- 浏览: 361614 次
文章分类
最新评论
-
jfeifjlafekae:
另外,为什么存储日志会有拆分过程,而不是rotation方式? ...
HBASE数据架构 -
jfeifjlafekae:
“当然,数据刷写时,一个Region只要有一个列族的memSt ...
HBASE数据架构 -
hmc52107521:
你好,params.keys,params.values以及# ...
mybatis中使用map类型参数,其中key为列名,value为列值 -
zhangxiong0301:
qindongliang1922 写道AM中其它与内存相关的参 ...
(转)YARN内存配置 -
qindongliang1922:
AM中其它与内存相关的参数,还有JVM相关的参数,这些参数可以 ...
(转)YARN内存配置
原网址:http://hbase.apache.org/book.html#hbase_metrics
HBase emits metrics which adhere to the Hadoop metrics API. Starting with HBase 0.95[3], HBase is configured to emit a default set of metrics with a default sampling period of every 10 seconds. You can use HBase metrics in conjunction with Ganglia. You can also filter which metrics are emitted and extend the metrics framework to capture custom metrics appropriate for your environment.
17.4.1. Metric Setup
For HBase 0.95 and newer, HBase ships with a default metrics configuration, or sink. This includes a wide variety of individual metrics, and emits them every 10 seconds by default. To configure metrics for a given region server, edit the conf/hadoop-metrics2-hbase.properties file. Restart the region server for the changes to take effect.
To change the sampling rate for the default sink, edit the line beginning with *.period. To filter which metrics are emitted or to extend the metrics framework, see http://hadoop.apache.org/docs/current/api/org/apache/hadoop/metrics2/package-summary.html
HBase Metrics and Ganglia
By default, HBase emits a large number of metrics per region server. Ganglia may have difficulty processing all these metrics. Consider increasing the capacity of the Ganglia server or reducing the number of metrics emitted by HBase. See Metrics Filtering.
17.4.2. Disabling Metrics
To disable metrics for a region server, edit the conf/hadoop-metrics2-hbase.properties file and comment out any uncommented lines. Restart the region server for the changes to take effect.
17.4.3. Discovering Available Metrics
Rather than listing each metric which HBase emits by default, you can browse through the available metrics, either as a JSON output or via JMX. Different metrics are exposed for the Master process and each region server process.
Procedure 17.1. Access a JSON Output of Available Metrics
After starting HBase, access the region server's web UI, at http://REGIONSERVER_HOSTNAME:60030 by default (or port 16030 in HBase 1.0+).
Click the Metrics Dump link near the top. The metrics for the region server are presented as a dump of the JMX bean in JSON format. This will dump out all metrics names and their values. To include metrics descriptions in the listing — this can be useful when you are exploring what is available — add a query string of ?description=true so your URL becomes http://REGIONSERVER_HOSTNAME:60030/jmx?description=true. Not all beans and attributes have descriptions.
To view metrics for the Master, connect to the Master's web UI instead (defaults to http://localhost:60010 or port 16010 in HBase 1.0+) and click its Metrics Dump link. To include metrics descriptions in the listing — this can be useful when you are exploring what is available — add a query string of ?description=true so your URL becomes http://REGIONSERVER_HOSTNAME:60010/jmx?description=true. Not all beans and attributes have descriptions.
Procedure 17.2. Browse the JMX Output of Available Metrics
You can use many different tools to view JMX content by browsing MBeans. This procedure uses jvisualvm, which is an application usually available in the JDK.
Start HBase, if it is not already running.
Run the command jvisualvm command on a host with a GUI display. You can launch it from the command line or another method appropriate for your operating system.
Be sure the VisualVM-MBeans plugin is installed. Browse to Tools → Plugins. Click Installed and check whether the plugin is listed. If not, click Available Plugins, select it, and click Install. When finished, click Close.
To view details for a given HBase process, double-click the process in the Local sub-tree in the left-hand panel. A detailed view opens in the right-hand panel. Click the MBeans tab which appears as a tab in the top of the right-hand panel.
To access the HBase metrics, navigate to the appropriate sub-bean:
Master: Hadoop → HBase → Master → Server
RegionServer: Hadoop → HBase → RegionServer → Server
The name of each metric and its current value is displayed in the Attributes tab. For a view which includes more details, including the description of each attribute, click the Metadata tab.
17.4.4. Units of Measure for Metrics
Different metrics are expressed in different units, as appropriate. Often, the unit of measure is in the name (as in the metric shippedKBs). Otherwise, use the following guidelines. When in doubt, you may need to examine the source for a given metric.
Metrics that refer to a point in time are usually expressed as a timestamp.
Metrics that refer to an age (such as ageOfLastShippedOp) are usually expressed in milliseconds.
Metrics that refer to memory sizes are in bytes.
Sizes of queues (such as sizeOfLogQueue) are expressed as the number of items in the queue. Determine the size by multiplying by the block size (default is 64 MB in HDFS).
Metrics that refer to things like the number of a given type of operations (such as logEditsRead) are expressed as an integer.
17.4.5. Most Important Master Metrics
Note: Counts are usually over the last metrics reporting interval.
hbase.master.numRegionServers
Number of live regionservers
hbase.master.numDeadRegionServers
Number of dead regionservers
hbase.master.ritCount
The number of regions in transition
hbase.master.ritCountOverThreshold
The number of regions that have been in transition longer than a threshold time (default: 60 seconds)
hbase.master.ritOldestAge
The age of the longest region in transition, in milliseconds
17.4.6. Most Important RegionServer Metrics
Note: Counts are usually over the last metrics reporting interval.
hbase.regionserver.regionCount
The number of regions hosted by the regionserver
hbase.regionserver.storeFileCount
The number of store files on disk currently managed by the regionserver
hbase.regionserver.storeFileSize
Aggregate size of the store files on disk
hbase.regionserver.hlogFileCount
The number of write ahead logs not yet archived
hbase.regionserver.totalRequestCount
The total number of requests received
hbase.regionserver.readRequestCount
The number of read requests received
hbase.regionserver.writeRequestCount
The number of write requests received
hbase.regionserver.numOpenConnections
The number of open connections at the RPC layer
hbase.regionserver.numActiveHandler
The number of RPC handlers actively servicing requests
hbase.regionserver.numCallsInGeneralQueue
The number of currently enqueued user requests
hbase.regionserver.numCallsInReplicationQueue
The number of currently enqueued operations received from replication
hbase.regionserver.numCallsInPriorityQueue
The number of currently enqueued priority (internal housekeeping) requests
hbase.regionserver.flushQueueLength
Current depth of the memstore flush queue. If increasing, we are falling behind with clearing memstores out to HDFS.
hbase.regionserver.updatesBlockedTime
Number of milliseconds updates have been blocked so the memstore can be flushed
hbase.regionserver.compactionQueueLength
Current depth of the compaction request queue. If increasing, we are falling behind with storefile compaction.
hbase.regionserver.blockCacheHitCount
The number of block cache hits
hbase.regionserver.blockCacheMissCount
The number of block cache misses
hbase.regionserver.blockCacheExpressHitPercent
The percent of the time that requests with the cache turned on hit the cache
hbase.regionserver.percentFilesLocal
Percent of store file data that can be read from the local DataNode, 0-100
hbase.regionserver.<op>_<measure>
Operation latencies, where <op> is one of Append, Delete, Mutate, Get, Replay, Increment; and where <measure> is one of min, max, mean, median, 75th_percentile, 95th_percentile, 99th_percentile
hbase.regionserver.slow<op>Count
The number of operations we thought were slow, where <op> is one of the list above
hbase.regionserver.GcTimeMillis
Time spent in garbage collection, in milliseconds
hbase.regionserver.GcTimeMillisParNew
Time spent in garbage collection of the young generation, in milliseconds
hbase.regionserver.GcTimeMillisConcurrentMarkSweep
Time spent in garbage collection of the old generation, in milliseconds
hbase.regionserver.authenticationSuccesses
Number of client connections where authentication succeeded
hbase.regionserver.authenticationFailures
Number of client connection authentication failures
hbase.regionserver.mutationsWithoutWALCount
Count of writes submitted with a flag indicating they should bypass the write ahead log
HBase emits metrics which adhere to the Hadoop metrics API. Starting with HBase 0.95[3], HBase is configured to emit a default set of metrics with a default sampling period of every 10 seconds. You can use HBase metrics in conjunction with Ganglia. You can also filter which metrics are emitted and extend the metrics framework to capture custom metrics appropriate for your environment.
17.4.1. Metric Setup
For HBase 0.95 and newer, HBase ships with a default metrics configuration, or sink. This includes a wide variety of individual metrics, and emits them every 10 seconds by default. To configure metrics for a given region server, edit the conf/hadoop-metrics2-hbase.properties file. Restart the region server for the changes to take effect.
To change the sampling rate for the default sink, edit the line beginning with *.period. To filter which metrics are emitted or to extend the metrics framework, see http://hadoop.apache.org/docs/current/api/org/apache/hadoop/metrics2/package-summary.html
HBase Metrics and Ganglia
By default, HBase emits a large number of metrics per region server. Ganglia may have difficulty processing all these metrics. Consider increasing the capacity of the Ganglia server or reducing the number of metrics emitted by HBase. See Metrics Filtering.
17.4.2. Disabling Metrics
To disable metrics for a region server, edit the conf/hadoop-metrics2-hbase.properties file and comment out any uncommented lines. Restart the region server for the changes to take effect.
17.4.3. Discovering Available Metrics
Rather than listing each metric which HBase emits by default, you can browse through the available metrics, either as a JSON output or via JMX. Different metrics are exposed for the Master process and each region server process.
Procedure 17.1. Access a JSON Output of Available Metrics
After starting HBase, access the region server's web UI, at http://REGIONSERVER_HOSTNAME:60030 by default (or port 16030 in HBase 1.0+).
Click the Metrics Dump link near the top. The metrics for the region server are presented as a dump of the JMX bean in JSON format. This will dump out all metrics names and their values. To include metrics descriptions in the listing — this can be useful when you are exploring what is available — add a query string of ?description=true so your URL becomes http://REGIONSERVER_HOSTNAME:60030/jmx?description=true. Not all beans and attributes have descriptions.
To view metrics for the Master, connect to the Master's web UI instead (defaults to http://localhost:60010 or port 16010 in HBase 1.0+) and click its Metrics Dump link. To include metrics descriptions in the listing — this can be useful when you are exploring what is available — add a query string of ?description=true so your URL becomes http://REGIONSERVER_HOSTNAME:60010/jmx?description=true. Not all beans and attributes have descriptions.
Procedure 17.2. Browse the JMX Output of Available Metrics
You can use many different tools to view JMX content by browsing MBeans. This procedure uses jvisualvm, which is an application usually available in the JDK.
Start HBase, if it is not already running.
Run the command jvisualvm command on a host with a GUI display. You can launch it from the command line or another method appropriate for your operating system.
Be sure the VisualVM-MBeans plugin is installed. Browse to Tools → Plugins. Click Installed and check whether the plugin is listed. If not, click Available Plugins, select it, and click Install. When finished, click Close.
To view details for a given HBase process, double-click the process in the Local sub-tree in the left-hand panel. A detailed view opens in the right-hand panel. Click the MBeans tab which appears as a tab in the top of the right-hand panel.
To access the HBase metrics, navigate to the appropriate sub-bean:
Master: Hadoop → HBase → Master → Server
RegionServer: Hadoop → HBase → RegionServer → Server
The name of each metric and its current value is displayed in the Attributes tab. For a view which includes more details, including the description of each attribute, click the Metadata tab.
17.4.4. Units of Measure for Metrics
Different metrics are expressed in different units, as appropriate. Often, the unit of measure is in the name (as in the metric shippedKBs). Otherwise, use the following guidelines. When in doubt, you may need to examine the source for a given metric.
Metrics that refer to a point in time are usually expressed as a timestamp.
Metrics that refer to an age (such as ageOfLastShippedOp) are usually expressed in milliseconds.
Metrics that refer to memory sizes are in bytes.
Sizes of queues (such as sizeOfLogQueue) are expressed as the number of items in the queue. Determine the size by multiplying by the block size (default is 64 MB in HDFS).
Metrics that refer to things like the number of a given type of operations (such as logEditsRead) are expressed as an integer.
17.4.5. Most Important Master Metrics
Note: Counts are usually over the last metrics reporting interval.
hbase.master.numRegionServers
Number of live regionservers
hbase.master.numDeadRegionServers
Number of dead regionservers
hbase.master.ritCount
The number of regions in transition
hbase.master.ritCountOverThreshold
The number of regions that have been in transition longer than a threshold time (default: 60 seconds)
hbase.master.ritOldestAge
The age of the longest region in transition, in milliseconds
17.4.6. Most Important RegionServer Metrics
Note: Counts are usually over the last metrics reporting interval.
hbase.regionserver.regionCount
The number of regions hosted by the regionserver
hbase.regionserver.storeFileCount
The number of store files on disk currently managed by the regionserver
hbase.regionserver.storeFileSize
Aggregate size of the store files on disk
hbase.regionserver.hlogFileCount
The number of write ahead logs not yet archived
hbase.regionserver.totalRequestCount
The total number of requests received
hbase.regionserver.readRequestCount
The number of read requests received
hbase.regionserver.writeRequestCount
The number of write requests received
hbase.regionserver.numOpenConnections
The number of open connections at the RPC layer
hbase.regionserver.numActiveHandler
The number of RPC handlers actively servicing requests
hbase.regionserver.numCallsInGeneralQueue
The number of currently enqueued user requests
hbase.regionserver.numCallsInReplicationQueue
The number of currently enqueued operations received from replication
hbase.regionserver.numCallsInPriorityQueue
The number of currently enqueued priority (internal housekeeping) requests
hbase.regionserver.flushQueueLength
Current depth of the memstore flush queue. If increasing, we are falling behind with clearing memstores out to HDFS.
hbase.regionserver.updatesBlockedTime
Number of milliseconds updates have been blocked so the memstore can be flushed
hbase.regionserver.compactionQueueLength
Current depth of the compaction request queue. If increasing, we are falling behind with storefile compaction.
hbase.regionserver.blockCacheHitCount
The number of block cache hits
hbase.regionserver.blockCacheMissCount
The number of block cache misses
hbase.regionserver.blockCacheExpressHitPercent
The percent of the time that requests with the cache turned on hit the cache
hbase.regionserver.percentFilesLocal
Percent of store file data that can be read from the local DataNode, 0-100
hbase.regionserver.<op>_<measure>
Operation latencies, where <op> is one of Append, Delete, Mutate, Get, Replay, Increment; and where <measure> is one of min, max, mean, median, 75th_percentile, 95th_percentile, 99th_percentile
hbase.regionserver.slow<op>Count
The number of operations we thought were slow, where <op> is one of the list above
hbase.regionserver.GcTimeMillis
Time spent in garbage collection, in milliseconds
hbase.regionserver.GcTimeMillisParNew
Time spent in garbage collection of the young generation, in milliseconds
hbase.regionserver.GcTimeMillisConcurrentMarkSweep
Time spent in garbage collection of the old generation, in milliseconds
hbase.regionserver.authenticationSuccesses
Number of client connections where authentication succeeded
hbase.regionserver.authenticationFailures
Number of client connection authentication failures
hbase.regionserver.mutationsWithoutWALCount
Count of writes submitted with a flag indicating they should bypass the write ahead log
发表评论
-
HADOOP中mapreduce开启压缩功能
2015-10-14 14:26 3657最近给热云公 ... -
HIVE跑mapjoin时所有任务失败--问题分析及解决
2015-09-22 16:40 8865今天有个需求,就是:指定200W用 ... -
hadoop、hbase节点下线
2015-09-17 16:21 4831hadoop节点在磁盘坏掉的时候需要 ... -
HADOOP中设置map个数
2015-06-11 09:08 1241很多文档中描述,Mapper的数量在默认情况下不可直接控制 ... -
hadoop安全机制
2015-05-22 18:04 10071.背景 1.1 共享Hadoop集群 当前大一点的公司 ... -
CDH对hadoop的一些配置指南,包括THP
2015-04-28 17:16 2251Tips and Guidelines Sele ... -
MAP运行过程
2015-04-23 16:46 987Anatomy of a MapReduce Job ... -
MAP/REDUCE TASK作业状态转移图
2015-04-23 13:37 1248Task Attempt Table of con ... -
YARN常见问题
2015-04-23 00:40 937本文汇总了几个hadoop yarn中常见问题以及解决方案,注 ... -
转载--淘宝hadoop升级遇到的问题
2015-04-22 18:03 1175搜索离线dump集群(hadoop&hbase)20 ... -
mapreduce数据流配置
2015-04-15 21:15 947Hadoop配置文件设定了Ha ... -
HADOOP2 yarn相关参数
2015-04-15 20:45 944注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配 ... -
HADOOP2 mapreduce配置(转)
2015-04-15 20:42 1419MapReduce相关配置参数分为两部分,分别是JobHis ... -
(转)hadoop yarn 内存相关配置
2015-06-11 09:09 14811.YARN中处理能力的基本单元是什么?2.什么是保留内存 ... -
YARN的一些常见错误
2015-06-12 13:58 2015问题导读1、Hadoop YARN常见问题有哪些?2、你是 ... -
(转) hadoop2安装LZO
2015-04-04 15:00 4941.为什么使用lzo?2.如何安装配置lzo?3.如何使用l ... -
(转)提高mapreduce性能的几点建议-cloudera
2015-04-04 14:55 1065前言 Cloudera提供给客户的服务内容之一就是调整和优 ... -
(转)YARN内存配置
2015-04-04 11:01 1050问题导读1、Yarn对MRv1的 ... -
(转)HADOOP2.6基于标签的调度
2015-04-04 10:32 863在最新的hadoop 2.6.0版本中,YARN引入了一种 ... -
HADOOP平台优化综述(转自董的博客)
2015-04-03 15:56 8821. 概述 随着 ...
相关推荐
本文将详细探讨如何使用Zabbix这一强大的开源监控工具来监控Hbase集群,以及如何利用“hbase监控文件.zip”中的资源进行部署。 HBase是一个基于Apache Hadoop的非关系型分布式数据库(NoSQL),它设计用于处理海量...
通过监控HBase集群,可以实时了解系统的性能指标,从而提高系统的可维护性和可靠性。 HBase如何输出指标: HBase输出指标的框架是基于Hadoop的指标框架(metrics framework),该框架提供了一个统一的方式来输出...
对于HBase和Hadoop,JMX可以用来监控诸如节点健康状况、内存使用、磁盘I/O、网络流量等关键指标。 在监控HBase时,我们可以通过JMX获取HMaster、RegionServer等组件的状态,包括 Region分布、内存使用情况、...
为了确保MongoDB数据库的稳定性和高效性,对其监控指标的解读和关注显得尤为重要。本文档将从以下几个方面进行详细介绍: 1. MongoDB监控指标分类及查看命令 MongoDB监控指标可以通过执行相应的命令来查看和分类。...
1. 监控指标:包括内存使用、磁盘I/O、网络流量等,通过JMX和Hadoop Metrics2提供。 2. 故障处理:Master节点和Region服务器的故障切换,数据的自动恢复。 七、HBase与其他系统集成 1. Hadoop集成:与HDFS、...
重要的监控指标包括但不限于:region server的内存使用情况、flush和compaction频率、WAL日志大小和数量、客户端请求延迟等。通过日志分析和调试工具,可以及时发现和解决问题。例如,异常的compaction和flush行为,...
- **重要指标**:文档中可能涵盖了监控HBase系统的关键性能指标,如读写速度、延迟、内存使用情况、RegionServer状态等。 - **日志和调试**:有效利用HBase的日志信息可以辅助问题定位和解决,包括错误日志、...
1. 使用HBase自带的JMX监控工具或第三方监控工具(如Ambari、Grafana)监控HBase集群的性能指标。 2. 定期进行健康检查,排查可能存在的问题,如Region不均、内存溢出等。 3. 对HBase进行定期备份,以防数据丢失。...
这个压缩包提供的12个JSON模板涵盖了上述所有组件的关键监控指标。这些模板设计好后,可以直接导入到Grafana中,无需进行额外的配置调整。模板通常包括了预定义的查询、面板和仪表盘,用户只需根据实际环境进行简单...
6. **HBase的监控与调优**:HBase内置了丰富的监控指标,如RegionServer状态、内存使用、请求数量等,可以通过JMX、HBase Web UI或Ambari等工具进行监控。根据这些指标,可以进行性能调优,比如调整Region大小、增加...
6. 性能监控:通过图形化的界面,用户可以实时监控HBase集群的性能指标,如RegionServer状态、内存使用、磁盘I/O等,有助于识别和解决性能问题。 7. 多语言支持:由于是开源项目,Hbase Manager GUI可能支持多种...
6. 性能监控:通过HBase提供的监控工具,如HBase Master UI或Metrics2,监控MOB相关的指标,如Mob File的数量、大小、Compaction频率等,以确保系统的稳定运行。 总之,HBase 2.0的MOB特性为存储和检索小文件,如...
在实际操作中,你可能需要配置Ganglia的监控项以覆盖Hadoop的关键指标,比如HDFS的块复制状态、DataNode的健康状态、JobTracker的任务进度等。同时,设置Nagios的阈值和警报规则也很重要,以确保在性能下降或故障...
HBase提供丰富的监控指标,如JMX、Web UI等,用于系统状态监控和问题排查。 源码中可能包含了示例程序,这些程序可以帮助读者理解如何使用HBase API实现各种操作,例如创建表、写入数据、查询数据、进行数据扫描等...
7. **HBase运维参考**:在提供的“hbase运维参考手册(项目实战).docx”文档中,详细介绍了HBase的日常维护、故障排查和性能优化方法,包括但不限于日志分析、监控指标解读、常见问题解决等,对于实际运维工作具有很...
3. **监控与调优**:定期监控HBase的性能指标,如Region Server的压力、Memstore大小、WAL日志等,适时进行调优。 4. **备份与恢复**:制定备份策略,以防数据丢失。HBase支持快照功能,可以定期创建快照以备...
- HBase提供丰富的监控指标,包括JMX和Web UI,便于监控系统状态。 - 可通过调整配置参数优化性能,如Region大小、BlockCache设置等。 在解压“hbase-1.3.1-bin.zip”后,你可以找到启动和配置HBase所需的所有...
同时,理解HBase的运维最佳实践,如监控性能指标、故障排查和资源调度,也是确保系统稳定运行的关键。 总的来说,HBase是一个针对大数据场景设计的高性能数据库,其2.2.7版本在前代基础上进一步提升了性能和易用性...
HBase 1.0.3版本在性能、稳定性和易用性上都有所提升,包括增强的Compaction策略、更高效的Region分裂、更丰富的监控指标以及更好的Java API。这些改进使得开发者能更好地管理和利用大数据资源。 总结来说,HBase ...
Phoenix提供了丰富的JMX指标,可以帮助我们了解查询性能、内存使用等情况。同时,通过日志分析,可以定位并解决问题。 7. **扩展与社区支持** Apache HBase和Phoenix都是活跃的开源项目,拥有庞大的社区支持。...