- 浏览: 285876 次
- 性别:
- 来自: 杭州
文章分类
最新评论
-
sjx19871109:
有一个疑问,博主在做循环的时候,for(int i=0;i&l ...
ArrayList:用add代替remove -
剑锋凛冽:
不错,看了很有帮助。但有个概念不是很清楚,锁投票是什么?
java中的lock和synchronized -
星期扒的幻想:
学习了,了解了
Solr增删改查 -
programming:
很蛋痛的webx 工程与jarsource编码不一直,相关 ...
Webx3 -
xjt927:
...
Solr增删改查
Solr Schema.xml和solrconfig.xml分析
现在我们开始研究载入的数据部分(importing data)
在正式开始前,我们先介绍一个存储了大量音乐媒体的网站http://musicbrainz.org ,
这里的数据都是免费的,一个大型开放社区提供。
MusicBrainz每天都提供一个数据快照(snapshot)的SQL文件,这些数据可以被导入PostgreSQL数据库中。
一、字段配置(schema)
schema.xml位于solr/conf/目录下,类似于数据表配置文件,
定义了加入索引的数据的数据类型,主要包括type、fields和其他的一些缺省设置。
1、先来看下type节点,这里面定义FieldType子节点,包括name,class,positionIncrementGap等一些参数。
- name:就是这个FieldType的名称。
- class:指向org.apache.solr.analysis包里面对应的class名称,用来定义这个类型的行为。
- < schema name = "example" version = "1.2" >
- < types >
- < fieldType name = "string" class = "solr.StrField" sortMissingLast = "true" omitNorms = "true" />
- < fieldType name = "boolean" class = "solr.BoolField" sortMissingLast = "true" omitNorms = "true" />
- < fieldtype name = "binary" class = "solr.BinaryField" />
- < fieldType name = "int" class = "solr.TrieIntField" precisionStep = "0" omitNorms = "true"
- positionIncrementGap = "0" />
- < fieldType name = "float" class = "solr.TrieFloatField" precisionStep = "0" omitNorms = "true"
- positionIncrementGap = "0" />
- < fieldType name = "long" class = "solr.TrieLongField" precisionStep = "0" omitNorms = "true"
- positionIncrementGap = "0" />
- < fieldType name = "double" class = "solr.TrieDoubleField" precisionStep = "0" omitNorms = "true"
- positionIncrementGap = "0" />
- ...
- </ types >
- ...
- </ schema >
必要的时候fieldType还需要自己定义这个类型的数据在建立索引和进行查询的时候要使用的分析器analyzer,包括分词和过滤,如下:
- < fieldType name = "text_ws" class = "solr.TextField" positionIncrementGap = "100" >
- < analyzer >
- < tokenizer class = "solr.WhitespaceTokenizerFactory" />
- </ analyzer >
- </ fieldType >
- < fieldType name = "text" class = "solr.TextField" positionIncrementGap = "100" >
- < analyzer type = "index" >
- <!--这个分词包是空格分词,在向索引库添加text类型的索引时,Solr会首先用空格进行分词
- 然后把分词结果依次使用指定的过滤器进行过滤,最后剩下的结果,才会加入到索引库中以备查询。
- 注意:Solr的analysis包并没有带支持中文的包,需要自己添加中文分词器,google下。
- -->
- < tokenizer class = "solr.WhitespaceTokenizerFactory" />
- <!-- in this example, we will only use synonyms at query time
- < filter class = "solr.SynonymFilterFactory" synonyms = "index_synonyms.txt"
- ignoreCase = "true" expand = "false" />
- -->
- <!-- Case insensitive stop word removal.
- add enablePositionIncrements = true in both the index and query
- analyzers to leave a 'gap' for more accurate phrase queries.
- -->
- < filter class = "solr.StopFilterFactory"
- ignoreCase = "true"
- words = "stopwords.txt"
- enablePositionIncrements = "true"
- />
- < filter class = "solr.WordDelimiterFilterFactory" generateWordParts = "1"
- generateNumberParts = "1" catenateWords = "1" catenateNumbers = "1"
- catenateAll = "0" splitOnCaseChange = "1" />
- < filter class = "solr.LowerCaseFilterFactory" />
- < filter class = "solr.SnowballPorterFilterFactory" language = "English"
- protected = "protwords.txt" />
- </ analyzer >
- < analyzer type = "query" >
- < tokenizer class = "solr.WhitespaceTokenizerFactory" />
- < filter class = "solr.SynonymFilterFactory" synonyms = "synonyms.txt" ignoreCase = "true"
- expand = "true" />
- < filter class = "solr.StopFilterFactory"
- ignoreCase = "true"
- words = "stopwords.txt"
- enablePositionIncrements = "true"
- />
- < filter class = "solr.WordDelimiterFilterFactory" generateWordParts = "1"
- generateNumberParts = "1" catenateWords = "0" catenateNumbers = "0"
- catenateAll = "0" splitOnCaseChange = "1" />
- < filter class = "solr.LowerCaseFilterFactory" />
- < filter class = "solr.SnowballPorterFilterFactory" language = "English"
- protected = "protwords.txt" />
- </ analyzer >
- </ fieldType >
2、再来看下fields节点内定义具体的字段(类似数据库的字段),含有以下属性:
- name:字段名
- type:之前定义过的各种FieldType
- indexed:是否被索引
- stored:是否被存储(如果不需要存储相应字段值,尽量设为false)
- multiValued:是否有多个值(对可能存在多值的字段尽量设置为true,避免建索引时抛出错误)
- < fields >
- < field name = "id" type = "integer" indexed = "true" stored = "true" required = "true" />
- < field name = "name" type = "text" indexed = "true" stored = "true" />
- < field name = "summary" type = "text" indexed = "true" stored = "true" />
- < field name = "author" type = "string" indexed = "true" stored = "true" />
- < field name = "date" type = "date" indexed = "false" stored = "true" />
- < field name = "content" type = "text" indexed = "true" stored = "false" />
- < field name = "keywords" type = "keyword_text" indexed = "true" stored = "false" multiValued = "true" />
- <!--拷贝字段-->
- < field name = "all" type = "text" indexed = "true" stored = "false" multiValued = "true" />
- </ fields >
3、建议建立一个拷贝字段,将所有的 全文本 字段复制到一个字段中,以便进行统一的检索:
以下是拷贝设置:
- < copyField source = "name" dest = "all" />
- < copyField source = "summary" dest = "all" />
4、动态字段,没有具体名称的字段,用dynamicField字段
如:name为*_i,定义它的type为int,那么在使用这个字段的时候,任务以_i结果的字段都被认为符合这个定义。如name_i, school_i
- < dynamicField name = "*_i" type = "int" indexed = "true" stored = "true" />
- < dynamicField name = "*_s" type = "string" indexed = "true" stored = "true" />
- < dynamicField name = "*_l" type
schema.xml文档注释中的信息:
1、为了改进性能,可以采取以下几种措施:
- 将所有只用于搜索的,而不需要作为结果的field(特别是一些比较大的field)的stored设置为false
- 将不需要被用于搜索的,而只是作为结果返回的field的indexed设置为false
- 删除所有不必要的copyField声明
- 为了索引字段的最小化和搜索的效率,将所有的 text fields的index都设置成field,然后使用copyField将他们都复制到一个总的 text field上,然后对他进行搜索。
- 为了最大化搜索效率,使用java编写的客户端与solr交互(使用流通信)
- 在服务器端运行JVM(省去网络通信),使用尽可能高的Log输出等级,减少日志量。
2、< schema name =" example " version =" 1.2 " >
- name:标识这个schema的名字
- version:现在版本是1.2
3、filedType
< fieldType name =" string " class =" solr.StrField " sortMissingLast =" true " omitNorms =" true " />
- name:标识而已。
- class和其他属性决定了这个fieldType的实际行为。(class以solr开始的,都是在org.appache.solr.analysis包下)
可选的属性:
- sortMissingLast和sortMissingFirst两个属性是用在可以内在使用String排序的类型上(包括:string,boolean,sint,slong,sfloat,sdouble,pdate)。
- sortMissingLast="true",没有该field的数据排在有该field的数据之后,而不管请求时的排序规则。
- sortMissingFirst="true",跟上面倒过来呗。
- 2个值默认是设置成false
StrField类型不被分析,而是被逐字地索引/存储。
StrField和TextField都有一个可选的属性“compressThreshold”,保证压缩到不小于一个大小(单位:char)
< fieldType name =" text " class =" solr.TextField " positionIncrementGap =" 100 " >
solr.TextField 允许用户通过分析器来定制索引和查询,分析器包括 一个分词器(tokenizer)和多个过滤器(filter)
- positionIncrementGap:可选属性,定义在同一个文档中此类型数据的空白间隔,避免短语匹配错误。
< tokenizer class =" solr.WhitespaceTokenizerFactory " />
空格分词,精确匹配。
< filter class =" solr.WordDelimiterFilterFactory " generateWordParts =" 1 " generateNumberParts =" 1 " catenateWords =" 1 " catenateNumbers =" 1 " catenateAll =" 0 " splitOnCaseChange =" 1 " />
在分词和匹配时,考虑 "-"连字符,字母数字的界限,非字母数字字符,这样 "wifi"或"wi fi"都能匹配"Wi-Fi"。
< filter class =" solr.SynonymFilterFactory " synonyms =" synonyms.txt " ignoreCase =" true " expand =" true " />
同义词
< filter class =" solr.StopFilterFactory " ignoreCase =" true " words =" stopwords.txt " enablePositionIncrements =" true " />
在禁用字(stopword)删除后,在短语间增加间隔
stopword:即在建立索引过程中(建立索引和搜索)被忽略的词,比如is this等常用词。在conf/stopwords.txt维护。
4、fields
< field name =" id " type =" string " indexed =" true " stored =" true " required =" true " />
- name:标识而已。
- type:先前定义的类型。
- indexed:是否被用来建立索引(关系到搜索和排序)
- stored:是否储存
- compressed:[false],是否使用gzip压缩(只有TextField和StrField可以压缩)
- mutiValued:是否包含多个值
- omitNorms:是否忽略掉Norm,可以节省内存空间,只有全文本field和need an index-time boost的field需要norm。(具体没看懂,注释里有矛盾)
- termVectors:[false],当设置true,会存储 term vector。当使用MoreLikeThis,用来作为相似词的field应该存储起来。
- termPositions:存储 term vector中的地址信息,会消耗存储开销。
- termOffsets:存储 term vector 的偏移量,会消耗存储开销。
- default:如果没有属性需要修改,就可以用这个标识下。
< field name =" text " type =" text " indexed =" true " stored =" false " multiValued =" true " />
包罗万象(有点夸张)的field,包含所有可搜索的text fields,通过copyField实现。
< copyField source =" cat " dest =" text " />
在添加索引时,将所有被拷贝field(如cat)中的数据拷贝到text field中
作用:
- 将多个field的数据放在一起同时搜索,提供速度
- 将一个field的数据拷贝到另一个,可以用2种不同的方式来建立索引。
< dynamicField name =" *_i " type =" int " indexed =" true " stored =" true " />
如果一个field的名字没有匹配到,那么就会用动态field试图匹配定义的各种模式。
- "*"只能出现在模式的最前和最后
- 较长的模式会被先去做匹配
- 如果2个模式同时匹配上,最先定义的优先
< dynamicField name =" * " type =" ignored " multiValued=" true " />
如果通过上面的匹配都没找到,可以定义这个,然后定义个type,当String处理。(一般不会发生)
但若不定义,找不到匹配会报错。
5、其他一些标签
< uniqueKey > id </ uniqueKey >
文档的唯一标识, 必须填写这个field(除非该field被标记required="false"),否则solr建立索引报错。
< defaultSearchField > text </ defaultSearchField >
如果搜索参数中没有指定具体的field,那么这是默认的域。
< solrQueryParser defaultOperator =" OR " />
配置搜索参数短语间的逻辑,可以是"AND|OR"。
二、solrconfig.xml
1、索引配置
mainIndex 标记段定义了控制Solr索引处理的一些因素.
-
useCompoundFile:通过将很多 Lucene 内部文件整合到单一一个文件来减少使用中的文件的数量。这可有助于减少 Solr 使用的文件句柄数目,代价是降低了性能。除非是应用程序用完了文件句柄,否则
false
的默认值应该就已经足够。 - useCompoundFile:通过将很多Lucene内部文件整合到一个文件,来减少使用中的文件的数量。这可有助于减少Solr使用的文件句柄的数目,代价是降低了性能。除非是应用程序用完了文件句柄,否则false的默认值应该就已经足够了。
- mergeFacor:决定Lucene段被合并的频率。较小的值(最小为2)使用的内存较少但导致的索引时间也更慢。较大的值可使索引时间变快但会牺牲较多的内存。(典型的 时间与空间 的平衡配置)
- maxBufferedDocs:在合并内存中文档和创建新段之前,定义所需索引的最小文档数。段 是用来存储索引信息的Lucene文件。较大的值可使索引时间变快但会牺牲较多内存。
- maxMergeDocs:控制可由Solr合并的 Document 的最大数。较小的值(<10,000)最适合于具有大量更新的应用程序。
- maxFieldLength:对于给定的Document,控制可添加到Field的最大条目数,进而阶段该文档。如果文档可能会很大,就需要增加这个数值。然后,若将这个值设置得过高会导致内存不足错误。
- unlockOnStartup:告知Solr忽略在多线程环境中用来保护索引的锁定机制。在某些情况下,索引可能会由于不正确的关机或其他错误而一直处于锁定,这就妨碍了添加和更新。将其设置为true可以禁用启动索引,进而允许进行添加和更新。(锁机制)
2、查询处理配置
query标记段中以下一些与缓存无关的特性:
- maxBooleanClauses:定义可组合在一起形成以个查询的字句数量的上限。正常情况1024已经足够。如果应用程序大量使用了通配符或范围查询,增加这个限制将能避免当值超出时,抛出TooMangClausesException。
- enableLazyFieldLoading:如果应用程序只会检索Document上少数几个Field,那么可以将这个属性设置为 true。懒散加载的一个常见场景大都发生在应用程序返回一些列搜索结果的时候,用户常常会单击其中的一个来查看存储在此索引中的原始文档。初始的现实常 常只需要现实很短的一段信息。若是检索大型的Document,除非必需,否则就应该避免加载整个文档。
query部分负责定义与在Solr中发生的时间相关的几个选项:
概念:Solr(实际上是Lucene)使用称为Searcher的Java类来处理Query实例。Searcher将索引内容相关的数据加载到 内存中。根据索引、CPU已经可用内存的大小,这个过程可能需要较长的一段时间。要改进这一设计和显著提高性能,Solr引入了一张“温暖”策略,即把这 些新的Searcher联机以便为现场用户提供查询服务之前,先对它们进行“热身”。
- newSearcher和firstSearcher事件,可以使用这些事件来制定实例化新Searcher或第一个Searcher时,应该执 行哪些查询。如果应用程序期望请求某些特定的查询,那么在创建新Searcher或第一个Searcher时就应该反注释这些部分并执行适当的查询。
query中的智能缓存:
- filterCache:通过存储一个匹配给定查询的文档 id 的无序集,过滤器让 Solr 能够有效提高查询的性能。缓存这些过滤器意味着对Solr的重复调用可以导致结果集的快速查找。更常见的场景是缓存一个过滤器,然后再发起后续的精炼查 询,这种查询能使用过滤器来限制要搜索的文档数。
- queryResultCache:为查询、排序条件和所请求文档的数量缓存文档 id 的有序集合。
- documentCache:缓存Lucene Document,使用内部Lucene文档id(以便不与Solr唯一id相混淆)。由于Lucene的内部Document id 可以因索引操作而更改,这种缓存不能自热。
- Named caches:命名缓存是用户定义的缓存,可被 Solr定制插件 所使用。
其中filterCache、queryResultCache、Named caches(如果实现了org.apache.solr.search.CacheRegenerator)可以自热。
每个缓存声明都接受最多四个属性:
- class:是缓存实现的Java名
- size:是最大的条目数
- initialSize:是缓存的初始大小
- autoWarmCount:是取自旧缓存以预热新缓存的条目数。如果条目很多,就意味着缓存的hit会更多,只不过需要花更长的预热时间。
对于所有缓存模式而言,在设置缓存参数时,都有必要在内存、cpu和磁盘访问之间进行均衡。统计信息管理页(管理员界面的Statistics)对 于分析缓存的 hit-to-miss 比例以及微调缓存大小的统计数据都非常有用。而且,并非所有应用程序都会从缓存受益。实际上,一些应用程序反而会由于需要将某个永远也用不到的条目存储在 缓存中这一额外步骤而受到影响。
相关推荐
### Solrconfig.xml 和 Schema.xml 说明 #### Solrconfig.xml 概述 Solrconfig.xml 是 Apache Solr 的核心配置文件之一,主要用于定义 Solr 实例如何处理文档的索引与查询请求。该文件中包含了多种配置项,用于...
配置文件(如`schema.xml`或`solrconfig.xml`)需要更新以指示Solr使用IKAnalyzer进行分词。JAR库文件(如`ik-analyzer.jar`)则需要添加到Solr的类路径中,以便在运行时能够加载和使用分词器。字典文件通常包含预定...
Solr,作为一款开源的全文搜索引擎,其核心配置文件包括`schema.xml`和`solrconfig.xml`,它们是Solr工作方式的基础。在深入理解这两个文件之前,我们需要先了解Solr的基本架构。 **1. Solr架构简介** Solr采用...
3. 修改Solr的配置文件`solrconfig.xml`,在`<searcher>`标签内添加IK分析器的定义: ```xml <tokenizer class="org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer"/> <tokenizer class="org.apache....
Solr的核心配置文件是`solrconfig.xml`和`schema.xml`,它们定义了索引的结构和处理查询的方式。 当你遇到404错误,首先检查Solr是否成功启动。查看日志文件(通常是`logs/solr.log`)以获取更详细的错误信息。如果...
同时,确保替换相关的配置文件,例如`solrconfig.xml`和`schema.xml`。 3. **配置Solr**:在`solrconfig.xml`中配置分词器,指定使用IKAnalyzer,并在`schema.xml`中定义字段类型,指定该字段使用IKAnalyzer进行...
集成IKAnalyzer到Solr的过程中,通常需要修改Solr的配置文件,包括solrconfig.xml和schema.xml。在solrconfig.xml中,需要配置分词器的相关参数,如词典路径等;在schema.xml中,需要定义字段类型(fieldType)并...
3. **配置DataImportHandler**:在对应的Solr核心的`schema.xml`或`managed-schema`文件中,配置DataImportHandler,包括数据源、查询语句、字段映射等信息。 4. **启动定时任务**:一旦配置完成,重启Solr服务器,...
它是基于Java的,提供了高效、可扩展的全文检索、数据分析和分布式搜索功能。Solr-8.11.1是该软件的一个特定版本,包含了从早期版本到8.11.1的所有改进和修复。 在"solr-8.11.1.zip"这个压缩包中,用户可以找到Solr...
同时,确保Solr的配置文件(如`solrconfig.xml`)能够找到这个库。 2. **配置Analyzer**:在`solrconfig.xml`中,你需要定义一个名为“ik”的Analyzer,指定使用IKAnalyzer。这通常在`<analyzer>`标签内完成,设置`...
接下来,将ikanalyzer集成到Solr中,这通常涉及到修改Solr的配置文件如`solrconfig.xml`和`schema.xml`,引入ikanalyzer的jar包,如`ik-analyzer-solr5-5.x.jar`和`solr-analyzer-ik-5.1.0.jar`。同时,还需要配置IK...
1. **配置文件**:在Solr中,配置文件位于`conf`目录下,包括`schema.xml`(定义字段和索引规则)、`solrconfig.xml`(配置索引和查询行为)等,它们是定制Solr核心行为的关键。 2. **索引目录**:索引文件通常存储...
Solr 是一个基于 Lucene 的开源搜索引擎,专为全文检索、高效分析和处理大量数据而设计。本压缩包“solr7部署相关文件.zip”包含了部署 Solr 7.x 版本所需的所有关键组件和配置文件,使得用户可以快速搭建并运行 ...
3. **配置与部署**:Solr的配置文件位于`conf`目录下,包括schema.xml(定义字段和字段类型)、solrconfig.xml(配置索引和查询参数)等。用户可以根据需求自定义这些配置。部署Solr通常涉及解压下载的`solr-4.10.3....
- 分析和监控Solr的日志和JVM指标,以便找出性能瓶颈。 9. **安全考虑**: - 需要配置Solr的安全组件,如Solr Security Plugin,以保护Solr实例免受未经授权的访问。 总之,"最新版windows solr-8.9.0.zip"是一...
3. **配置灵活**:Solr的配置文件(如solrconfig.xml和schema.xml)提供了高度自定义的能力,可以根据业务需求调整搜索策略和字段设置。 4. **分布式搜索**:Solr 4.9.0 支持分布式搜索,可以将索引分散在多台...
在使用Solr-9.0.0时,你需要根据业务需求创建或修改配置文件,如`solrconfig.xml`和`schema.xml`,定义索引的字段类型和字段。然后可以通过POST请求将数据导入Solr,Solr会自动进行分词、建立倒排索引等操作,从而...
每个核心有自己的配置,如字段类型、字段配置、搜索处理链等,这些都在`conf`目录下的`schema.xml`、`solrconfig.xml`等文件中定义。 此外,Solr还支持多种数据源的接入,例如文件系统、数据库等,通过数据驱动的...
5. **配置文件详解**:在压缩包中的 "solr-8.5.2" 文件夹下,你会找到一系列配置文件,如 `solrconfig.xml` 和 `schema.xml`。`solrconfig.xml` 定义了 Solr 的运行行为,包括数据导入、搜索处理链、请求处理器等;...
10. **语言分析器相关文件**:例如stopwords.txt(停用词列表)、synonyms.txt(同义词列表)等,用于文本分析和索引时的词汇处理。 这些配置文件在Solr中的作用至关重要,正确配置它们可以优化索引性能,提高查询...