`
Donald_Draper
  • 浏览: 990229 次
社区版块
存档分类
最新评论

PipeImpl解析

    博客分类:
  • NIO
nio 
阅读更多
ServerSocketChannel定义:http://donald-draper.iteye.com/blog/2369836
ServerSocketChannelImpl解析:http://donald-draper.iteye.com/blog/2370912
SocketChannelImpl 解析一(通道连接,发送数据):http://donald-draper.iteye.com/blog/2372364
SocketChannelImpl 解析二(发送数据后续):http://donald-draper.iteye.com/blog/2372548
SocketChannelImpl 解析三(接收数据):http://donald-draper.iteye.com/blog/2372590
SocketChannelImpl 解析四(关闭通道等) :http://donald-draper.iteye.com/blog/2372717
Pipe定义:http://donald-draper.iteye.com/blog/2373540
引言:
    Pipe中包含一个可写通道SinkChannel和一个可读通道SourceChannel。sink向管道写字节序序列,
source从管道读取字节序列。
我们从Pipe的open方法开始:
public static Pipe open() throws IOException {
        return SelectorProvider.provider().openPipe();
}

这里为什么是SelectorProviderImpl,前面已经说过不在说,
//SelectorProviderImpl
 public Pipe openPipe()
        throws IOException
{
    return new PipeImpl(this);
}

下面来看通道的实现,PipeImpl
package sun.nio.ch;
import java.io.IOException;
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.nio.channels.spi.SelectorProvider;
import java.security.*;
import java.util.Random;

// Referenced classes of package sun.nio.ch:
//            IOUtil, Util, SinkChannelImpl, SourceChannelImpl

class PipeImpl extends Pipe
{
    private java.nio.channels.Pipe.SourceChannel source;//Source通道
    private java.nio.channels.Pipe.SinkChannel sink;//Sink通道
    private static final Random rnd;//
    static 
    {
        //加载net和nio资源库
        Util.load();
        byte abyte0[] = new byte[8];
	//委托IOUtil,获取8个字节序列,static native boolean randomBytes(byte abyte0[]);
        boolean flag = IOUtil.randomBytes(abyte0);
        if(flag)
            rnd = new Random(ByteBuffer.wrap(abyte0).getLong());
        else
            rnd = new Random();
    }
     PipeImpl(SelectorProvider selectorprovider)
        throws IOException
    {
        try
        {
	    //在与当前线程访问控制权限的情况下,执行Initializer,权限动作,执行Initializer的run方法
            AccessController.doPrivileged(new Initializer(selectorprovider));
        }
        catch(PrivilegedActionException privilegedactionexception)
        {
            throw (IOException)privilegedactionexception.getCause();
        }
    }
    //管道初始化Action
    private class Initializer
        implements PrivilegedExceptionAction
    {
        private final SelectorProvider sp;
        static final boolean $assertionsDisabled = !sun/nio/ch/PipeImpl.desiredAssertionStatus();
        final PipeImpl this$0;
        private Initializer(SelectorProvider selectorprovider)
        {
            this$0 = PipeImpl.this;
            super();
            sp = selectorprovider;
        }
        public volatile Object run()
            throws Exception
        {
            return run();
        }
        public Void run()
            throws IOException
        {
            ServerSocketChannel serversocketchannel;//ServerSocket通道,
            SocketChannel socketchannel;//用于source通道
            SocketChannel socketchannel1;//用于Sink通道
            serversocketchannel = null;
            socketchannel = null;
            socketchannel1 = null;
            try
            {
	        //获取本地地址
                InetAddress inetaddress = InetAddress.getByName("127.0.0.1");
                if(!$assertionsDisabled && !inetaddress.isLoopbackAddress())
                    throw new AssertionError();
		//打开一个ServerSocket通道
                serversocketchannel = ServerSocketChannel.open();
		//ServerSocket通道绑定地址
                serversocketchannel.socket().bind(new InetSocketAddress(inetaddress, 0));
                InetSocketAddress inetsocketaddress = new InetSocketAddress(inetaddress, serversocketchannel.socket().getLocalPort());
                //打开一个SocketChannel通道
		socketchannel = SocketChannel.open(inetsocketaddress);
                ByteBuffer bytebuffer = ByteBuffer.allocate(8);
		//获取通道的随机long值
                long l = PipeImpl.rnd.nextLong();
                bytebuffer.putLong(l).flip();
		//向serverSocket通道发送一个long值,即8个字节
                socketchannel.write(bytebuffer);
                do
                {
		    //serverSocket接受连接
                    socketchannel1 = serversocketchannel.accept();
                    bytebuffer.clear();
		    //接受client通道端发送过来的数据
                    socketchannel1.read(bytebuffer);
                    bytebuffer.rewind();
                    if(bytebuffer.getLong() == l)
                        break;
                    socketchannel1.close();
                } while(true);
		//根据client通道,构造SourceChannelImpl
                source = new SourceChannelImpl(sp, socketchannel);
		//根据ServerChannel接受连接产生的SocketChannel通道,构造SinkChannelImpl
                sink = new SinkChannelImpl(sp, socketchannel1);
            }
            catch(IOException ioexception1)
            {
                try
                {
                    if(socketchannel != null)
                        socketchannel.close();
                    if(socketchannel1 != null)
                        socketchannel1.close();
                }
                catch(IOException ioexception2) { }
                IOException ioexception3 = new IOException("Unable to establish loopback connection");
                ioexception3.initCause(ioexception1);
                throw ioexception3;
            }
            try
            {
	        //关闭serverSocketChannle,任务完成(建立一个SocketChannle连接)
                if(serversocketchannel != null)
                    serversocketchannel.close();
            }
            catch(IOException ioexception) { }
            break MISSING_BLOCK_LABEL_277;
            Exception exception;
            exception;
            try
            {
                if(serversocketchannel != null)
                    serversocketchannel.close();
            }
            catch(IOException ioexception4) { }
            throw exception;
            return null;
        }
    }
    //返回source通道
    public java.nio.channels.Pipe.SourceChannel source()
    {
        return source;
    }
    //返回sink通道
    public java.nio.channels.Pipe.SinkChannel sink()
    {
        return sink;
    }
}

从上面可以看出PipeImpl,内部有一个Source通道SourceChannel,Sink通道SinkChannel,一个
随机数rnd(long),还有一个管道初始化Action,初始化时加载net和nio资源库,委托IOUtil产生8个字节,然后根据8个字节生成一个随机数rnd;在构造时,在与当前线程访问控制权限的情况下,执行Initializer,权限动作,执行Initializer的run方法,即通过ServerSocketChannle和SocketChannel建立一个通道连接;首先新建一个ServerSocketChannle和SocketChannel,分别绑定地址SocketChannel向ServerSocetChannel发送随机数rnd,ServerSocetChannel接受SocketChannel连接,产生一个SocketChannel1(server),SocketChannel1接受client(SocketChannel),检验与随机数rnd,相等则建立连接。然后根据SocketChannel1(server),构造Sink通道SinkChannelImpl,根据client(SocketChannel),构造Source通道SourceChannelImpl。
我们先来看SinkChannelImpl
package sun.nio.ch;

import java.io.FileDescriptor;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.nio.channels.spi.SelectorProvider;

// Referenced classes of package sun.nio.ch:
//            SelChImpl, SelectionKeyImpl, SelectorImpl, SocketChannelImpl, 
//            Util

class SinkChannelImpl extends java.nio.channels.Pipe.SinkChannel
    implements SelChImpl
{
    SocketChannel sc;//关联socket通道
    public FileDescriptor getFD()
    {
        return ((SocketChannelImpl)sc).getFD();
    }

    public int getFDVal()
    {
        return ((SocketChannelImpl)sc).getFDVal();
    }

    SinkChannelImpl(SelectorProvider selectorprovider, SocketChannel socketchannel)
    {
        super(selectorprovider);
        sc = socketchannel;
    }
   //关闭通道
    protected void implCloseSelectableChannel()
        throws IOException
    {
        //通道没有注册到任何选择器
        if(!isRegistered())
            kill();
    }
   //关闭socket通道
    public void kill()
        throws IOException
    {
        sc.close();
    }
    //配置阻塞模式
    protected void implConfigureBlocking(boolean flag)
        throws IOException
    {
        sc.configureBlocking(flag);
    }
    //写字节序列
      public int write(ByteBuffer bytebuffer)
        throws IOException
    {
        return sc.write(bytebuffer);
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }

    public long write(ByteBuffer abytebuffer[])
        throws IOException
    {
        return sc.write(abytebuffer);
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }

    public long write(ByteBuffer abytebuffer[], int i, int j)
        throws IOException
    {
        if(i < 0 || j < 0 || i > abytebuffer.length - j)
            throw new IndexOutOfBoundsException();
        return write(Util.subsequence(abytebuffer, i, j));
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }
    //设置就绪操作事件
    public boolean translateAndSetReadyOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        return translateReadyOps(i, 0, selectionkeyimpl);
    }
    //更新就绪操作事件
    public boolean translateAndUpdateReadyOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        return translateReadyOps(i, selectionkeyimpl.nioReadyOps(), selectionkeyimpl);
    }
    public boolean translateReadyOps(int i, int j, SelectionKeyImpl selectionkeyimpl)
    {
        int k = selectionkeyimpl.nioInterestOps();
        int l = selectionkeyimpl.nioReadyOps();
        int i1 = j;
	//就绪事件为读1写4连接8,接受连接事件16,不是这四种事件,则抛出Error
        if((i & 32) != 0)
            throw new Error("POLLNVAL detected");
	 //为8+16,接受连接,并建立连接,设置就绪事件k
        if((i & 24) != 0)
        {
            i1 = k;
            selectionkeyimpl.nioReadyOps(i1);
            return (i1 & ~l) != 0;
        }
        if((i & 4) != 0 && (k & 4) != 0)
            i1 |= 4;//写操作
        selectionkeyimpl.nioReadyOps(i1);
        return (i1 & ~l) != 0;
    }
    //设置兴趣操作事件
    public void translateAndSetInterestOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        if((i & 4) != 0)
            i = 4;//写事件
        selectionkeyimpl.selector.putEventOps(selectionkeyimpl, i);
    }  
}

从SinkChannelImpl,可以看出内部关联一个socket通道,SinkChannelImpl关闭通道,配置通道阻塞模式,写字节序列到管道都是委托给内部的SocketChannle。
再看SourceChannelImpl
class SourceChannelImpl extends java.nio.channels.Pipe.SourceChannel
    implements SelChImpl
{
    SocketChannel sc;
    public FileDescriptor getFD()
    {
        return ((SocketChannelImpl)sc).getFD();
    }

    public int getFDVal()
    {
        return ((SocketChannelImpl)sc).getFDVal();
    }

    SourceChannelImpl(SelectorProvider selectorprovider, SocketChannel socketchannel)
    {
        super(selectorprovider);
        sc = socketchannel;
    }
   //关闭通道
    protected void implCloseSelectableChannel()
        throws IOException
    {
        //通道没有注册到任何选择器
        if(!isRegistered())
            kill();
    }
    //关闭socket通道
    public void kill()
        throws IOException
    {
        sc.close();
    }
   //配置阻塞模式
    protected void implConfigureBlocking(boolean flag)
        throws IOException
    {
        sc.configureBlocking(flag);
    }
    //读取字节序列
    public int read(ByteBuffer bytebuffer)
        throws IOException
    {
        return sc.read(bytebuffer);
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }

    public long read(ByteBuffer abytebuffer[], int i, int j)
        throws IOException
    {
        if(i < 0 || j < 0 || i > abytebuffer.length - j)
            throw new IndexOutOfBoundsException();
        return read(Util.subsequence(abytebuffer, i, j));
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }

    public long read(ByteBuffer abytebuffer[])
        throws IOException
    {
        return sc.read(abytebuffer);
        AsynchronousCloseException asynchronouscloseexception;
        asynchronouscloseexception;
        close();
        throw asynchronouscloseexception;
    }
     //设置就绪操作事件
    public boolean translateAndSetReadyOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        return translateReadyOps(i, 0, selectionkeyimpl);
    }
    //更新就绪操作事件
     public boolean translateAndUpdateReadyOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        return translateReadyOps(i, selectionkeyimpl.nioReadyOps(), selectionkeyimpl);
    }
    public boolean translateReadyOps(int i, int j, SelectionKeyImpl selectionkeyimpl)
    {
        int k = selectionkeyimpl.nioInterestOps();
        int l = selectionkeyimpl.nioReadyOps();
        int i1 = j;
	//就绪事件为读1写4连接8,接受连接事件16,不是这四种事件,则抛出Error
        if((i & 32) != 0)
            throw new Error("POLLNVAL detected");
	 //为8+16,接受连接,并建立连接,设置就绪事件k
        if((i & 24) != 0)
        {
            i1 = k;
            selectionkeyimpl.nioReadyOps(i1);
            return (i1 & ~l) != 0;
        }
        if((i & 1) != 0 && (k & 1) != 0)
            i1 |= 1;//读事件
        selectionkeyimpl.nioReadyOps(i1);
        return (i1 & ~l) != 0;
    }
    //设置兴趣操作事件
    public void translateAndSetInterestOps(int i, SelectionKeyImpl selectionkeyimpl)
    {
        if((i & 1) != 0)
            i = 1;//读事件
        selectionkeyimpl.selector.putEventOps(selectionkeyimpl, i);
    }
}

从SourceChannelImpl,可以看出内部关联一个socket通道,SourceChannelImpl关闭通道,配置通道阻塞模式,从管道读取字节序列都是委托给内部的SocketChannle。
总结:
     PipeImpl,内部有一个Source通道SourceChannel,Sink通道SinkChannel,一个随机数rnd(long),还有一个管道初始化Action,初始化时加载net和nio资源库,委托IOUtil产生8个字节,然后根据8个字节生成一个随机数rnd;在构造时,在与当前线程访问控制权限的情况下,执行Initializer,权限动作,执行Initializer的run方法,即通过ServerSocketChannle和SocketChannel建立一个通道连接;首先新建一个ServerSocketChannle和SocketChannel,分别绑定地址SocketChannel向ServerSocetChannel发送随机数rnd,ServerSocetChannel接受SocketChannel连接,产生一个SocketChannel1(server),SocketChannel1接受client(SocketChannel),检验与随机数rnd,相等则建立连接。然后根据SocketChannel1(server),构造Sink通道SinkChannelImpl,根据client(SocketChannel),构造Source通道SourceChannelImpl。
    SinkChannelImpl,内部关联一个socket通道,SinkChannelImpl关闭通道,配置通道阻塞模式,写字节序列到管道都是委托给内部的SocketChannle。
    SourceChannelImpl,内部关联一个socket通道,SourceChannelImpl关闭通道,配置通道阻塞模式,从管道读取字节序列都是委托给内部的SocketChannle。
分享到:
评论

相关推荐

    PipeImpl.rar_Java编程_Unix_Linux_

    标题中的"PipeImpl.rar"可能是一个包含Java编程中关于实现管道(Pipe)接口源代码的压缩文件,专门针对Unix和Linux操作系统。在这个场景下,我们主要讨论的是在这些类Unix系统中如何用Java来实现I/O管道。 Java编程在...

    YOLOv12:以注意力为中心的实时目标检测器.pdf

    YOLOv12:以注意力为中心的实时目标检测器

    GO语言基础语法指令教程

    GO语言基础语法指令教程

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电网 评估 参考文档:《自写文档,联系我看》参考选址定容模型部分; 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入配电网的位置,接入配电网的有功功率以及无功功率的大小,通过牛顿拉夫逊法求解分布式电源接入后的电网潮流,从而评价分布式电源接入前后的电压、线路潮流等参数是否发生变化,评估配电网的运行方式。 代码非常精品,是研究含分布式电源接入的电网潮流计算的必备程序 ,分布式电源; 配电网; 接入影响分析; 潮流计算; 牛顿拉夫逊法; 电压评估; 必备程序。,基于MATLAB的分布式电源对配电网影响评估系统

    三相光伏并网逆变器:Mppt最大功率跟踪与800V中间母线电压的电力转换技术,三相光伏并网逆变器:实现最大功率跟踪与800V中间母线电压的优化处理,三相光伏并网逆变器 输入光伏Mppt 最大功率跟踪

    三相光伏并网逆变器:Mppt最大功率跟踪与800V中间母线电压的电力转换技术,三相光伏并网逆变器:实现最大功率跟踪与800V中间母线电压的优化处理,三相光伏并网逆变器 输入光伏Mppt 最大功率跟踪中间母线电压800V 后级三相光伏并网逆变器 ,三相光伏并网逆变器; 输入光伏Mppt; 最大功率跟踪; 中间母线电压800V; 后级逆变器,三相光伏并网逆变器:MPPT最大功率跟踪800V母线电压

    基于SSM的车位销售平台设计与实现.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional V14及更高版本的应用探索,西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional画面与

    西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional V14及更高版本的应用探索,西门子博途三部十层电梯程序案例解析:基于Wincc RT Professional画面与V14及以上版本技术参考,西门子1200博途三部十层电梯程序案例,加Wincc RT Professional画面三部十层电梯程序,版本V14及以上。 程序仅限于参考资料使用。 ,西门子;1200博途;三部十层电梯程序案例;Wincc RT Professional;V14以上程序版本。,西门子V14+博途三部十层电梯程序案例:Wincc RT Pro专业画面技术解析

    基于舆情数据的知识图谱推荐可视化系统论文,全原创,免费分享

    基于舆情数据的知识图谱推荐可视化系统论文,全原创,免费分享

    基于Vivado源码的AM包络检调制解调与FIR滤波器设计在FPGA上的实现,基于Zynq-7000和Artix-7系列的AM包络检调制解调源码及Vivado环境下的实现,AM包络检调制解调,Viva

    基于Vivado源码的AM包络检调制解调与FIR滤波器设计在FPGA上的实现,基于Zynq-7000和Artix-7系列的AM包络检调制解调源码及Vivado环境下的实现,AM包络检调制解调,Vivado源码 FPGA的AM调制解调源码,其中FIR滤波器根据MATLAB设计。 【AM_jietiao】文件是基于zynq-7000系列,但没有涉及AD与DA,只是单纯的仿真。 【AM包络检调制解调_Vivado源码】文件基于Artix-7系列,从AD读入信号后,进行AM调制,并解调DA输出。 ,AM包络检调制解调;Vivado源码;FPGA;AM调制解调源码;FIR滤波器;MATLAB设计;Zynq-7000系列;Artix-7系列;AD读入信号;DA输出,AM包络调制解调源码:Zynq-7000与Artix-7 FPGA的不同实现

    rdtyfv、ijij

    yugy

    2025山东大学:DeepSeek应用与部署(部署方案大全+API调用+业务应用)-80页.pptx

    2025山东大学:DeepSeek应用与部署(部署方案大全+API调用+业务应用)-80页.pptx

    chromedriver-mac-x64-135.0.7023.0(Dev).zip

    chromedriver-mac-x64-135.0.7023.0(Dev).zip

    基于单片机protues仿真的433MHz无线模块编解码收发通信测试(仿真图、源代码)

    基于单片机protues仿真的433MHz无线模块编解码收发通信测试(仿真图、源代码) 该设计为单片机protues仿真的433MHz无线模块收发通信测试; 1、433M超再生收发模块; 2、在仿真图中是把发射MCU的P2_7腿直接输入到接收MCU的INT0实现编码解码的; 3、通过433MHz无线模块实现无线通信的编解码功能; 4、按键控制指令; 5、液晶屏显示收发状态和信息;

    车机安卓版好用的应用管理app

    资源说说明; 自带文件管理 adb操作以及应用管理等等的功能。 操作性对比其他应用较好。 参阅博文: https://blog.csdn.net/mg668/article/details/145689511?spm=1001.2014.3001.5352

    软件工程课程设计前端.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    智慧图书管理系统(源码+数据库+论文)java开发springboot框架javaweb,可做计算机毕业设计或课程设计

    智慧图书管理系统(源码+数据库+论文)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 本系统分为读者、管理员2个角色 读者可以进行注册登录、浏览图书以及留言、图书借阅、图书归还、图书续借、个人中心、论坛交流、等功能 管理员可以进行读者管理、图书管理、论坛论坛回复管理、图书借阅管理(下架、库存管理、修改、删除)、轮播图管理 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。

    三相APFC电路与单相Boost PFC电路仿真模型:电压外环电流内环双闭环控制研究,三相电路仿真模型:探索APFC电路、单相PFC电路及BoostPFC电路的动态特性与双闭环控制策略,APFC电路

    三相APFC电路与单相Boost PFC电路仿真模型:电压外环电流内环双闭环控制研究,三相电路仿真模型:探索APFC电路、单相PFC电路及BoostPFC电路的动态特性与双闭环控制策略,APFC电路,单相PFC电路,单相BoostPFC电路仿真模型。 网侧220V 50Hz,输出电压设置为50Hz。 电压外环电流内环双闭环控制仿真模型 ,APFC电路; 单相PFC电路; 单相BoostPFC电路仿真模型; 网侧电压; 220V 50Hz; 输出电压50Hz; 电压外环电流内环双闭环控制仿真模型。,基于APFC电路的单相Boost PFC仿真模型:网侧电压220V/50Hz下电压电流双闭环控制的研究与应用

    MATLAB环境下ADMM算法在分布式调度中的应用:比较并行与串行算法(Jocobi与Gaussian Seidel)的优化效果与实现细节-基于YALMIP和GUROBI的仿真平台复刻参考文档的研究

    MATLAB环境下ADMM算法在分布式调度中的应用:比较并行与串行算法(Jocobi与Gaussian Seidel)的优化效果与实现细节——基于YALMIP和GUROBI的仿真平台复刻参考文档的研究结果。,MATLAB下ADMM算法在分布式调度中的并行与串行算法应用:基于YALMIP与GUROBI的仿真研究,MATLAB代码:ADMM算法在分布式调度中的应用 关键词:并行算法(Jocobi)和串行算法(Gaussian Seidel, GS) 参考文档:《主动配电网分布式无功优化控制方法》《基于串行和并行ADMM算法的电-气能量流分布式协同优化》 仿真平台:MATLAB YALMIP GUROBI 主要内容:ADMM算法在分布式调度中的应用 复刻参考文档 ,关键词:ADMM算法; 分布式调度; 并行算法(Jocobi); 串行算法(Gaussian Seidel, GS); MATLAB代码; YALMIP; GUROBI; 主动配电网; 无功优化控制方法; 能量流分布式协同优化。,MATLAB实现:ADMM算法在分布式调度中的并行与串行优化应用

    “考虑P2G、碳捕集与碳交易机制的综合能源系统优化调度模型研究”,考虑电转气P2G与碳捕集设备的热电联供综合能源系统优化调度模型研究(含碳交易机制与四种算例场景分析),考虑P2G和碳捕集设备的热电联供

    “考虑P2G、碳捕集与碳交易机制的综合能源系统优化调度模型研究”,考虑电转气P2G与碳捕集设备的热电联供综合能源系统优化调度模型研究(含碳交易机制与四种算例场景分析),考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型 摘要:代码主要做的是一个考虑电转气P2G和碳捕集设备的热电联供综合能源系统优化调度模型,模型耦合CHP热电联产单元、电转气单元以及碳捕集单元,并重点考虑了碳交易机制,建立了综合能源系统运行优化模型,与目前市面上的代码不同,本代码完全复现了文档中所提出的四种算例场景,没有对比算例,买过去也没有任何意义,四种算例主要包括: 1)t不包括P2G、CCS、以及碳交易 2)t包括P2G,但是不包括CCS以及碳交易 3)t包括P2G和CCS,但是不包括碳交易 4)t包括P2G、CCS以及碳交易 且最终的实现效果与文档进行对比后,虽然数值无法100%一致,但是结果以及数值曲线,几乎完全一样,此版本为目前市面上最好的园区综合能源调度代码,没有之一 ,考虑电转气(P2G); 碳捕集设备; 热电联供综合能源系统; 优化调度模型; 碳交易机制; CHP热电联产单元; 耦合模型; 算

    FS-LDM培训材料(DAY_2)_NCR数据仓库事业部.ppt

    FS-LDM培训材料(DAY_2)_NCR数据仓库事业部.ppt

Global site tag (gtag.js) - Google Analytics