- 浏览: 984341 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
AtomicInteger解析:http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
先看构造:
线程代broken处理
创建下一代
我们来看屏障等待
小节:
线程到达屏障点时,首先检查线程代,有没有broken,如果broken,
则抛出BrokenBarrierException,如果线程中断,则当前代broken,
重置共享锁状态,唤醒所有等待线程。如果上述条件不满足,则释放
count,判断是否当前代线程,是否都到达屏障点,如果是,判断action
是否为null,不为null,则执行action;当释放count,当前代线程,仍有在执行的,
自旋等待屏障点条件trip,如果是超时等待,则判断时间是否超时,超时则breakBarrier。
再看
与await基本相同,都是委托给dowait
总结:
屏障点思想,当每个线程完成任务时,自旋等待条件Condition trip,释放共享锁,count减1;当线程代的最后一个线程到达屏障点时,唤醒线程代中所有等待的线程,
如果有action,执行action,然后创建下一代线程。如果在线程代未结束之前,有等待线程中断或超时,则结束当前代,唤醒所有等待线程,重置count为parties。
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
package java.util.concurrent; import java.util.concurrent.locks.*; /** * A synchronization aid that allows a set of threads to all wait for * each other to reach a common barrier point. CyclicBarriers are * useful in programs involving a fixed sized party of threads that * must occasionally wait for each other. The barrier is called * [i]cyclic[/i] because it can be re-used after the waiting threads * are released. * 同步工具CyclicBarrier,一个集合线程,等待每一个线程达到共同的屏障点。 CyclicBarriers对一个复杂的线程集合必须互相等待完成任务,场景非常有用。 同步工具的屏障可以循环利用,因为在所有等待线程释放锁时,他可以被重新使用。 * <p>A <tt>CyclicBarrier</tt> supports an optional {@link Runnable} command * that is run once per barrier point, after the last thread in the party * arrives, but before any threads are released. * This [i]barrier action[/i] is useful * for updating shared-state before any of the parties continue. * CyclicBarrier的构造函数中,有一个带Runnable,在所有线程到达屏障点,并且共享锁没有完全释放, 这个功能,对于在其他线程继续执行任务前,更新共享状态非常有用。 * <p><b>Sample usage:</b> Here is an example of * using a barrier in a parallel decomposition design: * <pre> 简单的一个实例用,在并行的分解任务中,使用barrier * class Solver { * final int N; * final float[][] data; * final CyclicBarrier barrier; * * class Worker implements Runnable { * int myRow; * Worker(int row) { myRow = row; } * public void run() { * while (!done()) { * processRow(myRow); * * try { * barrier.await(); * } catch (InterruptedException ex) { * return; * } catch (BrokenBarrierException ex) { * return; * } * } * } * } * * public Solver(float[][] matrix) { * data = matrix; * N = matrix.length; * barrier = new CyclicBarrier(N, * new Runnable() { * public void run() { * mergeRows(...); * } * }); * for (int i = 0; i < N; ++i) * new Thread(new Worker(i)).start(); * * waitUntilDone(); * } * } * </pre> * Here, each worker thread processes a row of the matrix then waits at the * barrier until all rows have been processed. When all rows are processed * the supplied {@link Runnable} barrier action is executed and merges the * rows. If the merger * determines that a solution has been found then <tt>done()</tt> will return * <tt>true</tt> and each worker will terminate. 上述实例,描述的每个线程处理矩阵的每一行数据,当线程处理完一行数据时,等待其他线程处理完各自 的一行数据。当所有的线程处理完各自行数据时,屏障点线程Runnable,执行合并矩阵的行数据。 当屏障点线程Runnable,决定执行合并是,每个线程的done函数返回true,结束每个线程工作。 * <p>If the barrier action does not rely on the parties being suspended when * it is executed, then any of the threads in the party could execute that * action when it is released. To facilitate this, each invocation of * {@link #await} returns the arrival index of that thread at the barrier. * You can then choose which thread should execute the barrier action, for * example: 屏障点action动作线程的执行,不能依赖于组线程中将要暂定的线程,分组中的每一个线程,都可以 执行action,在共享锁被释放之前。为了优化action的执行,我们可以利用,在每个线程调用await方法时, 返回线程到达屏障点的index,来决定,那个线程执行屏障动作。 * <pre> if (barrier.await() == 0) { //最后一个到达屏障点的线程,执行屏障action * // log the completion of this iteration * }</pre> * * <p>The <tt>CyclicBarrier</tt> uses an all-or-none breakage model * for failed synchronization attempts: If a thread leaves a barrier * point prematurely because of interruption, failure, or timeout, all * other threads waiting at that barrier point will also leave * abnormally via {@link BrokenBarrierException} (or * {@link InterruptedException} if they too were interrupted at about * the same time). * CyclicBarrier对于失败同步的尝试,用all-or-none breakage model: 如果一个线程,因为中断,失败,超时,永久的离开屏障点,那么其他在屏障点等待的线程, 通过BrokenBarrierException,abnormally离开。 * <p>Memory consistency effects: Actions in a thread prior to calling * {@code await()} * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url] * actions that are part of the barrier action, which in turn * <i>happen-before</i> actions following a successful return from the * corresponding {@code await()} in other threads. * 内存一致性:actions优先call await函数,这个基于内存可见机制-happen-before法则。 屏障点的分组线程,返回happen-before,协调分组线程工作的线程,await的成功返回。 * @since 1.5 * @see CountDownLatch * * @author Doug Lea */ public class CyclicBarrier { /** * Each use of the barrier is represented as a generation instance. * The generation changes whenever the barrier is tripped, or * is reset. There can be many generations associated with threads * using the barrier - due to the non-deterministic way the lock * may be allocated to waiting threads - but only one of these * can be active at a time (the one to which <tt>count</tt> applies) * and all the rest are either broken or tripped. * There need not be an active generation if there has been a break * but no subsequent reset. */ 每次屏障点,表示一代实例。当屏障点被打开或者重置时,generation将会改变。 由于锁以不确定的方式,分配给等待线程,线程可以多代屏障点的方式,使用barrier。 如果线程组存在break,并且没有reset,则不需要激活一代。 Generation可以这么理解,当有线程有多个分组,一个分组执行完,执行下一组;每一组 我们可以理解为Generation,当线程组出现break,且没有reset,则Generation不会被激活。 private static class Generation { boolean broken = false; } /** The lock for guarding barrier entry */ 屏障点保护锁 private final ReentrantLock lock = new ReentrantLock(); /** Condition to wait on until tripped */ 条件等待,直到所有的线程打开锁, private final Condition trip = lock.newCondition(); /** The number of parties */ 共享锁数量 private final int parties; /* The command to run when tripped */ 障碍点执行的命令 private final Runnable barrierCommand; /** The current generation */ 当前代 private Generation generation = new Generation(); /** * Number of parties still waiting. Counts down from parties to 0 * on each generation. It is reset to parties on each new * generation or when broken. */ 表示分组中,还有多少个在等待。在每一代,count从parties to 0。 在每一次创建新生代中或broken时,count重置为parties private int count; }
先看构造:
/** * Creates a new <tt>CyclicBarrier</tt> that will trip when the * given number of parties (threads) are waiting upon it, and which * will execute the given barrier action when the barrier is tripped, * performed by the last thread entering the barrier. *常见一个屏障点,当所有parties线程在等待时,将会打开,同时最后一个进入 屏障点的线程,将会执行barrierAction。 * @param parties the number of threads that must invoke {@link #await} * before the barrier is tripped * @param barrierAction the command to execute when the barrier is * tripped, or {@code null} if there is no action * @throws IllegalArgumentException if {@code parties} is less than 1 */ public CyclicBarrier(int parties, Runnable barrierAction) { if (parties <= 0) throw new IllegalArgumentException(); this.parties = parties; this.count = parties; this.barrierCommand = barrierAction; } /** * Creates a new <tt>CyclicBarrier</tt> that will trip when the * given number of parties (threads) are waiting upon it, and * does not perform a predefined action when the barrier is tripped. * * @param parties the number of threads that must invoke {@link #await} * before the barrier is tripped * @throws IllegalArgumentException if {@code parties} is less than 1 */ public CyclicBarrier(int parties) { this(parties, null); }
线程代broken处理
/** * Sets current barrier generation as broken and wakes up everyone. * Called only while holding lock. */ 当线程持有锁,设置当前线程代broken,唤醒当前代线程 private void breakBarrier() { // generation.broken = true; //重置共享锁状态 count = parties; //唤醒所有在屏障点,等待的线程 trip.signalAll(); }
创建下一代
/** * Updates state on barrier trip and wakes up everyone. * Called only while holding lock. */ 线程持有锁,更新屏障点状态,唤醒所有等待,线程 private void nextGeneration() { // signal completion of last generation //唤醒上一代,完成的线程 trip.signalAll(); // set up next generation //重置共享锁状态 count = parties; //创建下一代 generation = new Generation(); } }
我们来看屏障等待
/** * Waits until all {@linkplain #getParties parties} have invoked * <tt>await</tt> on this barrier. * 等待所享有的线程到达屏障点 * <p>If the current thread is not the last to arrive then it is * disabled for thread scheduling purposes and lies dormant until * one of the following things happens: 当线程不是最后一个到达屏障点,线程将会不会被调度,直到以下情况发生 * [list] * <li>The last thread arrives; or最后一个线程到达屏障点 * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or其他线程中断当前线程 * <li>Some other thread {@linkplain Thread#interrupt interrupts} * one of the other waiting threads; or其他等待线程,被中断 * <li>Some other thread times out while waiting for barrier; or * <li>Some other thread invokes {@link #reset} on this barrier. * [/list] *一些线程等待屏障点超时,或其他以下线程调用reset * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. 当前线程带着中断状态,在等待屏障点,当中断异常抛出时,当前线程中断消除。 * <p>If the barrier is {@link #reset} while any thread is waiting, * or if the barrier {@linkplain #isBroken is broken} when * <tt>await</tt> is invoked, or while any thread is waiting, then * {@link BrokenBarrierException} is thrown. *当其他线程在等待,如果屏障点被重置,或broke,则抛出BrokenBarrierException * <p>If any thread is {@linkplain Thread#interrupt interrupted} while waiting, * then all other waiting threads will throw * {@link BrokenBarrierException} and the barrier is placed in the broken * state. *在等待的过程中,如果其他线程中断,则抛出BrokenBarrierException,屏障点 设置为broken状态。 * <p>If the current thread is the last thread to arrive, and a * non-null barrier action was supplied in the constructor, then the * current thread runs the action before allowing the other threads to * continue. 如果当前线程,是最后一个到达屏障点的,如果屏障点动作线程不为null, 则执行action,在下一代线程组执行任务前。 * If an exception occurs during the barrier action then that exception * will be propagated in the current thread and the barrier is placed in * the broken state. *如果在执行action的过程中,出现异常,则当前线程将会抛出异常,屏障点处于破位状态 * @return the arrival index of the current thread, where index * <tt>{@link #getParties()} - 1</tt> indicates the first * to arrive and zero indicates the last to arrive * @throws InterruptedException if the current thread was interrupted * while waiting * @throws BrokenBarrierException if [i]another[/i] thread was * interrupted or timed out while the current thread was * waiting, or the barrier was reset, or the barrier was * broken when {@code await} was called, or the barrier * action (if present) failed due an exception. */ public int await() throws InterruptedException, BrokenBarrierException { try { //委托给dowait return dowait(false, 0L); } catch (TimeoutException toe) { throw new Error(toe); // cannot happen; } } /** * Main barrier code, covering the various policies. */ private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException { final ReentrantLock lock = this.lock; lock.lock(); try { //获取线程代 final Generation g = generation; //如果屏障点破位,则抛出BrokenBarrierException if (g.broken) throw new BrokenBarrierException(); //如果线程中断,则设置屏障点破位,重置count为parties, //唤醒所有在屏障点,等待的线程,抛出中断异常 if (Thread.interrupted()) { breakBarrier(); throw new InterruptedException(); } //共享锁数量,自减 int index = --count; if (index == 0) { // tripped boolean ranAction = false; try { final Runnable command = barrierCommand; if (command != null) //如果所有线程达到屏障点,则执行action command.run(); ranAction = true; //创建一下代 nextGeneration(); //返回0,屏障点解除 return 0; } finally { if (!ranAction) breakBarrier(); } } // loop until tripped, broken, interrupted, or timed out //自旋,直到所有线程到达屏障点,当前代broken,中断,或超时 for (;;) { try { //非超时等待await,否则awaitNanos if (!timed) trip.await(); else if (nanos > 0L) nanos = trip.awaitNanos(nanos); } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { // We're about to finish waiting even if we had not // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. Thread.currentThread().interrupt(); } } if (g.broken) throw new BrokenBarrierException(); if (g != generation) return index; if (timed && nanos <= 0L) { //如果超时,解除屏障点 breakBarrier(); throw new TimeoutException(); } } } finally { lock.unlock(); } }
小节:
线程到达屏障点时,首先检查线程代,有没有broken,如果broken,
则抛出BrokenBarrierException,如果线程中断,则当前代broken,
重置共享锁状态,唤醒所有等待线程。如果上述条件不满足,则释放
count,判断是否当前代线程,是否都到达屏障点,如果是,判断action
是否为null,不为null,则执行action;当释放count,当前代线程,仍有在执行的,
自旋等待屏障点条件trip,如果是超时等待,则判断时间是否超时,超时则breakBarrier。
再看
public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException { return dowait(true, unit.toNanos(timeout)); }
与await基本相同,都是委托给dowait
/** * Returns the number of parties required to trip this barrier. * * @return the number of parties required to trip this barrier */ public int getParties() { return parties; } /** * Queries if this barrier is in a broken state. * * @return {@code true} if one or more parties broke out of this * barrier due to interruption or timeout since * construction or the last reset, or a barrier action * failed due to an exception; {@code false} otherwise. */ public boolean isBroken() { final ReentrantLock lock = this.lock; lock.lock(); try { return generation.broken; } finally { lock.unlock(); } } /** * Resets the barrier to its initial state. If any parties are * currently waiting at the barrier, they will return with a * {@link BrokenBarrierException}. Note that resets [i]after[/i] * a breakage has occurred for other reasons can be complicated to * carry out; threads need to re-synchronize in some other way, * and choose one to perform the reset. It may be preferable to * instead create a new barrier for subsequent use. */ public void reset() { final ReentrantLock lock = this.lock; lock.lock(); try { breakBarrier(); // break the current generation nextGeneration(); // start a new generation } finally { lock.unlock(); } } /** * Returns the number of parties currently waiting at the barrier. * This method is primarily useful for debugging and assertions. *返回在屏障点等待线程数 * @return the number of parties currently blocked in {@link #await} */ public int getNumberWaiting() { final ReentrantLock lock = this.lock; lock.lock(); try { return parties - count; } finally { lock.unlock(); } }
总结:
屏障点思想,当每个线程完成任务时,自旋等待条件Condition trip,释放共享锁,count减1;当线程代的最后一个线程到达屏障点时,唤醒线程代中所有等待的线程,
如果有action,执行action,然后创建下一代线程。如果在线程代未结束之前,有等待线程中断或超时,则结束当前代,唤醒所有等待线程,重置count为parties。
发表评论
-
Executors解析
2017-04-07 14:38 1255ThreadPoolExecutor解析一(核心线程池数量、线 ... -
ScheduledThreadPoolExecutor解析三(关闭线程池)
2017-04-06 20:52 4455ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析二(任务调度)
2017-04-06 12:56 2127ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析一(调度任务,任务队列)
2017-04-04 22:59 4992Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析四(线程池关闭)
2017-04-03 23:02 9111Executor接口的定义:http: ... -
ThreadPoolExecutor解析三(线程池执行提交任务)
2017-04-03 12:06 6087Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析二(线程工厂、工作线程,拒绝策略等)
2017-04-01 17:12 3041Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析一(核心线程池数量、线程池状态等)
2017-03-31 22:01 20520Executor接口的定义:http://donald-dra ... -
ScheduledExecutorService接口定义
2017-03-29 12:53 1509Executor接口的定义:http://donald-dra ... -
AbstractExecutorService解析
2017-03-29 08:27 1080Executor接口的定义:http: ... -
ExecutorCompletionService解析
2017-03-28 14:27 1593Executor接口的定义:http://donald-dra ... -
CompletionService接口定义
2017-03-28 12:39 1068Executor接口的定义:http://donald-dra ... -
FutureTask解析
2017-03-27 12:59 1329package java.util.concurrent; ... -
Future接口定义
2017-03-26 09:40 1198/* * Written by Doug Lea with ... -
ExecutorService接口定义
2017-03-25 22:14 1162Executor接口的定义:http://donald-dra ... -
Executor接口的定义
2017-03-24 23:24 1676package java.util.concurrent; ... -
简单测试线程池拒绝执行任务策略
2017-03-24 22:37 2030线程池多余任务的拒绝执行策略有四中,分别是直接丢弃任务Disc ... -
JAVA集合类简单综述
2017-03-23 22:51 925Queue接口定义:http://donald-draper. ... -
DelayQueue解析
2017-03-23 11:00 1737Queue接口定义:http://donald-draper. ... -
SynchronousQueue解析下-TransferQueue
2017-03-22 22:20 2140Queue接口定义:http://donald-draper. ...
相关推荐
CyclicBarrier 是 Java 并发库中的一种同步工具类,用于协调多个线程之间的协作,使得它们能够一起开始某个计算任务或操作。它的名称“CyclicBarrier”来源于它具有可重用的特点,即当所有等待的线程都达到指定的...
《JAVA CyclicBarrier类详解》 CyclicBarrier是Java并发包(java.util.concurrent)中一个重要的同步辅助类,它的主要作用在于协调多个线程之间的协作,使得这些线程能够一起到达一个公共的“集结点”(称为屏障点...
在Java多线程编程中,`CyclicBarrier`是一个非常重要的同步工具类,它允许一组线程等待其他线程到达某个屏障点后再一起继续执行。这个屏障点就是我们所说的“循环栅栏”,顾名思义,它就像一个旋转门,所有线程必须...
并发工具类CyclicBarrier 详解.mp4 并发工具类Semaphore详解.mp4 并发工具类Exchanger详解.mp4 CountDownLatch,CyclicBarrier,Semaphore源码解析.mp4 提前完成任务之FutureTask使用.mp4 Future设计模式实现(实现...
第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57...
第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57...
第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57...
第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57...
Java并发编程(CyclicBarrier)实例详解 Java并发编程(CyclicBarrier)实例详解主要介绍了Java并发编程(CyclicBarrier)实例详解的相关资料,JAVA编写并发程序的时候,我们需要仔细去思考一下并发流程的控制,...
### CountDownLatch 和 CyclicBarrier 的运用(含AQS详解) #### CountDownLatch **定义与特点:** CountDownLatch 是 Java 并发包中的一个重要组件,它主要用于解决“一个或多个线程等待其他线程完成任务”的问题。...
在Java并发编程中,CountDownLatch和CyclicBarrier都是用于协调多线程间同步的重要工具,它们可以帮助开发者在特定条件满足时启动或者结束线程的执行。本文将详细探讨这两个类的内部实现机制以及它们在实际应用场景...
Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解 Java并发编程是Java语言中的一种高级技术,用于处理多线程编程中的同步问题。Java 1.5中引入了几个高效的辅助类,包括CountDownLatch、...
Java多线程之CyclicBarrier的使用方法 Java多线程之CyclicBarrier的使用方法是Java多线程编程中的一种同步机制,用于实现多个线程之间的同步协作。CyclicBarrier是Java 5中引入的一种同步机制,用于让多个线程等待...
Java多线程详解 在Java编程中,多线程是一种重要的技术,它使得程序能够同时执行多个任务,提高系统的效率和响应性。本教程将详细讲解Java中的多线程概念,包括线程的创建、状态、同步以及高级主题,旨在帮助初学者...
以上是对"Java多线程详解"主题的详细阐述,涵盖了Java多线程的基本概念、实现方式、线程控制、线程池、并发集合、线程间通信以及并发编程中常见的问题和解决方案。学习和熟练掌握这些内容对于开发高效的多线程Java...
在Java多线程编程中,CyclicBarrier、Callable、Future和FutureTask是四个重要的组件,它们各自提供了不同的功能,帮助开发者更好地管理和协调并发任务。接下来,我们将深入探讨这些组件的特性和使用方法。 首先,...
内容包括 01-并发编程之深入理解JMM&并发三大特性(一)-fox 02-并发编程之深入理解JMM&并发三...11-深入理解AQS之CyclicBarrier&ReentrantReadWriteLock详解-fox 12-深入理解AQS之ReentrantReadWriteLock详解-fox ...
Java异步调用转同步方法实例详解 Java异步调用转同步方法实例详解是指在Java中将异步调用转换为同步调用的技术,主要用于解决异步调用过程中的阻塞问题。异步调用是一种非阻塞的调用方式,调用方在调用过程中,不...