- 浏览: 996194 次
-
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
Channel接口定义:http://donald-draper.iteye.com/blog/2369111
AbstractInterruptibleChannel接口定义:http://donald-draper.iteye.com/blog/2369238
SelectableChannel接口定义:http://donald-draper.iteye.com/blog/2369317
SelectionKey定义:http://donald-draper.iteye.com/blog/2369499
SelectorProvider定义:http://donald-draper.iteye.com/blog/2369615
AbstractSelectableChannel定义:http://donald-draper.iteye.com/blog/2369742
NetworkChannel接口定义:http://donald-draper.iteye.com/blog/2369773
ServerSocketChannel定义:http://donald-draper.iteye.com/blog/2369836
Selector定义:http://donald-draper.iteye.com/blog/2370015
AbstractSelector定义:http://donald-draper.iteye.com/blog/2370138
SelectorImpl分析 :http://donald-draper.iteye.com/blog/2370519
引言:
在上一篇文章中,我们看了SelectorImpl的相关key集合和方法,先来回顾一下:
SelectorImpl有4个集合分别为就绪key集合,key集合,key集合的代理publicKeys及就绪key集合的代理publicSelectedKeys;实际是两个集合就绪key集合和key集合,publicSelectedKeys和publicKeys是其他线程访问上述两个集合的代理。
SelectorImpl构造的时候,初始化选择器提供者SelectorProvider,创建就绪key集合和key集合,然后初始化就绪key和key集合的代理,初始化过程为,如果nio包的JDK版本存在bug问题,则就绪key和key集合的代理集合直接引用就绪key和key集合。否则将当前key集合包装成不可修改的代理集合publicKes,将就绪key集合包装成容量固定的集合publicSelectedKeys。
其他线程获取选择器的就绪key和key集合,实际上返回的是key集合的代理publicKeys和就绪key集合的代理publicSelectedKeys。
select方法的3中操作形式,实际上委托给为lockAndDoSelect方法,方法实际上是同步的,可安全访问,获取key集合代理publicKeys和就绪key代理集合publicSelectedKeys,然后交给doSelect(long l)方法,这个方法为抽象方法,待子类扩展。实际的关闭选择器操作implCloseSelector方法,首先唤醒等待选择操作的线程,唤醒方法wakeup待实现,同步选择器,就绪key和key集合的代理publicKeys,publicSelectedKeys,调用implClose完成实际的关闭通道工作,待子类实现。
可选通道注册方法,首先注册的通道必须是AbstractSelectableChannel类型,并且是SelChImpl实例。更具可选择通道和选择器构造选择key,设置选择key的附加物,同步key集合代理,调用implRegister方法完成实际的注册工作,implRegister方法待子类实现。
processDeregisterQueue方法,主要是遍历取消key集合,反注册取消key,实际的反注册工作由implDereg方法,implDereg方法待子类扩展。成功,则从集合中移除。
今天我们来看的选择器的具体实现WindowsSelectorProvider,在这篇文章中,我们要关注的是这几个方法,选择操作中的doSelect(long l),注册key操作的implRegister方法,处理取消key集合方法中implDereg方法和唤醒方法wakeup。
我们先从打开选择器开始
//Selector
//SelectorProvider
来看默认的DefaultSelectorProvider
//DefaultSelectorProvider
从上面了可以看出选择器的默认实现为WindowsSelectorImpl,下面我们来具体看一下,先看一下变量的定义,具体每个变量及集合含义我们现在可能不完全解释清楚,一般从字面上可以看出它的意思,对于不能完全理解的变量,我们在后面的文章中,再纠正。
//Util
//这个我们先放在这里,我们慢慢解开选择的构造
为了更好的理解fdMap和pollWrapper作用我们来看一下这两个集合的定义:
先看FdMap
//key与key描述符映射关系Map
//MapEntry
从上面可以看出FdMap主要是存储选择key的,FdMap实际上是一个HashMap,key为选择key的文件描述id,value为MapEntry,MapEntry为选择key的包装Entry,里面含有更新计数器updateCount和清除计数器clearedCount。
再看PollArrayWrapper,
PollArrayWrapper,我们可以这么理解为本地内存空间管理器主要是
将文件描述(选择key,唤醒管道的source和sink通道)信息及相关的兴趣操作事件存储在本地内存空间中。PollArrayWrapper是通过AllocatedNativeObject来操作底层存储空间
//PollArrayWrapper
//已分配的本地空间
//NativeObject,本地内存管理对象
//再来看PollArrayWrapper的其他方法
//添加选择key到文件描述包装集合i索引上
//将文件描述id-j放在索引i上
//NativeObject
//将文件描述id-j,放在地址i上
存放索引i文件描述信息的兴趣操作事件
//NativeObject
//存放文件描述的兴趣操作事件,放在地址i上
//获取索引i的文件描述id
//NativeObject
//获取索引i的文件描述id关注的兴趣操作事件
//NativeObject
从上面可以好像看出一点门道,PollArrayWrapper作用即存放选择key和选择key关注的
事件,用选择key的文件描述id,表示选择key,文件描述id为int,所以占4个字节,选择key
的兴趣操作事件也为int,即4个字节,所以SIZE_POLLFD为8,文件描述id开始位置FD_OFFSET为0,兴趣事件开始位置EVENT_OFFSET为4;FD_OFFSET和EVENT_OFFSET都是相对于SIZE_POLLFD的。
再来看其他操作
//PollArrayWrapper,替换j索引上的文件描述信息为i索引对应的文件描述信息
添加唤醒管道的source通道文件描述符
我猜测一下这个意思,PollArrayWrapper同时存储唤醒等待选择操作的选择器的通道和唤醒通道关注事件即通道注册选择器事件,即添加选择key事件。当有通道注册到选择器,则唤醒通道,唤醒等待选择操作的选择器。
//PollArrayWrapper
//释放内存空间
//AllocatedNativeObject
//PollArrayWrapper
//增加i个存储文件描述及相应的兴趣操作事件内存块
看完这两个集合,再来看WindowsSelectorImpl的构造
WindowsSelectorImpl默认加载net和nio资源库;WindowsSelectorImpl内锁4个,分别为关闭锁closeLock,中断锁interruptLock,startLock,finishLock后面两个的作用,目前还不清楚,后面再说;一个唤醒管道,作用尚不明确;一个注册到选择器的通道计数器totalChannels;updateCount计数器作用,尚不明确;通道集合channelArray,存放的元素实际为通道关联的选择key;pollWrapper用于存储选择key和相应的兴趣事件,及唤醒管道的源通道,唤醒管道的源通道存放在pollWrapper的索引0位置上。
关于唤醒管道的作用,现在还不是太清楚,在后面的文章中在具体讲解其作用。
我们要关注的几个方法为
1.注册key操作的implRegister方法
2.处理取消key集合方法中implDereg方法
3.选择操作中的doSelect(long l)
4.唤醒方法wakeup
5.实际关闭选择通道方法implClose
由于篇幅问题,这几个方法,放在下一篇文章中再讲
总结:
WindowsSelectorImpl默认加载net和nio资源库;WindowsSelectorImpl内锁4个,分别为关闭锁closeLock,中断锁interruptLock,startLock,finishLock后面两个的作用,目前还不清楚,后面再说;一个唤醒管道,作用尚不明确;一个注册到选择器的通道计数器totalChannels;updateCount计数器作用,尚不明确;通道集合channelArray,存放的元素实际为通道关联的选择key;pollWrapper用于存储选择key和相应的兴趣事件,及唤醒管道的源通道,唤醒管道的源通道存放在pollWrapper的索引0位置上。
FdMap主要是存储选择key的,FdMap实际上是一个HashMap,key为选择key的文件描述id,value为MapEntry,MapEntry为选择key的包装Entry,里面含有更新计数器updateCount和清除计数器clearedCount。
PollArrayWrapper存放选择key和通道及其相关的操作事件。PollArrayWrapper通过AllocatedNativeObject来存储先关的文件描述及其兴趣事件,AllocatedNativeObject
为已分配的底层内存空间,AllocatedNativeObject的内存主要NativeObject来分配,NativeObject实际是通过Unsafe来分配内存。PollArrayWrapper作用即存放选择key和选择key关注的事件,用选择key的文件描述id,表示选择key,文件描述id为int,所以占4个字节,选择key的兴趣操作事件也为int,即4个字节,所以SIZE_POLLFD为8,文件描述id开始位置FD_OFFSET为0,兴趣事件开始位置EVENT_OFFSET为4;FD_OFFSET和EVENT_OFFSET都是相对于SIZE_POLLFD的。PollArrayWrapper同时存储唤醒等待选择操作的选择器的通道和唤醒通道关注事件即通道注册选择器事件,即添加选择key事件。当有通道注册到选择器,则唤醒通道,唤醒等待选择操作的选择器。
WindowsSelectorImpl解析二(选择操作,通道注册,通道反注册,选择器关闭等):
http://donald-draper.iteye.com/blog/2370862
AbstractInterruptibleChannel接口定义:http://donald-draper.iteye.com/blog/2369238
SelectableChannel接口定义:http://donald-draper.iteye.com/blog/2369317
SelectionKey定义:http://donald-draper.iteye.com/blog/2369499
SelectorProvider定义:http://donald-draper.iteye.com/blog/2369615
AbstractSelectableChannel定义:http://donald-draper.iteye.com/blog/2369742
NetworkChannel接口定义:http://donald-draper.iteye.com/blog/2369773
ServerSocketChannel定义:http://donald-draper.iteye.com/blog/2369836
Selector定义:http://donald-draper.iteye.com/blog/2370015
AbstractSelector定义:http://donald-draper.iteye.com/blog/2370138
SelectorImpl分析 :http://donald-draper.iteye.com/blog/2370519
引言:
在上一篇文章中,我们看了SelectorImpl的相关key集合和方法,先来回顾一下:
SelectorImpl有4个集合分别为就绪key集合,key集合,key集合的代理publicKeys及就绪key集合的代理publicSelectedKeys;实际是两个集合就绪key集合和key集合,publicSelectedKeys和publicKeys是其他线程访问上述两个集合的代理。
SelectorImpl构造的时候,初始化选择器提供者SelectorProvider,创建就绪key集合和key集合,然后初始化就绪key和key集合的代理,初始化过程为,如果nio包的JDK版本存在bug问题,则就绪key和key集合的代理集合直接引用就绪key和key集合。否则将当前key集合包装成不可修改的代理集合publicKes,将就绪key集合包装成容量固定的集合publicSelectedKeys。
其他线程获取选择器的就绪key和key集合,实际上返回的是key集合的代理publicKeys和就绪key集合的代理publicSelectedKeys。
select方法的3中操作形式,实际上委托给为lockAndDoSelect方法,方法实际上是同步的,可安全访问,获取key集合代理publicKeys和就绪key代理集合publicSelectedKeys,然后交给doSelect(long l)方法,这个方法为抽象方法,待子类扩展。实际的关闭选择器操作implCloseSelector方法,首先唤醒等待选择操作的线程,唤醒方法wakeup待实现,同步选择器,就绪key和key集合的代理publicKeys,publicSelectedKeys,调用implClose完成实际的关闭通道工作,待子类实现。
可选通道注册方法,首先注册的通道必须是AbstractSelectableChannel类型,并且是SelChImpl实例。更具可选择通道和选择器构造选择key,设置选择key的附加物,同步key集合代理,调用implRegister方法完成实际的注册工作,implRegister方法待子类实现。
processDeregisterQueue方法,主要是遍历取消key集合,反注册取消key,实际的反注册工作由implDereg方法,implDereg方法待子类扩展。成功,则从集合中移除。
今天我们来看的选择器的具体实现WindowsSelectorProvider,在这篇文章中,我们要关注的是这几个方法,选择操作中的doSelect(long l),注册key操作的implRegister方法,处理取消key集合方法中implDereg方法和唤醒方法wakeup。
我们先从打开选择器开始
//Selector
public static Selector open() throws IOException { return SelectorProvider.provider().openSelector(); }
//SelectorProvider
public static SelectorProvider provider() { synchronized (lock) { if (provider != null) return provider; //在与当前线程相同访问控制权限的环境中,加载SelectorProvider实例 return AccessController.doPrivileged( new PrivilegedAction<SelectorProvider>() { public SelectorProvider run() { if (loadProviderFromProperty()) //获取系统配置的SelectorProvider return provider; if (loadProviderAsService()) //获取类加载路径下的SelectorProvider return provider; //加载默认的SelectorProvider provider = sun.nio.ch.DefaultSelectorProvider.create(); return provider; } }); } }
来看默认的DefaultSelectorProvider
//DefaultSelectorProvider
package sun.nio.ch; import java.nio.channels.spi.SelectorProvider; // Referenced classes of package sun.nio.ch: // WindowsSelectorProvider public class DefaultSelectorProvider { private DefaultSelectorProvider() { } public static SelectorProvider create() { //默认的WindowsSelectorProvider return new WindowsSelectorProvider(); } }
从上面了可以看出选择器的默认实现为WindowsSelectorImpl,下面我们来具体看一下,先看一下变量的定义,具体每个变量及集合含义我们现在可能不完全解释清楚,一般从字面上可以看出它的意思,对于不能完全理解的变量,我们在后面的文章中,再纠正。
final class WindowsSelectorImpl extends SelectorImpl { private final int INIT_CAP = 8;//选择key集合,key包装集合初始化容量 private static final int MAX_SELECTABLE_FDS = 1024;//最大选择key数量 private SelectionKeyImpl channelArray[];//选择器关联通道集合 private PollArrayWrapper pollWrapper;//存放所有文件描述对象(选择key,唤醒管道的源与sink通道)的集合 private int totalChannels;//注册到选择的通道数量 private int threadsCount;//选择线程数 private final List threads = new ArrayList();//选择操作线程集合 private final Pipe wakeupPipe = Pipe.open();//唤醒等待选择操操的管道 private final int wakeupSourceFd;//唤醒管道源通道文件描述 private final int wakeupSinkFd;//唤醒管道sink通道文件描述 private Object closeLock;//选择器关闭同步锁 private final FdMap fdMap = new FdMap();//存放选择key文件描述与选择key映射关系的Map private final SubSelector subSelector = new SubSelector();//子选择器 private long timeout;//超时时间,具体什么意思,现在还没明白,在后面在看 private final Object interruptLock = new Object();//中断同步锁,在唤醒选择操作线程时,用于同步 private volatile boolean interruptTriggered;//是否唤醒等待选择操的线程 private final StartLock startLock = new StartLock();//选择操作开始锁 private final FinishLock finishLock = new FinishLock();//选择操作结束锁 private long updateCount;//更新数量,具体什么意思,现在还没明白,在后面在看 static final boolean $assertionsDisabled = !sun/nio/ch/WindowsSelectorImpl.desiredAssertionStatus(); static { //加载nio,net资源库 Util.load(); } }
//Util
static void load() { label0: { synchronized(sun/nio/ch/Util) { if(!loaded) break label0; } return; } loaded = true; //在与当前线程相同访问控制权限的情况下,加载net和nio资源库 AccessController.doPrivileged(new LoadLibraryAction("net")); AccessController.doPrivileged(new LoadLibraryAction("nio")); IOUtil.initIDs(); local; JVM INSTR monitorexit ; goto _L1 exception; throw exception; _L1: }
//这个我们先放在这里,我们慢慢解开选择的构造
WindowsSelectorImpl(SelectorProvider selectorprovider) throws IOException { super(selectorprovider); channelArray = new SelectionKeyImpl[8]; totalChannels = 1; threadsCount = 0; closeLock = new Object(); interruptTriggered = false; updateCount = 0L; pollWrapper = new PollArrayWrapper(8); wakeupSourceFd = ((SelChImpl)wakeupPipe.source()).getFDVal(); SinkChannelImpl sinkchannelimpl = (SinkChannelImpl)wakeupPipe.sink(); sinkchannelimpl.sc.socket().setTcpNoDelay(true); wakeupSinkFd = sinkchannelimpl.getFDVal(); pollWrapper.addWakeupSocket(wakeupSourceFd, 0); }
为了更好的理解fdMap和pollWrapper作用我们来看一下这两个集合的定义:
先看FdMap
//key与key描述符映射关系Map
private static final class FdMap extends HashMap { static final long serialVersionUID = 0L; private FdMap() { } //根据key文件描述id获取key private MapEntry get(int i) { return (MapEntry)get(new Integer(i)); } //添加key private MapEntry put(SelectionKeyImpl selectionkeyimpl) { return (MapEntry)put(new Integer(selectionkeyimpl.channel.getFDVal()), new MapEntry(selectionkeyimpl)); } //移除选择key private MapEntry remove(SelectionKeyImpl selectionkeyimpl) { Integer integer = new Integer(selectionkeyimpl.channel.getFDVal()); MapEntry mapentry = (MapEntry)get(integer); if(mapentry != null && mapentry.ski.channel == selectionkeyimpl.channel) return (MapEntry)remove(integer); else return null; } }
//MapEntry
private static final class MapEntry { SelectionKeyImpl ski;//选择key //这两个计数器,现在还不知道干什么用的,后备碰到再说 long updateCount;//操作事件更新计数器 long clearedCount;操作事件清除计数器 MapEntry(SelectionKeyImpl selectionkeyimpl) { updateCount = 0L; clearedCount = 0L; ski = selectionkeyimpl; } }
从上面可以看出FdMap主要是存储选择key的,FdMap实际上是一个HashMap,key为选择key的文件描述id,value为MapEntry,MapEntry为选择key的包装Entry,里面含有更新计数器updateCount和清除计数器clearedCount。
再看PollArrayWrapper,
PollArrayWrapper,我们可以这么理解为本地内存空间管理器主要是
将文件描述(选择key,唤醒管道的source和sink通道)信息及相关的兴趣操作事件存储在本地内存空间中。PollArrayWrapper是通过AllocatedNativeObject来操作底层存储空间
//PollArrayWrapper
class PollArrayWrapper { private AllocatedNativeObject pollArray;//底层内存空间 long pollArrayAddress;//内存空间起始位置 private static final short FD_OFFSET = 0;文件描述id开始位置 private static final short EVENT_OFFSET = 4;//兴趣事件开始位置 static short SIZE_POLLFD = 8;//文件描述id的长度int(4)+操作事件长度4 //这些事件当前不能明白意思,只是简单的猜测,理解的网友给我留言,谢谢 static final short POLLIN = 1;//添加事件 static final short POLLOUT = 4;//拉取事件 static final short POLLERR = 8;//操作错误 static final short POLLHUP = 16;//操作挂起 static final short POLLNVAL = 32; static final short POLLREMOVE = 2048;//移除 static final short POLLCONN = 2;// private int size; //创建i容量的文件描述管理器 PollArrayWrapper(int i) { int j = i * SIZE_POLLFD; //分配内存空间 pollArray = new AllocatedNativeObject(j, true); //初始化空间起始地址 pollArrayAddress = pollArray.address(); size = i;//初始化容量 } }
//已分配的本地空间
class AllocatedNativeObject extends NativeObject { AllocatedNativeObject(int i, boolean flag) { super(i, flag); } //释放本地对象空间 synchronized void free() { //如果已分配的地址不为0,则释放空间 if(allocationAddress != 0L) { unsafe.freeMemory(allocationAddress); allocationAddress = 0L; } } }
//NativeObject,本地内存管理对象
package sun.nio.ch; import java.nio.ByteOrder; import sun.misc.Unsafe; class NativeObject { protected static final Unsafe unsafe = Unsafe.getUnsafe(); protected long allocationAddress;//已分配的地址空间 private final long address;//空间起始位置 private static ByteOrder byteOrder = null; private static int pageSize = -1;//内存分页大小 static final boolean $assertionsDisabled = !sun/nio/ch/NativeObject.desiredAssertionStatus(); NativeObject(long l) { allocationAddress = l; address = l; } NativeObject(long l, long l1) { allocationAddress = l; address = l + l1; } //分配i大小的内存空间,flag为是否分配内存页 protected NativeObject(int i, boolean flag) { if(!flag) { allocationAddress = unsafe.allocateMemory(i); address = allocationAddress; } else { int j = pageSize(); long l = unsafe.allocateMemory(i + j); allocationAddress = l;//已分配内存空间 address = (l + (long)j) - (l & (long)(j - 1));//空间起始位置 } } //获取内存分页大小 static int pageSize() { if(pageSize == -1) pageSize = unsafe.pageSize(); return pageSize; } }
//再来看PollArrayWrapper的其他方法
//添加选择key到文件描述包装集合i索引上
void addEntry(int i, SelectionKeyImpl selectionkeyimpl) { //委托给putDescriptor putDescriptor(i, selectionkeyimpl.channel.getFDVal()); }
//将文件描述id-j放在索引i上
void putDescriptor(int i, int j) { //委托给pollArray pollArray.putInt(SIZE_POLLFD * i + 0, j); }
//NativeObject
//将文件描述id-j,放在地址i上
final void putInt(int i, int j) { unsafe.putInt((long)i + address, j); }
存放索引i文件描述信息的兴趣操作事件
void putEventOps(int i, int j) { //委托给pollArray pollArray.putShort(SIZE_POLLFD * i + 4, (short)j); }
//NativeObject
//存放文件描述的兴趣操作事件,放在地址i上
final void putShort(int i, short word0) { unsafe.putShort((long)i + address, word0); }
//获取索引i的文件描述id
int getDescriptor(int i) { return pollArray.getInt(SIZE_POLLFD * i + 0); }
//NativeObject
final short getShort(int i) { return unsafe.getShort((long)i + address); }
//获取索引i的文件描述id关注的兴趣操作事件
int getEventOps(int i) { return pollArray.getShort(SIZE_POLLFD * i + 4); }
//NativeObject
final short getShort(int i) { return unsafe.getShort((long)i + address); }
从上面可以好像看出一点门道,PollArrayWrapper作用即存放选择key和选择key关注的
事件,用选择key的文件描述id,表示选择key,文件描述id为int,所以占4个字节,选择key
的兴趣操作事件也为int,即4个字节,所以SIZE_POLLFD为8,文件描述id开始位置FD_OFFSET为0,兴趣事件开始位置EVENT_OFFSET为4;FD_OFFSET和EVENT_OFFSET都是相对于SIZE_POLLFD的。
再来看其他操作
//PollArrayWrapper,替换j索引上的文件描述信息为i索引对应的文件描述信息
void replaceEntry(PollArrayWrapper pollarraywrapper, int i, PollArrayWrapper pollarraywrapper1, int j) { pollarraywrapper1.putDescriptor(j, pollarraywrapper.getDescriptor(i)); pollarraywrapper1.putEventOps(j, pollarraywrapper.getEventOps(i)); }
添加唤醒管道的source通道文件描述符
void addWakeupSocket(int i, int j) { putDescriptor(j, i); //等待唤醒描述符关注的事件是添加事件POLLIN putEventOps(j, 1); }
我猜测一下这个意思,PollArrayWrapper同时存储唤醒等待选择操作的选择器的通道和唤醒通道关注事件即通道注册选择器事件,即添加选择key事件。当有通道注册到选择器,则唤醒通道,唤醒等待选择操作的选择器。
//PollArrayWrapper
//释放内存空间
void free() { pollArray.free(); }
//AllocatedNativeObject
synchronized void free() { if(allocationAddress != 0L) { unsafe.freeMemory(allocationAddress); allocationAddress = 0L; } }
//PollArrayWrapper
//增加i个存储文件描述及相应的兴趣操作事件内存块
void grow(int i) { //重新创建文件描述集合 PollArrayWrapper pollarraywrapper = new PollArrayWrapper(i); //将原始文件描述及相关兴趣操作事件,移到新的集合中 for(int j = 0; j < size; j++) replaceEntry(this, j, pollarraywrapper, j); //释放旧集合的空间 pollArray.free(); //更新pollArray,容量及起始地址 pollArray = pollarraywrapper.pollArray; size = pollarraywrapper.size; pollArrayAddress = pollArray.address(); }
看完这两个集合,再来看WindowsSelectorImpl的构造
WindowsSelectorImpl(SelectorProvider selectorprovider) throws IOException { super(selectorprovider); //创建选择器关联通道数组,实际存的为选择key channelArray = new SelectionKeyImpl[8]; totalChannels = 1; threadsCount = 0; closeLock = new Object();//关闭锁 interruptTriggered = false; updateCount = 0L; pollWrapper = new PollArrayWrapper(8); wakeupSourceFd = ((SelChImpl)wakeupPipe.source()).getFDVal();//唤醒管道源通道文件描述id SinkChannelImpl sinkchannelimpl = (SinkChannelImpl)wakeupPipe.sink();//唤醒管道sink通道 sinkchannelimpl.sc.socket().setTcpNoDelay(true);//设置唤醒管道sink通道的Socket为无延时 wakeupSinkFd = sinkchannelimpl.getFDVal(); //将唤醒管道的源通道文件描述id添加pollWrapper的索引0位置上 pollWrapper.addWakeupSocket(wakeupSourceFd, 0); }
WindowsSelectorImpl默认加载net和nio资源库;WindowsSelectorImpl内锁4个,分别为关闭锁closeLock,中断锁interruptLock,startLock,finishLock后面两个的作用,目前还不清楚,后面再说;一个唤醒管道,作用尚不明确;一个注册到选择器的通道计数器totalChannels;updateCount计数器作用,尚不明确;通道集合channelArray,存放的元素实际为通道关联的选择key;pollWrapper用于存储选择key和相应的兴趣事件,及唤醒管道的源通道,唤醒管道的源通道存放在pollWrapper的索引0位置上。
关于唤醒管道的作用,现在还不是太清楚,在后面的文章中在具体讲解其作用。
我们要关注的几个方法为
1.注册key操作的implRegister方法
2.处理取消key集合方法中implDereg方法
3.选择操作中的doSelect(long l)
4.唤醒方法wakeup
5.实际关闭选择通道方法implClose
由于篇幅问题,这几个方法,放在下一篇文章中再讲
总结:
WindowsSelectorImpl默认加载net和nio资源库;WindowsSelectorImpl内锁4个,分别为关闭锁closeLock,中断锁interruptLock,startLock,finishLock后面两个的作用,目前还不清楚,后面再说;一个唤醒管道,作用尚不明确;一个注册到选择器的通道计数器totalChannels;updateCount计数器作用,尚不明确;通道集合channelArray,存放的元素实际为通道关联的选择key;pollWrapper用于存储选择key和相应的兴趣事件,及唤醒管道的源通道,唤醒管道的源通道存放在pollWrapper的索引0位置上。
FdMap主要是存储选择key的,FdMap实际上是一个HashMap,key为选择key的文件描述id,value为MapEntry,MapEntry为选择key的包装Entry,里面含有更新计数器updateCount和清除计数器clearedCount。
PollArrayWrapper存放选择key和通道及其相关的操作事件。PollArrayWrapper通过AllocatedNativeObject来存储先关的文件描述及其兴趣事件,AllocatedNativeObject
为已分配的底层内存空间,AllocatedNativeObject的内存主要NativeObject来分配,NativeObject实际是通过Unsafe来分配内存。PollArrayWrapper作用即存放选择key和选择key关注的事件,用选择key的文件描述id,表示选择key,文件描述id为int,所以占4个字节,选择key的兴趣操作事件也为int,即4个字节,所以SIZE_POLLFD为8,文件描述id开始位置FD_OFFSET为0,兴趣事件开始位置EVENT_OFFSET为4;FD_OFFSET和EVENT_OFFSET都是相对于SIZE_POLLFD的。PollArrayWrapper同时存储唤醒等待选择操作的选择器的通道和唤醒通道关注事件即通道注册选择器事件,即添加选择key事件。当有通道注册到选择器,则唤醒通道,唤醒等待选择操作的选择器。
WindowsSelectorImpl解析二(选择操作,通道注册,通道反注册,选择器关闭等):
http://donald-draper.iteye.com/blog/2370862
评论
1 楼
ezlhq
2018-07-27
关于 PollArrayWrapper 状态含义猜测:
参考 SocketChannelImpl#translateAndSetInterestOps:
(http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/db6e25fee0f7/src/share/classes/sun/nio/ch/SocketChannelImpl.java)
可以看出来,POLLIN是read事件,POLLOUT是write事件,POLLCONN是connection事件
参考 ServerSocketChannelImpl#translateAndSetInterestOps:
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/1a3de3cdc684/src/share/classes/sun/nio/ch/ServerSocketChannelImpl.java
可以看出来 POLLIN是ACCEPT事件。
其他事件还没看到
参考 SocketChannelImpl#translateAndSetInterestOps:
(http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/db6e25fee0f7/src/share/classes/sun/nio/ch/SocketChannelImpl.java)
public void translateAndSetInterestOps(int ops, SelectionKeyImpl sk) { int newOps = 0; if ((ops & SelectionKey.OP_READ) != 0) newOps |= PollArrayWrapper.POLLIN; if ((ops & SelectionKey.OP_WRITE) != 0) newOps |= PollArrayWrapper.POLLOUT; if ((ops & SelectionKey.OP_CONNECT) != 0) newOps |= PollArrayWrapper.POLLCONN; sk.selector.putEventOps(sk, newOps); }
可以看出来,POLLIN是read事件,POLLOUT是write事件,POLLCONN是connection事件
参考 ServerSocketChannelImpl#translateAndSetInterestOps:
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/1a3de3cdc684/src/share/classes/sun/nio/ch/ServerSocketChannelImpl.java
public void translateAndSetInterestOps(int ops, SelectionKeyImpl sk) { int newOps = 0; // Translate ops if ((ops & SelectionKey.OP_ACCEPT) != 0) newOps |= PollArrayWrapper.POLLIN; // Place ops into pollfd array sk.selector.putEventOps(sk, newOps); }
可以看出来 POLLIN是ACCEPT事件。
其他事件还没看到
发表评论
-
文件通道解析二(文件锁,关闭通道)
2017-05-16 23:17 1103文件通道解析一(读写操作,通道数据传输等):http://do ... -
文件通道解析一(读写操作,通道数据传输等)
2017-05-16 10:04 1195Reference定义(PhantomRefere ... -
文件通道创建方式综述
2017-05-15 17:39 1103Reference定义(PhantomReference,Cl ... -
文件读写方式简单综述后续(文件,流构造)
2017-05-14 23:04 1521Java Socket通信实例:http://donald-d ... -
文件读写方式简单综述
2017-05-14 11:13 1164Java Socket通信实例:http://donald-d ... -
FileChanne定义
2017-05-12 23:28 978文件读写方式简单综述:http://donald-draper ... -
SeekableByteChannel接口定义
2017-05-11 08:43 1270ByteChannel,分散聚集通道接口的定义(SocketC ... -
FileChannel示例
2017-05-11 08:37 1019前面我们看过socket通道,datagram通道,以管道Pi ... -
PipeImpl解析
2017-05-11 08:41 967ServerSocketChannel定义:http://do ... -
Pipe定义
2017-05-10 09:07 938Channel接口定义:http://donald-drape ... -
NIO-Pipe示例
2017-05-10 08:47 944PipeImpl解析:http://donald-draper ... -
DatagramChannelImpl 解析四(地址绑定,关闭通道等)
2017-05-10 08:27 826DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析三(多播)
2017-05-10 08:20 1983DatagramChannelImpl 解析一(初始化):ht ... -
NIO-UDP实例
2017-05-09 12:32 1622DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析二(报文发送与接收)
2017-05-09 09:03 1442DatagramChannelImpl 解析一(初始化):ht ... -
DatagramChannelImpl 解析一(初始化)
2017-05-08 21:52 1458Channel接口定义:http://donald-drape ... -
MembershipKeyImpl 简介
2017-05-08 09:11 956MembershipKey定义:http://donald-d ... -
DatagramChannel定义
2017-05-07 23:13 1261Channel接口定义:http://donald-drape ... -
MulticastChanne接口定义
2017-05-07 13:45 1185NetworkChannel接口定义:ht ... -
MembershipKey定义
2017-05-06 16:20 954package java.nio.channels; i ...
相关推荐
资源名称:Java-NIO-Netty框架学习资源目录:【】Netty5.0架构剖析和源码解读【】Netty5用户指南【】Netty_in_Action(第五版-目录修正版)【】Netty_in_Action_v08_MEAP【】Netty_in_Action_v10_MEAP【】Netty_代码...
### Java NIO 的精彩细节解析 #### 一、Selector的Wakeup原理 ##### 1.1 背景介绍 在Java NIO (Non-blocking I/O)中,`Selector` 是核心组件之一,用于监控多个`Channel`上的I/O事件(如可读、可写等)。`...
移动开发_Android_基础框架_SAFApi组件开发_1742847786.zip
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
app开发
MobaXterm安装包
智慧园区,作为智慧城市的重要组成部分,正借助5G、云计算、大数据等前沿技术,实现园区的全面智慧化升级。它不仅仅是技术的堆砌,更是园区管理模式和服务理念的革新。智慧园区通过构建统一的大数据平台,实现园区内各类数据的整合与共享,让管理者能够全局掌握园区运营状态,实现人、事、物的穿透式管理。 在5G技术的加持下,智慧园区的特色应用得以更加广泛和深入地开展。从便捷通行到智慧物联,从楼宇自控到企业服务,5G智慧园区为园区内的企业和员工提供了前所未有的便捷与高效。刷脸通行、车牌识别、访客线上预约等技术的应用,不仅提升了园区的安全等级,更让通行变得简单快捷。而智慧垃圾桶、路灯等物联网设备的引入,则让园区的环境管理更加智能化、精细化。此外,5G智慧园区还通过无人机巡检、无人驾驶等创新应用,为园区的安全管理、物资配送等方面带来了全新的解决方案。 值得一提的是,智慧园区的建设并不仅仅局限于硬件设施的升级,更在于服务模式的创新。通过园区APP、在线服务平台等渠道,智慧园区实现了园区服务的线上化、便捷化,让企业和员工能够随时随地享受到园区提供的各类服务。这种以人为本的服务理念,不仅提升了园区的整体服务水平,更增强了园区的吸引力和竞争力。总之,5G智慧园区的建设为园区的可持续发展注入了新的活力,也为未来城市的发展提供了有益的借鉴和启示。
C基础day9 思维导图
内容概要:本文档详细介绍了使用Simulink进行两个物理问题的仿真建模。第一个任务是模拟一个球体从高空落下的终端速度,通过建立重力与空气阻力的平衡模型,利用MATLAB代码构建Simulink模型,最终计算出终端速度。第二个任务是基于提供的加速度数据,通过两次积分计算物体的速度和位置,同样使用MATLAB代码实现了Simulink模型。每个任务都包含了详细的数学公式推导、参数设置以及Simulink模块的具体连接方法。仿真结果显示,终端速度约为53.6 m/s,而1秒后的速度和位置则取决于输入的加速度数据。 适合人群:对Simulink仿真工具感兴趣的工程技术人员、科研工作者以及相关专业的学生。 使用场景及目标:适用于需要进行物理系统仿真、信号处理的研究项目或教学实验。主要目标是帮助读者掌握Simulink的基本操作和应用技巧,同时加深对物理现象的理解。 其他说明:文中提供了完整的MATLAB代码,方便读者直接复制并在自己的环境中运行测试。此外,还给出了详细的中文注释,有助于初学者更好地理解各个步骤的功能和意义。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
音乐_安卓开发_本地音乐_播放器应用μsic_1742860435.zip
Lightweight and Efficient: The backbone of the TTS Diffusion Transformer has only 0.45B parameters. Ultra High-Quality Voice Cloning: See the demo video below! We also report results of recent TTS models on the Seed test sets in the following table. Bilingual Support: Supports both Chinese and English, and code-switching. Controllable: Supports accent intensity control and fine-grained pronunciation/duration adjustment (coming soon).
博客_ionic20_移动端_应用开发模板_1742847485.zip
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
内容概要:本文详细介绍了复现论文《Fair Semi-distributed Resource Allocation Scheme over Relay-Enhanced OFDMA Networks》的代码实现。主要内容包括系统模型构建(定义基站、中继站、移动终端及其关联关系)、资源分配算法(半分布式资源分配、改进的两阶段资源分配)和公平性调度机制(吞吐量计算、效用函数)。此外,还进行了仿真实验,对比了所提方案与集中式方案和机会主义方案在吞吐量、公平性和反馈开销方面的性能表现。最后,通过随机分布场景下的仿真进一步验证了方案的有效性和实际部署的可行性。 适合人群:通信工程专业研究人员、无线网络优化工程师、对OFDMA技术和资源分配算法感兴趣的学者和技术人员。 使用场景及目标:适用于研究和开发中继增强的OFDMA网络资源分配算法,旨在提高系统的吞吐量和公平性,降低反馈开销。目标是在大规模网络环境中实现高效、公平的资源分配。 其他说明:文中提供了详细的代码实现步骤和仿真结果,有助于读者深入理解算法原理并进行实验验证。
2025大模型训练性能瓶颈定位流程案例
内容概要:本文档提供了20道蓝桥杯Python竞赛真题及其详细解答,涉及质因数分解、分数计算、特别数求和、数字三角形、约数个数、草的生长模拟、工作时长计算、互质数统计、阶乘和判定、公因数匹配、直线计算、分糖果、矩阵填充、旅行计划优化、阶乘末尾零计数、最长递增子序列、最长公共子序列、最长回文子串、最长公共前缀和最长公共后缀等多个经典算法问题。每个题目都附有完整的代码实现和解释,帮助参赛者深入理解和掌握相关知识点。 适合人群:准备参加蓝桥杯或其他编程竞赛的学生和程序员,尤其是对Python编程有一定基础并希望提高算法能力的人群。 使用场景及目标:①作为赛前复习资料,巩固基础知识;②通过实际编程练习提升算法思维和解决问题的能力;③熟悉竞赛常见题型,增强应对复杂问题的信心。 其他说明:文档不仅提供了解答思路,还包含了具体的代码实现,有助于读者更好地理解和应用所学知识。同时,这些问题覆盖了多种数据结构和算法思想,能够全面锻炼编程技能。
网络工程师(中级)是软考(计算机技术与软件专业技术资格考试)的一部分,主要考察计算机网络基础、网络安全、网络管理、操作系统、数据库等内容,考试分为上午的基础知识选择题和下午的案例分析题。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。