- 浏览: 980899 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
AtomicInteger解析:http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
CyclicBarrier详解:http://donald-draper.iteye.com/blog/2360812
尝试获取锁,可中断
//AQS
tryAcquireShared放在AQS中为空体,实际为信号量中的内部SYNC中的方法,上面
我们已经看过。这个方法我们在前面有说过,这里简单说一下,当尝试获取锁,失败,添加到等待队列自旋等待,尝试获取锁。
//AQS
以不可中断方式,获取共享锁
//AQS
//Semaphore
尝试获取锁时,是以非公平的方式,抢占锁
尝试获取共享锁,当超时,还没有获取锁,则取消锁的获取
以可中断方式,获取permits个许可
以非可中断方式,获取permits个许可
以非公平方式,尝试获取permits个许可
尝试获取permits个许可,当超时,还没有获取锁,则取消锁的获取
//释放锁
//AQS
//Semaphore
//释放permits个许可
总结:
信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。信号量中的锁有公平和非公平方式,这个和我们前面讲的可重入锁,有点相似。非公平方式,获取锁,首先检查锁是否可用,可用则获取,公平锁获取锁,先检查有没有前驱节点,有则等待,没有则获取。获取锁的方法,有多种,有公平的和非公平,则个要看需求。
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
CyclicBarrier详解:http://donald-draper.iteye.com/blog/2360812
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.*; import java.util.concurrent.locks.*; import java.util.concurrent.atomic.*; /** * A counting semaphore. Conceptually, a semaphore maintains a set of * permits. Each {@link #acquire} blocks if necessary until a permit is * available, and then takes it. Each {@link #release} adds a permit, * potentially releasing a blocking acquirer. * However, no actual permit objects are used; the {@code Semaphore} just * keeps a count of the number available and acts accordingly. * 一个计算的信号量,维持着一个许可集。如果许可集中,无许可,线程acquire, 将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地 释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。 * <p>Semaphores are often used to restrict the number of threads than can * access some (physical or logical) resource. For example, here is * a class that uses a semaphore to control access to a pool of items: * <pre> 信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。 * class Pool { * private static final int MAX_AVAILABLE = 100; * private final Semaphore available = new Semaphore(MAX_AVAILABLE, true); * * public Object getItem() throws InterruptedException { * available.acquire(); * return getNextAvailableItem(); * } * * public void putItem(Object x) { * if (markAsUnused(x)) * available.release(); * } * * // Not a particularly efficient data structure; just for demo * * protected Object[] items = ... whatever kinds of items being managed * protected boolean[] used = new boolean[MAX_AVAILABLE]; * * protected synchronized Object getNextAvailableItem() { * for (int i = 0; i < MAX_AVAILABLE; ++i) { * if (!used[i]) { * used[i] = true; * return items[i]; * } * } * return null; // not reached * } * * protected synchronized boolean markAsUnused(Object item) { * for (int i = 0; i < MAX_AVAILABLE; ++i) { * if (item == items[i]) { * if (used[i]) { * used[i] = false; * return true; * } else * return false; * } * } * return false; * } * * } * </pre> * * <p>Before obtaining an item each thread must acquire a permit from * the semaphore, guaranteeing that an item is available for use. When * the thread has finished with the item it is returned back to the * pool and a permit is returned to the semaphore, allowing another * thread to acquire that item. Note that no synchronization lock is * held when {@link #acquire} is called as that would prevent an item * from being returned to the pool. The semaphore encapsulates the * synchronization needed to restrict access to the pool, separately * from any synchronization needed to maintain the consistency of the * pool itself. * 在线程从对象池,获取对象前,必须从信号量获取许可,用于保证对象时可利用的。 当线程任务完成时,对象将会被放回池中,释放许可,同时允许其他线程获取对象。 如果线程acquire,但没有持有同步锁,则对象将返回池中。信号量中的同步器需要严格的 控制对象池的访问,与其他维持对象池一致性的同步器相互独立。 * <p>A semaphore initialized to one, and which is used such that it * only has at most one permit available, can serve as a mutual * exclusion lock. This is more commonly known as a [i]binary * semaphore[/i], because it only has two states: one permit * available, or zero permits available. When used in this way, the * binary semaphore has the property (unlike many {@link Lock} * implementations), that the "lock" can be released by a * thread other than the owner (as semaphores have no notion of * ownership). This can be useful in some specialized contexts, such * as deadlock recovery. * 当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。 这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示 无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。 这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。 * <p> The constructor for this class optionally accepts a * [i]fairness[/i] parameter. When set false, this class makes no * guarantees about the order in which threads acquire permits. In * particular, [i]barging[/i] is permitted, that is, a thread * invoking {@link #acquire} can be allocated a permit ahead of a * thread that has been waiting - logically the new thread places itself at * the head of the queue of waiting threads. When fairness is set true, the * semaphore guarantees that threads invoking any of the {@link * #acquire() acquire} methods are selected to obtain permits in the order in * which their invocation of those methods was processed * (first-in-first-out; FIFO). Note that FIFO ordering necessarily * applies to specific internal points of execution within these * methods. So, it is possible for one thread to invoke * {@code acquire} before another, but reach the ordering point after * the other, and similarly upon return from the method. * Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not * honor the fairness setting, but will take any permits that are * available. * 信号量的构造函数,中带一个公平性参数。当设置为false时,信号量不能够保证,线程 能够按顺序获取许可。在特殊情况下,barging是允许的,由于一个新线程将自己放在队列的 头部,当调用acquire时,可能会在已经等待线程,前面获取许可。当为公平true时, 信号量保证,线程按照,他们获取信号的顺序,给予许可。FIFO队列中,并不能保证却对的 顺序,一个线程可能调用获取信号量,在另一线程前面,但另一个线程先到达顺序点。 tryAcquire方法,不能保证绝对的公平性, 当许可可利用,则许可将被分配。 * <p>Generally, semaphores used to control resource access should be * initialized as fair, to ensure that no thread is starved out from * accessing a resource. When using semaphores for other kinds of * synchronization control, the throughput advantages of non-fair * ordering often outweigh fairness considerations. * 信号量,用于控制资源的访问时,应该初始化为公平锁,以保证不会有线程,几乎 访问不到资源。当信号量用于其他场景时,非公平锁,可以提高吞吐量。 * <p>This class also provides convenience methods to {@link * #acquire(int) acquire} and {@link #release(int) release} multiple * permits at a time. Beware of the increased risk of indefinite * postponement when these methods are used without fairness set true. 信号量允许一次获取或释放多个信号量。当这些方法以非公平锁的方式使用,将会 增加不确定性的风险 * * <p>Memory consistency effects: Actions in a thread prior to calling * a "release" method such as {@code release()} * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url] * actions following a successful "acquire" method such as {@code acquire()} * in another thread. * 内存一致性:一个线程释放锁动作,发生在另一个线程成功获取锁的前面。 * @since 1.5 * @author Doug Lea * */ public class Semaphore implements java.io.Serializable { private static final long serialVersionUID = -3222578661600680210L; /** All mechanics via AbstractQueuedSynchronizer subclass */ //内部同步锁,基于AQS实现 private final Sync sync; /** * Synchronization implementation for semaphore. Uses AQS state * to represent permits. Subclassed into fair and nonfair * versions. */ abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 1192457210091910933L; //以锁的状态来,来存储许可 Sync(int permits) { setState(permits); } final int getPermits() { return getState(); } //非公平方式获取锁 final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; //如果,无许可可用,则返回,有,则CAS更新锁状态 if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } //释放共享锁 protected final boolean tryReleaseShared(int releases) { for (;;) { //释放的信号量,不能大于当前可用许可 int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); //CAS更新锁状态 if (compareAndSetState(current, next)) return true; } } //减少当前可用的许可 final void reducePermits(int reductions) { for (;;) { int current = getState(); int next = current - reductions; if (next > current) // underflow throw new Error("Permit count underflow"); if (compareAndSetState(current, next)) return; } } /** * Acquires and returns all permits that are immediately available. *获取返回当前以及可用的许可 * @return the number of permits acquired */ final int drainPermits() { for (;;) { int current = getState(); if (current == 0 || compareAndSetState(current, 0)) return current; } } } /** * NonFair version,非公平锁 */ static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } } /** * Fair version,公平锁 */ static final class FairSync extends Sync { private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { for (;;) { //先看有没有前驱,有则返回,获取信号失败,没有前驱,则尝试获取信号锁 if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } } //默认为非公平锁,许可必须为正值 public Semaphore(int permits) { sync = new NonfairSync(permits); } //带公平性参数的信号量,构造 public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits); } }
尝试获取锁,可中断
public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); }
//AQS
public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) //如果中断,则抛出中断异常 throw new InterruptedException(); //如果获取失败,则自旋 if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); } //待子类扩展 protected int tryAcquireShared(int arg) { throw new UnsupportedOperationException(); }
tryAcquireShared放在AQS中为空体,实际为信号量中的内部SYNC中的方法,上面
我们已经看过。这个方法我们在前面有说过,这里简单说一下,当尝试获取锁,失败,添加到等待队列自旋等待,尝试获取锁。
//AQS
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException { final Node node = addWaiter(Node.SHARED); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) cancelAcquire(node); } }
以不可中断方式,获取共享锁
public void acquireUninterruptibly() { sync.acquireShared(1); }
//AQS
/** * Acquires in shared uninterruptible mode. * @param arg the acquire argument */ 已共享非中断模式,获取锁 public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0) doAcquireShared(arg); } private void doAcquireShared(int arg) { final Node node = addWaiter(Node.SHARED); boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC if (interrupted) //关键在这,如果中断,则自中断,消除中断位 selfInterrupt(); failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } /** * Convenience method to interrupt current thread. */ private static void selfInterrupt() { Thread.currentThread().interrupt(); }
//Semaphore
尝试获取锁时,是以非公平的方式,抢占锁
public boolean tryAcquire() { return sync.nonfairTryAcquireShared(1) >= 0; }
尝试获取共享锁,当超时,还没有获取锁,则取消锁的获取
public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); }
以可中断方式,获取permits个许可
public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits); }
以非可中断方式,获取permits个许可
public void acquireUninterruptibly(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.acquireShared(permits); }
以非公平方式,尝试获取permits个许可
public boolean tryAcquire(int permits) { if (permits < 0) throw new IllegalArgumentException(); return sync.nonfairTryAcquireShared(permits) >= 0; }
尝试获取permits个许可,当超时,还没有获取锁,则取消锁的获取
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout)); }
//释放锁
public void release() { sync.releaseShared(1); }
//AQS
public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; } //唤醒后继节点线程 * Release action for shared mode -- signal successor and ensure * propagation. (Note: For exclusive mode, release just amounts * to calling unparkSuccessor of head if it needs signal.) */ private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
//Semaphore
//释放permits个许可
public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits); } /** * Returns the current number of permits available in this semaphore. * * <p>This method is typically used for debugging and testing purposes. * * @return the number of permits available in this semaphore */ //当前可用许可 public int availablePermits() { return sync.getPermits(); } /** * Acquires and returns all permits that are immediately available. *获取返回当前以及可用的许可 * @return the number of permits acquired */ public int drainPermits() { return sync.drainPermits(); } /** * Shrinks the number of available permits by the indicated * reduction. This method can be useful in subclasses that use * semaphores to track resources that become unavailable. This * method differs from {@code acquire} in that it does not block * waiting for permits to become available. * 减少当前可用的许可,这个方法在子类想要用信号量,追踪资源是否可用是 非常有用,此方法不会阻塞。 * @param reduction the number of permits to remove * @throws IllegalArgumentException if {@code reduction} is negative */ protected void reducePermits(int reduction) { if (reduction < 0) throw new IllegalArgumentException(); sync.reducePermits(reduction); } /** * Returns {@code true} if this semaphore has fairness set true. * * @return {@code true} if this semaphore has fairness set true */ public boolean isFair() { return sync instanceof FairSync; } /** * Queries whether any threads are waiting to acquire. Note that * because cancellations may occur at any time, a {@code true} * return does not guarantee that any other thread will ever * acquire. This method is designed primarily for use in * monitoring of the system state. * * @return {@code true} if there may be other threads waiting to * acquire the lock */ public final boolean hasQueuedThreads() { return sync.hasQueuedThreads(); } /** * Returns an estimate of the number of threads waiting to acquire. * The value is only an estimate because the number of threads may * change dynamically while this method traverses internal data * structures. This method is designed for use in monitoring of the * system state, not for synchronization control. * * @return the estimated number of threads waiting for this lock */ public final int getQueueLength() { return sync.getQueueLength(); } /** * Returns a collection containing threads that may be waiting to acquire. * Because the actual set of threads may change dynamically while * constructing this result, the returned collection is only a best-effort * estimate. The elements of the returned collection are in no particular * order. This method is designed to facilitate construction of * subclasses that provide more extensive monitoring facilities. * * @return the collection of threads */ protected Collection<Thread> getQueuedThreads() { return sync.getQueuedThreads(); }
总结:
信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。信号量中的锁有公平和非公平方式,这个和我们前面讲的可重入锁,有点相似。非公平方式,获取锁,首先检查锁是否可用,可用则获取,公平锁获取锁,先检查有没有前驱节点,有则等待,没有则获取。获取锁的方法,有多种,有公平的和非公平,则个要看需求。
发表评论
-
Executors解析
2017-04-07 14:38 1245ThreadPoolExecutor解析一(核心线程池数量、线 ... -
ScheduledThreadPoolExecutor解析三(关闭线程池)
2017-04-06 20:52 4451ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析二(任务调度)
2017-04-06 12:56 2117ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析一(调度任务,任务队列)
2017-04-04 22:59 4986Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析四(线程池关闭)
2017-04-03 23:02 9098Executor接口的定义:http: ... -
ThreadPoolExecutor解析三(线程池执行提交任务)
2017-04-03 12:06 6080Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析二(线程工厂、工作线程,拒绝策略等)
2017-04-01 17:12 3036Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析一(核心线程池数量、线程池状态等)
2017-03-31 22:01 20514Executor接口的定义:http://donald-dra ... -
ScheduledExecutorService接口定义
2017-03-29 12:53 1502Executor接口的定义:http://donald-dra ... -
AbstractExecutorService解析
2017-03-29 08:27 1071Executor接口的定义:http: ... -
ExecutorCompletionService解析
2017-03-28 14:27 1586Executor接口的定义:http://donald-dra ... -
CompletionService接口定义
2017-03-28 12:39 1061Executor接口的定义:http://donald-dra ... -
FutureTask解析
2017-03-27 12:59 1324package java.util.concurrent; ... -
Future接口定义
2017-03-26 09:40 1193/* * Written by Doug Lea with ... -
ExecutorService接口定义
2017-03-25 22:14 1159Executor接口的定义:http://donald-dra ... -
Executor接口的定义
2017-03-24 23:24 1672package java.util.concurrent; ... -
简单测试线程池拒绝执行任务策略
2017-03-24 22:37 2025线程池多余任务的拒绝执行策略有四中,分别是直接丢弃任务Disc ... -
JAVA集合类简单综述
2017-03-23 22:51 920Queue接口定义:http://donald-draper. ... -
DelayQueue解析
2017-03-23 11:00 1733Queue接口定义:http://donald-draper. ... -
SynchronousQueue解析下-TransferQueue
2017-03-22 22:20 2133Queue接口定义:http://donald-draper. ...
相关推荐
Semaphore是Java并发编程中的一种重要同步工具,它来源于操作系统中的信号量概念,主要用于限制对共享资源的并发访问数量。在Java中,Semaphore类位于`java.util.concurrent`包下,提供了控制多个线程对公共资源访问...
并发工具类Semaphore详解.mp4 并发工具类Exchanger详解.mp4 CountDownLatch,CyclicBarrier,Semaphore源码解析.mp4 提前完成任务之FutureTask使用.mp4 Future设计模式实现(实现类似于JDK提供的Future).mp4 Future...
第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...
第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...
第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...
第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...
Java多线程编程是开发高并发应用的关键技术之一,Semaphore工具是Java并发包(java.util.concurrent)中的一个重要组件,用于控制同时访问特定资源的线程数量。本篇将深入讲解Semaphore的基本概念、工作原理以及如何...
Semaphore:可理解为允许线程执行信号的池子,池子中放入多少个信号就允许多少线程同时执行。 private static void MultiThreadSynergicWithSemaphore() { //0表示创建Semaphore时,拥有可用信号量数值 //1表示...
【Semaphore详解】Semaphore是Java并发包`java.util.concurrent`中的一个工具类,它主要用于控制并发访问的线程数量。Semaphore可以被理解为一种资源的许可证,每个许可证代表了一个可访问的资源实例。线程在执行前...
"Java 并发工具类详解" Java 并发工具类是 Java 并发编程的核心组件之一,提供了多种同步结构和并发容器,帮助开发者创建高效、可靠的并发程序。本文将详细介绍 Java 并发工具类的四大类:CountDownLatch、...
#### PV操作详解:实现互斥与同步 PV操作是信号量的核心,用于实现对资源的安全访问。“P”操作代表“试用”,在访问共享资源前尝试获取信号量,如果成功,则继续执行;否则,进程会被阻塞。“V”操作则表示“释放...
Java并发编程之Semaphore(信号量)详解及实例 在 Java 中,Semaphore(信号量)是一种非常有用的并发编程工具,主要用于控制访问某些资源的线程数目。下面,我们将详细介绍 Semaphore 的原理、实现和实例。 ...
Java并发编程Semaphore计数信号量详解 Java并发编程中,Semaphore(信号量)是一种高效的同步机制,允许一定数量的线程访问某个资源。在本文中,我们将详细介绍Java并发编程Semaphore计数信号量的工作原理和应用。 ...
Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解 Java并发编程是Java语言中的一种高级技术,用于处理多线程编程中的同步问题。Java 1.5中引入了几个高效的辅助类,包括CountDownLatch、...
**JAVA 多线程之信号量Semaphore实例详解** 在Java多线程编程中,信号量Semaphore是一种非常重要的同步工具,用于控制对公共资源的访问。Semaphore类位于`java.util.concurrent`包下,它允许我们限制同时访问特定...
8. **多线程编程**:VC++支持多线程编程,可以利用线程同步机制(如mutex、semaphore)处理并发问题。 9. **文件I/O操作**:学习如何使用fstream类进行文件的读写操作,以及如何处理文件流。 10. **WinAPI调用**:...
VC++提供了多种同步机制,如互斥量(mutex)、事件对象(event)、信号量(semaphore)等,用于控制对共享资源的访问,防止竞态条件和死锁的发生。 6. **Socket编程**:Socket是网络通信的基础,用于建立和维护...