`
Donald_Draper
  • 浏览: 980899 次
社区版块
存档分类
最新评论

Semaphore详解

    博客分类:
  • JUC
阅读更多
AtomicInteger解析:http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
CyclicBarrier详解:http://donald-draper.iteye.com/blog/2360812
/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;

/**
 * A counting semaphore.  Conceptually, a semaphore maintains a set of
 * permits.  Each {@link #acquire} blocks if necessary until a permit is
 * available, and then takes it.  Each {@link #release} adds a permit,
 * potentially releasing a blocking acquirer.
 * However, no actual permit objects are used; the {@code Semaphore} just
 * keeps a count of the number available and acts accordingly.
 *
 一个计算的信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
 将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
 释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。
 * <p>Semaphores are often used to restrict the number of threads than can
 * access some (physical or logical) resource. For example, here is
 * a class that uses a semaphore to control access to a pool of items:
 * <pre>
 信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。
 * class Pool {
 *   private static final int MAX_AVAILABLE = 100;
 *   private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
 *
 *   public Object getItem() throws InterruptedException {
 *     available.acquire();
 *     return getNextAvailableItem();
 *   }
 *
 *   public void putItem(Object x) {
 *     if (markAsUnused(x))
 *       available.release();
 *   }
 *
 *   // Not a particularly efficient data structure; just for demo
 *
 *   protected Object[] items = ... whatever kinds of items being managed
 *   protected boolean[] used = new boolean[MAX_AVAILABLE];
 *
 *   protected synchronized Object getNextAvailableItem() {
 *     for (int i = 0; i < MAX_AVAILABLE; ++i) {
 *       if (!used[i]) {
 *          used[i] = true;
 *          return items[i];
 *       }
 *     }
 *     return null; // not reached
 *   }
 *
 *   protected synchronized boolean markAsUnused(Object item) {
 *     for (int i = 0; i < MAX_AVAILABLE; ++i) {
 *       if (item == items[i]) {
 *          if (used[i]) {
 *            used[i] = false;
 *            return true;
 *          } else
 *            return false;
 *       }
 *     }
 *     return false;
 *   }
 *
 * }
 * </pre>
 *
 * <p>Before obtaining an item each thread must acquire a permit from
 * the semaphore, guaranteeing that an item is available for use. When
 * the thread has finished with the item it is returned back to the
 * pool and a permit is returned to the semaphore, allowing another
 * thread to acquire that item.  Note that no synchronization lock is
 * held when {@link #acquire} is called as that would prevent an item
 * from being returned to the pool.  The semaphore encapsulates the
 * synchronization needed to restrict access to the pool, separately
 * from any synchronization needed to maintain the consistency of the
 * pool itself.
 *
在线程从对象池,获取对象前,必须从信号量获取许可,用于保证对象时可利用的。
当线程任务完成时,对象将会被放回池中,释放许可,同时允许其他线程获取对象。
如果线程acquire,但没有持有同步锁,则对象将返回池中。信号量中的同步器需要严格的
控制对象池的访问,与其他维持对象池一致性的同步器相互独立。


 * <p>A semaphore initialized to one, and which is used such that it
 * only has at most one permit available, can serve as a mutual
 * exclusion lock.  This is more commonly known as a [i]binary
 * semaphore[/i], because it only has two states: one permit
 * available, or zero permits available.  When used in this way, the
 * binary semaphore has the property (unlike many {@link Lock}
 * implementations), that the "lock" can be released by a
 * thread other than the owner (as semaphores have no notion of
 * ownership).  This can be useful in some specialized contexts, such
 * as deadlock recovery.
 *
当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。
这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示
无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。


 * <p> The constructor for this class optionally accepts a
 * [i]fairness[/i] parameter. When set false, this class makes no
 * guarantees about the order in which threads acquire permits. In
 * particular, [i]barging[/i] is permitted, that is, a thread
 * invoking {@link #acquire} can be allocated a permit ahead of a
 * thread that has been waiting - logically the new thread places itself at
 * the head of the queue of waiting threads. When fairness is set true, the
 * semaphore guarantees that threads invoking any of the {@link
 * #acquire() acquire} methods are selected to obtain permits in the order in
 * which their invocation of those methods was processed
 * (first-in-first-out; FIFO). Note that FIFO ordering necessarily
 * applies to specific internal points of execution within these
 * methods.  So, it is possible for one thread to invoke
 * {@code acquire} before another, but reach the ordering point after
 * the other, and similarly upon return from the method.
 * Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not
 * honor the fairness setting, but will take any permits that are
 * available.
 *
 信号量的构造函数,中带一个公平性参数。当设置为false时,信号量不能够保证,线程
 能够按顺序获取许可。在特殊情况下,barging是允许的,由于一个新线程将自己放在队列的
 头部,当调用acquire时,可能会在已经等待线程,前面获取许可。当为公平true时,
 信号量保证,线程按照,他们获取信号的顺序,给予许可。FIFO队列中,并不能保证却对的
 顺序,一个线程可能调用获取信号量,在另一线程前面,但另一个线程先到达顺序点。
 tryAcquire方法,不能保证绝对的公平性, 当许可可利用,则许可将被分配。



 * <p>Generally, semaphores used to control resource access should be
 * initialized as fair, to ensure that no thread is starved out from
 * accessing a resource. When using semaphores for other kinds of
 * synchronization control, the throughput advantages of non-fair
 * ordering often outweigh fairness considerations.
 *
 信号量,用于控制资源的访问时,应该初始化为公平锁,以保证不会有线程,几乎
 访问不到资源。当信号量用于其他场景时,非公平锁,可以提高吞吐量。

 * <p>This class also provides convenience methods to {@link
 * #acquire(int) acquire} and {@link #release(int) release} multiple
 * permits at a time.  Beware of the increased risk of indefinite
 * postponement when these methods are used without fairness set true.


 信号量允许一次获取或释放多个信号量。当这些方法以非公平锁的方式使用,将会
 增加不确定性的风险
 *
 * <p>Memory consistency effects: Actions in a thread prior to calling
 * a "release" method such as {@code release()}
 * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url]
 * actions following a successful "acquire" method such as {@code acquire()}
 * in another thread.
 *
 内存一致性:一个线程释放锁动作,发生在另一个线程成功获取锁的前面。
 * @since 1.5
 * @author Doug Lea
 *
 */

public class Semaphore implements java.io.Serializable {
    private static final long serialVersionUID = -3222578661600680210L;
    /** All mechanics via AbstractQueuedSynchronizer subclass */
    //内部同步锁,基于AQS实现
    private final Sync sync;

    /**
     * Synchronization implementation for semaphore.  Uses AQS state
     * to represent permits. Subclassed into fair and nonfair
     * versions.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;
        //以锁的状态来,来存储许可
        Sync(int permits) {
            setState(permits);
        }

        final int getPermits() {
            return getState();
        }
        //非公平方式获取锁
        final int nonfairTryAcquireShared(int acquires) {
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
		//如果,无许可可用,则返回,有,则CAS更新锁状态
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
        //释放共享锁
        protected final boolean tryReleaseShared(int releases) {
            for (;;) {
	        //释放的信号量,不能大于当前可用许可
                int current = getState();
                int next = current + releases;
                if (next < current) // overflow
                    throw new Error("Maximum permit count exceeded");
		 //CAS更新锁状态
                if (compareAndSetState(current, next))
                    return true;
            }
        }
        //减少当前可用的许可
        final void reducePermits(int reductions) {
            for (;;) {
                int current = getState();
                int next = current - reductions;
                if (next > current) // underflow
                    throw new Error("Permit count underflow");
                if (compareAndSetState(current, next))
                    return;
            }
        }
        /**
     * Acquires and returns all permits that are immediately available.
     *获取返回当前以及可用的许可
     * @return the number of permits acquired
     */
        final int drainPermits() {
            for (;;) {
                int current = getState();
                if (current == 0 || compareAndSetState(current, 0))
                    return current;
            }
        }
    }
     /**
     * NonFair version,非公平锁
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -2694183684443567898L;

        NonfairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            return nonfairTryAcquireShared(acquires);
        }
    }

    /**
     * Fair version,公平锁
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = 2014338818796000944L;

        FairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            for (;;) {
	        //先看有没有前驱,有则返回,获取信号失败,没有前驱,则尝试获取信号锁
                if (hasQueuedPredecessors())
                    return -1;
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
    }
    //默认为非公平锁,许可必须为正值
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }
    //带公平性参数的信号量,构造
     public Semaphore(int permits, boolean fair) {
        sync = fair ? new FairSync(permits) : new NonfairSync(permits);
    }
}

尝试获取锁,可中断
public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

//AQS
public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
	    //如果中断,则抛出中断异常
            throw new InterruptedException();
	    //如果获取失败,则自旋
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
//待子类扩展
 protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }

tryAcquireShared放在AQS中为空体,实际为信号量中的内部SYNC中的方法,上面
我们已经看过。这个方法我们在前面有说过,这里简单说一下,当尝试获取锁,失败,添加到等待队列自旋等待,尝试获取锁。
//AQS
 private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

以不可中断方式,获取共享锁
public void acquireUninterruptibly() {
        sync.acquireShared(1);
    }

//AQS
 
 /**
     * Acquires in shared uninterruptible mode.
     * @param arg the acquire argument
     */
已共享非中断模式,获取锁
 public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
      private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
			    //关键在这,如果中断,则自中断,消除中断位
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
  /**
     * Convenience method to interrupt current thread.
     */
    private static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

//Semaphore
尝试获取锁时,是以非公平的方式,抢占锁
 
  public boolean tryAcquire() {
        return sync.nonfairTryAcquireShared(1) >= 0;
    }

尝试获取共享锁,当超时,还没有获取锁,则取消锁的获取
 public boolean tryAcquire(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

以可中断方式,获取permits个许可
 public void acquire(int permits) throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        sync.acquireSharedInterruptibly(permits);
    }

以非可中断方式,获取permits个许可
public void acquireUninterruptibly(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        sync.acquireShared(permits);
    }

以非公平方式,尝试获取permits个许可
public boolean tryAcquire(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        return sync.nonfairTryAcquireShared(permits) >= 0;
    }

尝试获取permits个许可,当超时,还没有获取锁,则取消锁的获取
  public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
        throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
    }

//释放锁
 public void release() {
        sync.releaseShared(1);
    }

//AQS
 public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
//唤醒后继节点线程
  * Release action for shared mode -- signal successor and ensure
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     */
    private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

//Semaphore
//释放permits个许可
 public void release(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        sync.releaseShared(permits);
    }
  /**
     * Returns the current number of permits available in this semaphore.
     *
     * <p>This method is typically used for debugging and testing purposes.
     *
     * @return the number of permits available in this semaphore
     */
    //当前可用许可
    public int availablePermits() {
        return sync.getPermits();
    }

    /**
     * Acquires and returns all permits that are immediately available.
     *获取返回当前以及可用的许可
     * @return the number of permits acquired
     */
    public int drainPermits() {
        return sync.drainPermits();
    }

    /**
     * Shrinks the number of available permits by the indicated
     * reduction. This method can be useful in subclasses that use
     * semaphores to track resources that become unavailable. This
     * method differs from {@code acquire} in that it does not block
     * waiting for permits to become available.
     * 减少当前可用的许可,这个方法在子类想要用信号量,追踪资源是否可用是
     非常有用,此方法不会阻塞。
     * @param reduction the number of permits to remove
     * @throws IllegalArgumentException if {@code reduction} is negative
     */
    protected void reducePermits(int reduction) {
        if (reduction < 0) throw new IllegalArgumentException();
        sync.reducePermits(reduction);
    }

    /**
     * Returns {@code true} if this semaphore has fairness set true.
     *
     * @return {@code true} if this semaphore has fairness set true
     */
    public boolean isFair() {
        return sync instanceof FairSync;
    }

    /**
     * Queries whether any threads are waiting to acquire. Note that
     * because cancellations may occur at any time, a {@code true}
     * return does not guarantee that any other thread will ever
     * acquire.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @return {@code true} if there may be other threads waiting to
     *         acquire the lock
     */
    public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }

    /**
     * Returns an estimate of the number of threads waiting to acquire.
     * The value is only an estimate because the number of threads may
     * change dynamically while this method traverses internal data
     * structures.  This method is designed for use in monitoring of the
     * system state, not for synchronization control.
     *
     * @return the estimated number of threads waiting for this lock
     */
    public final int getQueueLength() {
        return sync.getQueueLength();
    }

    /**
     * Returns a collection containing threads that may be waiting to acquire.
     * Because the actual set of threads may change dynamically while
     * constructing this result, the returned collection is only a best-effort
     * estimate.  The elements of the returned collection are in no particular
     * order.  This method is designed to facilitate construction of
     * subclasses that provide more extensive monitoring facilities.
     *
     * @return the collection of threads
     */
    protected Collection<Thread> getQueuedThreads() {
        return sync.getQueuedThreads();
    }

总结:

信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。信号量中的锁有公平和非公平方式,这个和我们前面讲的可重入锁,有点相似。非公平方式,获取锁,首先检查锁是否可用,可用则获取,公平锁获取锁,先检查有没有前驱节点,有则等待,没有则获取。获取锁的方法,有多种,有公平的和非公平,则个要看需求。
1
0
分享到:
评论

相关推荐

    30 限量供应,不好意思您来晚了—Semaphore详解.pdf

    Semaphore是Java并发编程中的一种重要同步工具,它来源于操作系统中的信号量概念,主要用于限制对共享资源的并发访问数量。在Java中,Semaphore类位于`java.util.concurrent`包下,提供了控制多个线程对公共资源访问...

    Java并发编程原理与实战

    并发工具类Semaphore详解.mp4 并发工具类Exchanger详解.mp4 CountDownLatch,CyclicBarrier,Semaphore源码解析.mp4 提前完成任务之FutureTask使用.mp4 Future设计模式实现(实现类似于JDK提供的Future).mp4 Future...

    龙果 java并发编程原理实战

    第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...

    Java 并发编程原理与实战视频

    第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...

    龙果java并发编程完整视频

    第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...

    java并发编程

    第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43...

    Java多线程Semaphore工具的使用详解.rar

    Java多线程编程是开发高并发应用的关键技术之一,Semaphore工具是Java并发包(java.util.concurrent)中的一个重要组件,用于控制同时访问特定资源的线程数量。本篇将深入讲解Semaphore的基本概念、工作原理以及如何...

    C#多线程之Semaphore用法详解

    Semaphore:可理解为允许线程执行信号的池子,池子中放入多少个信号就允许多少线程同时执行。 private static void MultiThreadSynergicWithSemaphore() { //0表示创建Semaphore时,拥有可用信号量数值 //1表示...

    通俗易懂学习java并发工具类-Semaphore,Exchanger

    【Semaphore详解】Semaphore是Java并发包`java.util.concurrent`中的一个工具类,它主要用于控制并发访问的线程数量。Semaphore可以被理解为一种资源的许可证,每个许可证代表了一个可访问的资源实例。线程在执行前...

    CountDownLatch、Semaphore等4大并发工具类详解

    "Java 并发工具类详解" Java 并发工具类是 Java 并发编程的核心组件之一,提供了多种同步结构和并发容器,帮助开发者创建高效、可靠的并发程序。本文将详细介绍 Java 并发工具类的四大类:CountDownLatch、...

    利用semaphore实现shm进程通信

    #### PV操作详解:实现互斥与同步 PV操作是信号量的核心,用于实现对资源的安全访问。“P”操作代表“试用”,在访问共享资源前尝试获取信号量,如果成功,则继续执行;否则,进程会被阻塞。“V”操作则表示“释放...

    Java并发编程之Semaphore(信号量)详解及实例

    Java并发编程之Semaphore(信号量)详解及实例 在 Java 中,Semaphore(信号量)是一种非常有用的并发编程工具,主要用于控制访问某些资源的线程数目。下面,我们将详细介绍 Semaphore 的原理、实现和实例。 ...

    Java并发编程Semaphore计数信号量详解

    Java并发编程Semaphore计数信号量详解 Java并发编程中,Semaphore(信号量)是一种高效的同步机制,允许一定数量的线程访问某个资源。在本文中,我们将详细介绍Java并发编程Semaphore计数信号量的工作原理和应用。 ...

    Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解

    Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解 Java并发编程是Java语言中的一种高级技术,用于处理多线程编程中的同步问题。Java 1.5中引入了几个高效的辅助类,包括CountDownLatch、...

    JAVA 多线程之信号量(Semaphore)实例详解

    **JAVA 多线程之信号量Semaphore实例详解** 在Java多线程编程中,信号量Semaphore是一种非常重要的同步工具,用于控制对公共资源的访问。Semaphore类位于`java.util.concurrent`包下,它允许我们限制同时访问特定...

    VC++深入详解 源码

    8. **多线程编程**:VC++支持多线程编程,可以利用线程同步机制(如mutex、semaphore)处理并发问题。 9. **文件I/O操作**:学习如何使用fstream类进行文件的读写操作,以及如何处理文件流。 10. **WinAPI调用**:...

    VC++深入详解code

    VC++提供了多种同步机制,如互斥量(mutex)、事件对象(event)、信号量(semaphore)等,用于控制对共享资源的访问,防止竞态条件和死锁的发生。 6. **Socket编程**:Socket是网络通信的基础,用于建立和维护...

Global site tag (gtag.js) - Google Analytics