Statistical Machine Translation Tutorial Reading
The following is a list of papers that I think are worth reading for our
discussion of machine translation. I've tried to give a short blurb about
each of the papers to put them in context. I've included a number of papers
that I marked "OPTIONAL" that I think are interesting, but are either
supplementary or the material is more or less covered in the other papers.
If anyone would like more information on a particular topic or would
like to discuss any of these papers, feel free to e-mail me
dkauchakcs.ucsd.edu
Part 1 (Jan. 19)
A Statistical MT Tutorial Workbook. Kevin Knight. 1999.
Very good introduction to word-based statistical machine translation.
Written in an informal, understandable, tutorial oriented style.
Automating Knowledge Acquisition for Machine Translation.
Kevin Knight. 1997.
(OPTIONAL) Another tutorial oriented paper that steps through
how one can learn from bilingual data. Also introduces a number of
important concepts for MT.
Foundations of Statistical NLP, chapter 13. Manning and Schutze. 1999.
(OPTIONAL) Must be accessed from UCSD. Overview of statistical MT.
Spends a lot of time on sentence and word alignment of bilingual data.
Foundations of Statistical NLP, chapter 6. Manning and Schutze. 1999.
(OPTIONAL) Must be accessed from UCSD. Discusses n-gram language
modeling. Language modeling is crucial for SMT and many other natural
language applications. I won't spend much time discussing language
modeling, but for those that are interested this is a good introduction.
Part 2 (Jan. 26)
Word models:
The Mathematics of Statistical Machine Translation:
Parameter Estimation. P. F. Brown, S. A. Della Pietra,
V. J. Della Pietra and R.L. Mercer. 1993.
(OPTIONAL) All you ever wanted to know about word level
models. Describes IBM models 1-5 and parameter estimation
for these models. It's about 50 pages and contains a lot of
material for the interested reader.
Word model decoding:
Decoding Algorithm in Statistical Machine Translation.
Ye-Yi Wand and Alex Waibel. 1997.
Early paper discussing decoding of IBM model 2. The paper
provides a fairly good introduction to word-level decoding
including multi-stack search (i.e. multiple beams) and rest
cost estimation (heuristic functions).
An Efficient A* Search Algorithm for Statistical Machine Translation.
Franz Josef Och, Nicola Ueffing, Hermann Ney. 2001.
(OPTIONAL) One of many papers on decoding with word-based SMT. They
discuss the basic idea of viewing decoding as state space search and
provide one method for doing this. They describe decoding for Model 3
and suggest a few different heuristics that are admissible, leading to few search errors.
Phrase based statistical MT:
Statistical Phrase-Based Translation.
Philipp Koehn, Franz Jasof Ock and Daniel Marcu. 2003.
Good, short overview of phrased based systems. If you want more
details, see the paper below.
The Alignment Template Approach to Statistical Machine Translation.
Franz Josef Och and Hermann Ney. 2004.
(OPTIONAL) This is a journal paper discussing one phrase based statistical system
including decoding. This is more or less the system used at ISI and
is probably the best current system (though syntax based systems my beat
these in the next few years). Requires acrobat 5 and to be at UCSD.
Part 3 (Feb. 2)
Phrase-based decoding:
See the previous paper.
Syntax based translation:
What's in a Translation Rule? Galley, Hopkins, Knight and Marcu. 2004.
This is the current system being investigated at ISI and the hope is that
these syntax based systems will perform better than phrase based systems.
The paper is a bit tough to read since it's a conference paper.
A Syntax-Based Statistical Translation Model. Yamada and Knight. 2001.
(OPTIONAL) Predecessor model to Galley et al., but similar.
Syntax based decoding:
Foundations of Statistical NLP, chapter 12. Manning and Schutze. 1999.
Must be on campus. This is a chapter on parsing (not actually decoding)
However, since the above rules are very similar to PCFGs, then decoding
is very similar to parsing... just with more complications.
A Decoder for Syntax-Based Statistical MT. Kenji Yamada and Kevin Knight. 2001.
(OPTIONAL) Decoder for the above Yamada and Knight model.
Part 4 (Feb. 9)
Discriminative Training:
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation.
Och and Ney. 2002.
Learning how the best models for combining the different models (traslation
model, language model, etc.) using maximum entropy parameter estimation.
This line of research is still very important and my be interesting to
many of you since it's very machine learningy.
AnotherPaper:Minimum Error Rate Training in Statistical Machine Translation
Och Acl-03
Discriminative Reranking for Machine Translation.
Shen, Sarkar and Och. 2004.(HLT/NAACL'04)
(OPTIONAL) Given a ranked output of possible translations from the
translation system, this paper uses the perceptron algorithm to learn
a reranking of the sentences to improves the top translation.
MT Evaluation:
BLEU: A Method for Automatic Evaluation of Machine Translation.
Papineni, Roukos, Ward and Zhu. 2001.
Foundational method for evaluating MT methods and still used currently.
hfjiang:
好像只有och相关的一些人在尝试,应该算是比较新的方向。另外,在ebmt,rbmt中,discriminative training的方法好像还没有人尝试引入。我们再看这些文章的时候,关键要看一下,如何把一种思想model进现有的框架中。比如,现在我们想尝试用discriminative training 的方法在EBMT上作些工作,那么什么地方是切入点,如何model,如何实验?衡量性能的方法又是什么,这些都是应该考虑的问题。
希望通过阅读借鉴别人的文章来得到写启发。
分享到:
相关推荐
在统计机器翻译中,最著名的模型是基于短语的统计机器翻译(Phrased-Based Statistical Machine Translation, PB-SMT)。该模型将翻译任务分解为短语级别的匹配和重排,提高了翻译的质量和流畅度。PB-SMT模型由多个...
The field of machine translation has recently been energized by the emergence of statistical techniques, which have brought the dream of automatic language translation closer to reality. This class-...
统计机器翻译(Statistical Machine Translation, SMT)是一种基于概率的方法来进行文本翻译。它将翻译任务视为一种通信通道问题:给定一个源语言句子(如德语)T,目标是将其翻译成另一种语言(如英语)S。在这个...
【标题】:“A statistical approach to machine translation.doc”讨论了基于统计的机器翻译方法,这是针对计算机科学中的自然语言处理领域,特别是机器翻译技术的一种新尝试。 【描述】中提到的“计算机 brown90 ...
### Listwise Ranking Functions for Statistical Machine Translation #### 摘要 本文主要介绍了一种改进的决策规则——列表式(listwise)排名函数在统计机器翻译(SMT)中的应用。传统的方法是通过逐个评估候选...
### 统计方法在机器翻译中的应用 #### 引言 机器翻译领域几乎与现代数字计算机的历史一样悠久。早在1949年,Warren Weaver就提出了利用统计方法和信息论来解决机器翻译问题的想法(Weaver, 1949)。...
《统计机器学习导论》是Masashi Sugiyama所著的一部关于统计学习领域的入门级教材。本书由Morgan Kaufmann Publishers出版社出版,该出版社是Elsevier科学出版社的一个印记。本书在2016年出版,版权归属于Elsevier...
Research on Issues of Translation Selection for Phrase and Structure in Statistical Machine Translation_hezhongjun_phd thesis 2008.pdf Research on domain adaptation in Statistical Machine Translation...
综合数据挖掘开源平台,性能非常好,功能包括:Classification: Support Vector Machines, Decision Trees, AdaBoost, Gradient Boosting, Random Forest, Logistic Regression, Neural Networks, RBF Networks, ...
**统计机器翻译(Statistical Machine Translation, SMT)**是一种基于数据驱动的方法,用于将文本从一种语言自动翻译成另一种语言。在本主题中,我们关注的是一个特定的SMT实现,名为**Prolog Statistical Machine ...
机器学习使得计算机具备了自主学习和模式识别的能力,而数理统计知识与机器学习的有效结合,使其成为一个更加有力的工具,广泛用于基础科学和工程领域中的各类数据分析和挖掘任务。 本书对机器学习的关键知识点...
ANU COMP4670 2018 课件 Cheng Soon Ong & Christian Walder Machine Learning Research Group Data61 | CSIRO and Collage of Engineering and Computer Science The Australian National University
机器学习使得计算机具备了自主学习和模式识别的能力,而数理统计知识与机器学习的有效结合,使其成为一个更加有力的工具,广泛用于基础科学和工程领域中的各类数据分析和挖掘任务。 本书对机器学习的关键知识点...
该文档是一篇关于统计机器翻译(Statistical Machine Translation,简称SMT)的增量调优方法研究论文。SMT是计算机科学中自然语言处理的一个分支,它使用统计学方法来翻译一种自然语言到另一种语言。论文的标题“An ...
在机器翻译中,主要有两种主流方法:统计机器翻译(Statistical Machine Translation, SMT)和神经机器翻译(Neural Machine Translation, NMT)。SMT依赖于大量的双语平行语料库,通过概率模型找出最可能的翻译结果...
- **统计方法的引入**:20世纪90年代以后,随着统计学方法的应用,机器翻译技术发生了质的变化,统计机器翻译(Statistical Machine Translation, SMT)成为主流方法之一。 - **神经网络时代的到来**:近年来,深度...