`
zhangxiong0301
  • 浏览: 359699 次
社区版块
存档分类
最新评论

java垃圾收集配置

    博客分类:
  • JAVA
阅读更多
堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC
输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]
                [Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails
输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
                [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K,  99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K,  55% used [0x221d0000, 0x22527e10, 0x227d0000)
  to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
   the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
    ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
    rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
  from space 6144K,  55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
  to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
   the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
    ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
    rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
}
, 0.0757599 secs]
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
常见配置汇总
堆设置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
收集器设置
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

四、调优总结
年轻代大小选择
响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
并发垃圾收集信息
持久代并发收集次数
传统GC信息
花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
-XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
-XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
分享到:
评论

相关推荐

    Java垃圾收集处理方法

    "Java垃圾收集处理方法" Java垃圾收集处理方法是Java语言中一个非常重要的概念。垃圾收集(Garbage Collection)是Java虚拟机(JVM)中的一种机制,负责自动回收不再使用的内存,避免内存泄漏和溢出。 Java垃圾...

    Java垃圾收集器使用小诀窍

    Java垃圾收集器使用小诀窍详解 Java垃圾收集器是Java虚拟机(JVM)中一个非常重要的组件,它负责管理Java程序中的内存资源,防止内存泄露和溢出。垃圾收集器的使用小诀窍可以帮助开发者写出高效的Java程序,避免...

    Java的垃圾收集器(GC)

    ### Java的垃圾收集器(GC)详解 #### 引言 垃圾收集器(Garbage Collector,简称GC)是Java语言的一项重要特性,它自动化管理内存,显著减轻了开发者手动管理内存负担,避免了常见的内存泄漏问题,提高了程序的...

    Java垃圾收集必备手册.rar

    这份"Java垃圾收集必备手册"涵盖了Java开发中关于垃圾收集的基本概念、工作原理以及优化策略,对于Java开发者来说是不可多得的学习资源。 一、垃圾收集基本概念 1. 内存管理:Java使用自动内存管理,程序员无需手动...

    java垃圾收集与异常处理

    Java垃圾收集与异常处理是Java编程中至关重要的概念,它们对于程序的稳定性和性能有着直接影响。垃圾收集(Garbage Collection, GC)是Java虚拟机自动管理内存的一种机制,而异常处理则是通过预设的错误处理流程来...

    Java垃圾收集必备手册

    Java垃圾收集机制的深入理解和调优对于构建高性能、稳定的Java应用至关重要。了解不同垃圾收集算法的原理和特点,合理使用JVM提供的工具和参数进行调整,是每位Java开发者都需要掌握的技能。此外,由于不同版本的JVM...

    Java垃圾收集概述.pdf

    Java垃圾收集概述主要关注的是Java运行环境中的内存管理和优化。在Java编程中,开发者无需手动管理内存,因为Java虚拟机(JVM)自动执行垃圾收集(Garbage Collection, GC),负责回收不再使用的对象所占用的内存...

    Java垃圾收集必备手册.pdf

    本文档是一本关于Java垃圾收集的教程,主要涉及了垃圾收集的概念、算法以及调优技巧。垃圾收集是Java内存管理的一个重要方面,它能够自动回收堆内存中不再使用的对象,减少内存泄漏的风险。本手册提供了一个全面的...

    Java理解G1垃圾收集器.pdf

    Java的G1(Garbage First)垃圾收集器是一种先进的垃圾回收机制,主要设计目标是实现低延迟、高吞吐量的内存管理。G1垃圾收集器是Java虚拟机(JVM)...在Java应用的性能调优中,理解和配置好G1垃圾收集器是至关重要的。

    Tomcat中Java垃圾收集调优宣贯.pdf

    Java垃圾收集调优是优化Tomcat性能的关键环节,主要涉及JVM内存管理和垃圾收集机制。在Tomcat中,我们可以通过调整JVM参数来优化内存分配和垃圾收集行为,以提高应用的响应速度和稳定性。 首先,JVM内存分为三个...

    计算机专业外文翻译(Java垃圾收集器).doc

    Java垃圾收集器是Java语言中的一个关键特性,它负责自动管理程序中的内存,尤其是对象的分配和回收。在一些编程语言中,如C++,在堆上分配对象可能需要较高的开销,但在Java中,由于垃圾收集器的存在,这个过程实际...

    1_Java虚拟机(垃圾收集器和算法).pdf

    Java虚拟机(JVM)是运行Java程序的核心环境,它负责解释执行Java...了解这些垃圾收集器和算法是深入理解Java虚拟机性能优化的基础,有助于开发者更有效地编写Java代码和配置虚拟机参数,从而提升应用的性能和稳定性。

    Tomcat中Java垃圾收集调优资料.pdf

    本文主要围绕Tomcat中Java垃圾收集的调优进行详细讲解。 首先,JVM内存配置是性能优化的基础。`JAVA_OPTS`参数是设置JVM内存的关键,例如`JAVA_OPTS="-server -Xms2048m -Xmx2048m -Xss512k"`。`-server`选项用于在...

    Tomcat中Java垃圾收集调优分享.pdf

    在Java应用服务器,如Tomcat中,性能优化的一个关键方面是Java垃圾收集(Garbage Collection, GC)的调优。垃圾收集是Java虚拟机(JVM)自动管理内存的重要机制,它负责识别并释放不再使用的对象,以避免内存泄漏。...

    Tomcat中Java垃圾收集调优[文].pdf

    以下是对Tomcat中Java垃圾收集调优的详细说明: 首先,我们需要了解JVM内存的划分。JVM根据对象的生命周期将其划分为三个主要区域: 1. **Young Generation(年轻代)**:这是对象初次被创建的地方,包括Eden区和...

    关于Java垃圾收集器的概述(一)(csdn)————程序.pdf

    Java垃圾收集器是Java虚拟机(JVM)中的一个重要组成部分,它负责自动管理内存,尤其是对象生命周期的终结。Java堆是垃圾收集器的主要工作区域,因为所有Java对象都在堆中创建和销毁。由于堆空间有限,有效的内存...

    JAVA垃圾回收机制

    Java垃圾收集器有多种类型,包括: 1. 标记-清除收集器:遍历对象图标记存活对象,然后清理未标记对象,可能导致内存碎片。 2. 标记-压缩收集器:类似于标记-清除,但清理后会压缩存活对象,减少碎片。 3. 复制收集...

    计算机科学与技术-外文翻译-外文文献-英文文献-Java垃圾收集器的工作方式.doc

    Java垃圾收集器是Java语言中一个关键的特性,它负责管理程序运行时的内存空间,尤其是对象的分配和回收。在传统的编程语言如C++中,堆内存的管理需要程序员手动进行,分配和释放对象可能会涉及到复杂的内存操作,...

    JAVA 垃圾收集器与内存分配策略.rar

    6. **内存调优**:通过调整JVM参数,如 `-Xms`, `-Xmx` 设置堆内存大小,`-XX:NewRatio` 设置新生代和老年代的比例,`-XX:SurvivorRatio` 设置Eden区和Survivor区的比例,以及选择合适的垃圾收集器,来优化应用程序...

    垃圾收集机制的基本原理及方法word版

    Java垃圾收集机制是Java虚拟机(JVM)中用于自动管理内存的重要组成部分,它负责识别不再使用的对象并释放其所占用的内存,以防止内存泄漏。理解垃圾收集的基本原理和方法对于编写高效、健壮的Java应用程序至关重要...

Global site tag (gtag.js) - Google Analytics