REGISTER_LAYER_CREATOR(type, Creator_##type##Layer)

这段代码在split_layer.cpp文件中



REGISTER_LAYER_CLASS(Split)。
这样我们将type替换过以后给大家做个范例,参考下面的代码。



当然这里的创建函数好像是直接调用,没有涉及到我们之前工厂模式的一些问题。所有的层的类都是这样吗?当然不是,我们仔细观察卷积类。



卷积层怎么没有创建函数呢,当然不是,卷积的层的创建函数在LayerFactory.cpp中,截图给大家看下,具体代码如下:



这样两种类型的Layer的创建函数都有了对应的声明。这里直接说明除了有cudnn实现的层,其他层都是采用第一种方式实现的创建函数,而带有cudnn实现的层都采用的第二种方式实现的创建函数。

Layer的初始化

介绍完创建我们看看层里面的几个函数都是什么时候被调用的。

关键函数Setup此函数在之前的流程图中的NetInit时候被调用,代码如下:



这样整个Layer初始化的过程中,CheckBlobCounts被最先调用,然后接下来是LayerSetUp,后面才是Reshape,最后才是SetLossWeights。这样Layer初始化的生命周期大家就有了了解。

Layer的其他函数的介绍

Layer的Forward函数和Backward函数完成了网络的前向和反向传递,这两个函数在自己实现新的层必须要实现。其中Backward会修改bottom中blob的diff_,这样就完成了误差的方向传导。

Protobuf介绍
Caffe中的Caffe.proto文件负责了整个Caffe网络的构建,又负责了Caffemodel的存储和读取。下面用一个例子介绍Protobuf的工作方式:

利用protobuffer工具存储512维度图像特征:
  • message 编写:新建txt文件后缀名改为proto,编写自己的message如下,并放入解压的protobuff的文件夹里;




其中,dwFaceFeatSize表示特征点数量;pfFaceFeat表示人脸特征。

  • 打开windows命令窗口(cmd.exe)—->cd空格,把protobuff的文件路径复制粘贴进去——>enter;
  • 输入指令protoc *.proto –cpp_out=. ———>enter
  • 可以看到文件夹里面生成“ .pb.h”和“.pb.cpp”两个文件,说明成功了




下面可以和自己的代码整合了:
  • 新建你自己的工程,把“ .pb.h”和“.pb.cpp”两个文件添加到自己的工程里,并写上#include” *.pb.h”
  • 按照配库的教程把库配置下就可以了

VS下Protobuf的配库方法:
解决方案—->右击工程名—->属性
(1)c/c++—>常规—>附加包含目录—>

($your protobuffer include path)\protobuffer

(2)c/c++—>链接器–>常规—>附加库目录–>

($your protobuffer lib path)\protobuffer

(3) c/c++—>链接器–>输入—>附加依赖项–>

libprotobufd.lib;(带d的为debug模式)
或libprotobuf.lib;(不带d,为release模式)

使用protobuf进行打包的方法如下代码:



Caffe的模型序列化

BlobProto其实就是Blob序列化成Proto的类,Caffe模型文件使用了该类。Net调用每个层的Toproto方法,每个层的Toproto方法调用了Blob类的ToProto方法,这样完整的模型就被都序列化到proto里面了。最后只要将这个proto继承于message类的对象序列化到文件就完成了模型写入文件。Caffe打包模型的时候就只是简单调用了WriteProtoToBinaryFile这个函数,而这个函数里面的内容如下:



Proto.txt的简单说明

Caffe网络的构建和Solver的参数定义均由此类型文件完成。Net构建过程中调用ReadProtoFromTextFile将所有的网络参数读入。然后调用上面的流程进行整个caffe网络的构建。这个文件决定了怎样使用存在caffe model中的每个blob是用来做什么的,如果没有了这个文件caffe的模型文件将无法使用,因为模型中只存储了各种各样的blob数据,里面只有float值,而怎样切分这些数据是由prototxt文件决定的。

Caffe的架构在框架上采用了反射机制去动态创建层来构建Net,Protobuf本质上定义了graph,反射机制是由宏配合map结构形成的,然后使用工厂模式去实现各种各样层的创建,当然区别于一般定义配置采用xml或者json,该项目的写法采用了proto文件对组件进行组装。

总结
以上为Caffe代码架构的一个总体介绍,希望能借此帮助社区的小伙伴找到打开定制化Caffe大门的钥匙。本文作者希望借此抛砖引玉,与更多期望了解Caffe和深度学习框架底层实现的同行交流。
  • 大小: 87.4 KB
  • 大小: 10.1 KB
  • 大小: 49.3 KB
  • 大小: 27.6 KB
  • 大小: 41.1 KB
  • 大小: 29.6 KB
  • 大小: 3.3 KB
  • 大小: 137.3 KB
  • 大小: 43 KB
  • 大小: 24.8 KB
  • 大小: 58.2 KB
  • 大小: 15.6 KB
  • 大小: 68 KB
  • 大小: 49.2 KB
  • 大小: 59 KB
  • 大小: 34.1 KB
  • 大小: 167.3 KB
  • 大小: 5.8 KB
0
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 深度学习框架Caffe源码解析(概览)

    转自:http://www.leiphone.com/news/201612/oZUj5d437bpSl5wc.html Caffe总体架构 Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含...

  • Caffe-深度学习框架安装【windows】

    本文主要在windows下编译caffe源码,得到caffe环境。

  • 解析:深度学习框架Caffe源码

    相信很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。本文将从整体架构和底层实现的视角,对Caffe源码进行解析。 1.Caffe总体架构 Caffe框架主要...

  • 深度学习框架caffe源码学习(一) — caffe.proto

    caffe的caffe.proto相关介绍

  • Caffe-深度学习框架安装【Ubuntu】

    本文主要在ubuntu下编译caffe源码,得到caffe环境。

  • Caffe源码解析

    作者:薛云峰...原文:深度学习框架Caffe源码解析 相信社区中很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。本文将从整体架构

  • caffe源码深入学习8:caffe框架深度神经网络反传代码解析(二)之pooling层源码解析

    caffe源码深入学习8:caffe框架深度神经网络反传代码解析(二)之pooling层源码解析写在前面池化层源码及注释池化层源码解析最大池化平均池化 写在前面 在上一篇博客,即重启caffe源码深入学习7中,笔者从最简单的...

  • Ubuntu14.04下深度学习框架Caffe的搭建

    而Caffe就是一款优秀的易于学习的深度学习框架。Caffe本身由c++写成,支持Java和Python接口。而本篇文章就是Caffe的入门篇之一,平台的搭建。  首先,推荐在linux下进行Caffe的学习。本文使用的是Ubuntu的14.04...

  • OFDM、OOK、PPM、QAM 的误码率模拟【绘制不同调制方案的误码率曲线】附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

  • 8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png

    8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82

  • Android SO逆向-对象的拷贝构造函数.pdf

    Android逆向过程学习

  • 基于S7-200 PLC的糖果包装控制系统设计与实现

    内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。

  • PLC与WinCC实现三部十层电梯协同控制及优化技巧

    内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。

  • 慧荣量产工具合集.zip

    慧荣量产工具合集.zip

  • 永磁同步电机FOC控制与SVPWM算法仿真模型解析

    内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。

  • spring-ai-qianfan-1.0.0-M5.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

  • Android安全之旅系列博客导读.pdf

    Android逆向过程学习

  • 【图像处理】基于双目视觉的物体体积测量算法研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

  • 3dmax插件按面积分离.ms

    3dmax插件

Global site tag (gtag.js) - Google Analytics