- 浏览: 980236 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
Queue接口定义:http://donald-draper.iteye.com/blog/2363491
AbstractQueue简介:http://donald-draper.iteye.com/blog/2363608
来看添加队列元素:
检查是否为null
poll操作:
更新头节点:
peek操作:
//返回队列第一个节点
获取节点的后继节点
移除元素
//查询队列是否包含某元素
//获取队列size
//根据C构造ConcurrentLinkedQueue
添加集合元素到队列
序列化:
总结:
ConcurrentLinkedQueue一个基于链接节点线程安全的单向无界队列。队列的元素顺序为FIFO。队列的头部,是在队列上时间最久的元素。队列的尾元素是在队列中时间最短的元素。新元素添加到队列的尾部,队列获取元素,从队列头部获取ConcurrentLinkedQueue适用于多个线程需要同时访问一个相同集合的场景。与大多数并发集合一样,不允许插入null元素。Iterators是弱一致性,只反映了队列在某一点的状态,比如创建iterator的时间点。
Iterators不会抛出异常,可以处理其他的并发操作。在队列创建Iterators时,队列中的元素,全都在Iterators中。不像大多数的集合,size操作时间复杂度不是一个常量,因为队列异步操作的天性,决定了遍历队列元素时,有可能其他线程修改队列,导致最终size的数量可能不准确。另外addAll,removeAll,retainAll,containsAll,equals,toArray都不能保证原子性。比如遍历操作和addAll操作同时发生,可能会看到一些相同的新增元素。
AbstractQueue简介:http://donald-draper.iteye.com/blog/2363608
package java.util.concurrent; import java.util.AbstractQueue; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Queue; /** * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes. * This queue orders elements FIFO (first-in-first-out). * The [i]head[/i] of the queue is that element that has been on the * queue the longest time. ConcurrentLinkedQueue一个基于链接节点线程安全的无界队列。队列的元素顺序为FIFO。 队列的头部,是在队列上时间最久的元素。 * The [i]tail[/i] of the queue is that element that has been on the * queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * A {@code ConcurrentLinkedQueue} is an appropriate choice when * many threads will share access to a common collection. * Like most other concurrent collection implementations, this class * does not permit the use of {@code null} elements. * 队列的尾元素是在队列中时间最短的元素。新元素添加到队列的尾部,队列获取元素,从 队列头部获取。ConcurrentLinkedQueue适用于多个线程需要同时访问一个相同集合的场景。 与大多数并发集合一样,不允许插入null元素。 * <p>This implementation employs an efficient "wait-free" * algorithm based on one described in <a * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple, * Fast, and Practical Non-Blocking and Blocking Concurrent Queue * Algorithms</a> by Maged M. Michael and Michael L. Scott. * 队列的实现是基于一个有效的wait-free算法,具体参见链接:简单快速实用的并发 阻塞与非阻塞算法 * <p>Iterators are <i>weakly consistent</i>, returning elements * reflecting the state of the queue at some point at or since the * creation of the iterator. They do [i]not[/i] throw {@link * java.util.ConcurrentModificationException}, and may proceed concurrently * with other operations. Elements contained in the queue since the creation * of the iterator will be returned exactly once. * Iterators是弱一致性,只反映了队列在某一点的状态,比如创建iterator的时间点。 Iterators不会抛出异常,可以处理其他的并发操作。在队列创建Iterators时,队列中的 元素,全都在Iterators中。 * <p>Beware that, unlike in most collections, the {@code size} method * is [i]NOT[/i] a constant-time operation. Because of the * asynchronous nature of these queues, determining the current number * of elements requires a traversal of the elements, and so may report * inaccurate results if this collection is modified during traversal. * Additionally, the bulk operations {@code addAll}, * {@code removeAll}, {@code retainAll}, {@code containsAll}, * {@code equals}, and {@code toArray} are [i]not[/i] guaranteed * to be performed atomically. For example, an iterator operating * concurrently with an {@code addAll} operation might view only some * of the added elements. * 不像大多数的集合,size操作时间复杂度不是一个常量,因为队列异步操作的天性, 决定了遍历队列元素时,有可能其他线程修改队列,导致最终size的数量可能不准确。 另外addAll,removeAll,retainAll,containsAll,equals,toArray都不能保证原子性。 不如遍历操作和addAll操作同时发生,可能会看到一些相同的新增元素。 * <p>This class and its iterator implement all of the [i]optional[/i] * methods of the {@link Queue} and {@link Iterator} interfaces. * ConcurrentLinkedQueue实现了所有Queue和Iterator接口的所有方法。 * <p>Memory consistency effects: As with other concurrent * collections, actions in a thread prior to placing an object into a * {@code ConcurrentLinkedQueue} * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url] * actions subsequent to the access or removal of that element from * the {@code ConcurrentLinkedQueue} in another thread. * 内存一致性:与其他并发线程集合一样,线程添加一个元素到队列发生在其他线程访问 或移除队列元素之前。 * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection * */ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E> implements Queue<E>, java.io.Serializable { private static final long serialVersionUID = 196745693267521676L; /* * This is a modification of the Michael & Scott algorithm, * adapted for a garbage-collected environment, with support for * interior node deletion (to support remove(Object)). For * explanation, read the paper. * 这是一个Michael & Scott 算法的修改,以适应内部节点的删除,引起的垃圾回收。 * Note that like most non-blocking algorithms in this package, * this implementation relies on the fact that in garbage * collected systems, there is no possibility of ABA problems due * to recycled nodes, so there is no need to use "counted * pointers" or related techniques seen in versions used in * non-GC'ed settings. * 像其他非阻塞算法一样,本队列的实现依赖于实际的系统垃圾回收器, 由于会回收节点,所以不可能发生ABA问题,所以不需要用,计数指针和non-GC 设置的相关技术。 * The fundamental invariants are: * - There is exactly one (last) Node with a null next reference, * which is CASed when enqueueing. This last Node can be * reached in O(1) time from tail, but tail is merely an * optimization - it can always be reached in O(N) time from * head as well. 基本原理是不变的:当以CAS方式入队列时,队尾的元素的next指针为null。 我们用tail节点可,以常量1的速度到达尾部元素,tail仅仅是一个优化,也可从 对头以时间 O(N) 到达队尾。 * - The elements contained in the queue are the non-null items in * Nodes that are reachable from head. CASing the item * reference of a Node to null atomically removes it from the * queue. Reachability of all elements from head must remain * true even in the case of concurrent modifications that cause * head to advance. A dequeued Node may remain in use * indefinitely due to creation of an Iterator or simply a * poll() that has lost its time slice. * 队列中的元素都是非null的,同时可以从队列头到达。CAS操作一个元素为null, 则直接从队列移除元素。队列头到队列中的其他元素,必须可达,以防并发修改, 导致的队列头前移。一个已经出队列的元素可能仍在被用,比如创建Iterator, 或poll操作失去的时间片。 * The above might appear to imply that all Nodes are GC-reachable * from a predecessor dequeued Node. That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to advance to head. * 以上情况的出现,预示着所有节点从前驱的出队列元素都GC可达。这样 可能会引起来个问题:运行一个无赖Iterator引起内存垃圾;当节点存活在 老年代,可能存在旧节点到新节点的交叉代连接,新生和老年的垃圾回收器 很难处理,这样就会引起重复的FULL GC。然而,已删除的节点,可以从出队列 节点达到,可达性不需要到达GC可以理解的那种。为了避免这种情况的发生, 我们出队列的节点只会连接到它自己。自连接意味着促使队列头元素前进。 * Both head and tail are permitted to lag. In fact, failing to * update them every time one could is a significant optimization * (fewer CASes). As with LinkedTransferQueue (see the internal * documentation for that class), we use a slack threshold of two; * that is, we update head/tail when the current pointer appears * to be two or more steps away from the first/last node. * 对头和队尾都允许滞后,最优化的更新队头和队尾可能会失败,不如fewer CASes。 对于LinkedTransferQueue,我们用一个非严谨的临界条件2,我们从当前节点 更新head/tail,至少需要2步以上。 * Since head and tail are updated concurrently and independently, * it is possible for tail to lag behind head (why not)? * 由于head and tail是并发独立更新的,队尾的更新可能在队头后面。 * CASing a Node's item reference to null atomically removes the * element from the queue. Iterators skip over Nodes with null * items. Prior implementations of this class had a race between * poll() and remove(Object) where the same element would appear * to be successfully removed by two concurrent operations. The * method remove(Object) also lazily unlinks deleted Nodes, but * this is merely an optimization. * CAS操作一个节点引用为null,将自动从队列中删除。Iterators将会跳过 null元素。当poll和remove操作并发时,优先移除元素。remove也为懒操作 去除链接,这样一个优化。 * When constructing a Node (before enqueuing it) we avoid paying * for a volatile write to item by using Unsafe.putObject instead * of a normal write. This allows the cost of enqueue to be * "one-and-a-half" CASes. * 在节点入队列前,构造节点时,要避免用可见性的Unsafe.putObject, 而是用正常的write。进队列的消耗允许是CAS操作的1.5倍。 * Both head and tail may or may not point to a Node with a * non-null item. If the queue is empty, all items must of course * be null. Upon creation, both head and tail refer to a dummy * Node with null item. Both head and tail are only updated using * CAS, so they never regress, although again this is merely an * optimization. */ head and tail可能,也可能不指向一个非null元素。当队列为null时, 所有的元素自然为null。当队列创建时,head and tail引用一个null的 傀儡节点。head and tail仅仅用CAS操作更新,所以不会后退,这是一个优化。 //队列节点元素 private static class Node<E> { volatile E item;节点 volatile Node<E> next;后继 /** * Constructs a new node. Uses relaxed write because item can * only be seen after publication via casNext. */ //构造节点 Node(E item) { UNSAFE.putObject(this, itemOffset, item); } //比较旧元素,相等则更新,CAS boolean casItem(E cmp, E val) { return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } //懒设置节点后继 void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); } //CAS节点的next boolean casNext(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long itemOffset; private static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Node.class; itemOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("item")); nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } } /** * A node from which the first live (non-deleted) node (if any) * can be reached in O(1) time. 队头元素,队列中第一个存活元素,可以,以常量1的速度到达 * Invariants: 不变的是:所以的节点都可以通过succ,到达头部 * - all live nodes are reachable from head via succ() * - head != null * - (tmp = head).next != tmp || tmp != head * Non-invariants: 可变的是,头结点元素可能为null,也可能不为null * - head.item may or may not be null. * - it is permitted for tail to lag behind head, that is, for tail * to not be reachable from head! */ 允许tail的更新晚于head,意味着队尾到队头不可达。 private transient volatile Node<E> head; /** * A node from which the last node on list (that is, the unique * node with node.next == null) can be reached in O(1) time. 队列中最后一个元素,后继为null,以常量1的速度到达 * Invariants: 不变的是:所以的节点都可以通过succ,从队尾到 * - the last node is always reachable from tail via succ() * - tail != null * Non-invariants: 可变的是:允许tail的更新晚于head,意味着队尾到队头不可达。 * - tail.item may or may not be null. * - it is permitted for tail to lag behind head, that is, for tail * to not be reachable from head! * - tail.next may or may not be self-pointing to tail. */ tail可能也可能不会指向自己。 private transient volatile Node<E> tail; /** * Creates a {@code ConcurrentLinkedQueue} that is initially empty. */ 构造ConcurrentLinkedQueue public ConcurrentLinkedQueue() { head = tail = new Node<E>(null); } }
来看添加队列元素:
/** * Inserts the specified element at the tail of this queue. * As the queue is unbounded, this method will never throw * {@link IllegalStateException} or return {@code false}. * * @return {@code true} (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ public boolean add(E e) { 委托给Offer return offer(e); } /** * Inserts the specified element at the tail of this queue. * As the queue is unbounded, this method will never return {@code false}. * * @return {@code true} (as specified by {@link Queue#offer}) * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { //检查是否为null checkNotNull(e); //根据元素创建节点 final Node<E> newNode = new Node<E>(e); for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; if (q == null) { //如果为最后一个元素,且后继为null,则以CAS设置新节点为tail的后继 // p is last node if (p.casNext(null, newNode)) { // Successful CAS is the linearization point // for e to become an element of this queue, // and for newNode to become "live". if (p != t) // hop two nodes at a time //将新节点设为尾元素 casTail(t, newNode); // Failure is OK. return true; } // Lost CAS race to another thread; re-read next } else if (p == q) // We have fallen off list. If tail is unchanged, it // will also be off-list, in which case we need to // jump to head, from which all live nodes are always // reachable. Else the new tail is a better bet. //当tail指向自己,则不在队列中,则需要调到队头,以使其他节点可达 p = (t != (t = tail)) ? t : head; else // Check for tail updates after two hops.在两步之后,检查队尾是否更新 p = (p != t && t != (t = tail)) ? t : q; } }
检查是否为null
/** * Throws NullPointerException if argument is null. * * @param v the element */ private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); }
poll操作:
public E poll() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { //检查队头节点,如果不为null,则设置为null E item = p.item; if (item != null && p.casItem(item, null)) { // Successful CAS is the linearization point // for item to be removed from this queue. if (p != h) // hop two nodes at a time,更新头部为其后继 updateHead(h, ((q = p.next) != null) ? q : p); return item; } else if ((q = p.next) == null) { //更新头部为p,队列为空 updateHead(h, p); return null; } else if (p == q) continue restartFromHead; else p = q; } } }
更新头节点:
/** * Try to CAS head to p. If successful, repoint old head to itself * as sentinel for succ(), below. */ final void updateHead(Node<E> h, Node<E> p) { //懒设置队头节点为其后继,并将旧的节点指向自己,以便垃圾回收 if (h != p && casHead(h, p)) h.lazySetNext(h); }
peek操作:
public E peek() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { E item = p.item; if (item != null || (q = p.next) == null) { //返回队头元素,更新头结点 updateHead(h, p); return item; } else if (p == q) continue restartFromHead; else p = q; } } }
//返回队列第一个节点
Node<E> first() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { boolean hasItem = (p.item != null); if (hasItem || (q = p.next) == null) { updateHead(h, p); return hasItem ? p : null; } else if (p == q) continue restartFromHead; else p = q; } } }
获取节点的后继节点
final Node<E> succ(Node<E> p) { Node<E> next = p.next; return (p == next) ? head : next; }
移除元素
public boolean remove(Object o) { if (o == null) return false; Node<E> pred = null; //遍历队列,找到节点数据与o相等的节点,更新节点后继为null,更新前驱的后继 for (Node<E> p = first(); p != null; p = succ(p)) { E item = p.item; if (item != null && o.equals(item) && p.casItem(item, null)) { Node<E> next = succ(p); if (pred != null && next != null) pred.casNext(p, next); return true; } pred = p; } return false; }
//查询队列是否包含某元素
public boolean contains(Object o) { if (o == null) return false; for (Node<E> p = first(); p != null; p = succ(p)) { E item = p.item; if (item != null && o.equals(item)) return true; } return false; }
//获取队列size
public int size() { int count = 0; for (Node<E> p = first(); p != null; p = succ(p)) if (p.item != null) // Collection.size() spec says to max out if (++count == Integer.MAX_VALUE) break; return count; }
//根据C构造ConcurrentLinkedQueue
public ConcurrentLinkedQueue(Collection<? extends E> c) { Node<E> h = null, t = null; //遍历集合,将元素组装成节点链 for (E e : c) { checkNotNull(e); Node<E> newNode = new Node<E>(e); if (h == null) h = t = newNode; else { t.lazySetNext(newNode); t = newNode; } } if (h == null) h = t = new Node<E>(null); //初始化队列与队尾 head = h; tail = t; }
添加集合元素到队列
public boolean addAll(Collection<? extends E> c) { if (c == this) // As historically specified in AbstractQueue#addAll throw new IllegalArgumentException(); // Copy c into a private chain of Nodes Node<E> beginningOfTheEnd = null, last = null; //将集合元素组装成节点链 for (E e : c) { checkNotNull(e); Node<E> newNode = new Node<E>(e); if (beginningOfTheEnd == null) beginningOfTheEnd = last = newNode; else { last.lazySetNext(newNode); last = newNode; } } if (beginningOfTheEnd == null) return false; // Atomically append the chain at the tail of this collection //将节点链,挂到队列尾 for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; if (q == null) { // p is last node if (p.casNext(null, beginningOfTheEnd)) { // Successful CAS is the linearization point // for all elements to be added to this queue. if (!casTail(t, last)) { // Try a little harder to update tail, // since we may be adding many elements. t = tail; if (last.next == null) casTail(t, last); } return true; } // Lost CAS race to another thread; re-read next } else if (p == q) // We have fallen off list. If tail is unchanged, it // will also be off-list, in which case we need to // jump to head, from which all live nodes are always // reachable. Else the new tail is a better bet. p = (t != (t = tail)) ? t : head; else // Check for tail updates after two hops. p = (p != t && t != (t = tail)) ? t : q; } }
序列化:
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. //序列化所有元素 for (Node<E> p = first(); p != null; p = succ(p)) { Object item = p.item; if (item != null) s.writeObject(item); } // Use trailing null as sentinel s.writeObject(null); } /** * Reconstitutes the instance from a stream (that is, deserializes it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); // Read in elements until trailing null sentinel found Node<E> h = null, t = null; Object item; //反序列化所有元素到队列 while ((item = s.readObject()) != null) { @SuppressWarnings("unchecked") Node<E> newNode = new Node<E>((E) item); if (h == null) h = t = newNode; else { t.lazySetNext(newNode); t = newNode; } } if (h == null) h = t = new Node<E>(null); head = h; tail = t; }
总结:
ConcurrentLinkedQueue一个基于链接节点线程安全的单向无界队列。队列的元素顺序为FIFO。队列的头部,是在队列上时间最久的元素。队列的尾元素是在队列中时间最短的元素。新元素添加到队列的尾部,队列获取元素,从队列头部获取ConcurrentLinkedQueue适用于多个线程需要同时访问一个相同集合的场景。与大多数并发集合一样,不允许插入null元素。Iterators是弱一致性,只反映了队列在某一点的状态,比如创建iterator的时间点。
Iterators不会抛出异常,可以处理其他的并发操作。在队列创建Iterators时,队列中的元素,全都在Iterators中。不像大多数的集合,size操作时间复杂度不是一个常量,因为队列异步操作的天性,决定了遍历队列元素时,有可能其他线程修改队列,导致最终size的数量可能不准确。另外addAll,removeAll,retainAll,containsAll,equals,toArray都不能保证原子性。比如遍历操作和addAll操作同时发生,可能会看到一些相同的新增元素。
发表评论
-
Executors解析
2017-04-07 14:38 1244ThreadPoolExecutor解析一(核心线程池数量、线 ... -
ScheduledThreadPoolExecutor解析三(关闭线程池)
2017-04-06 20:52 4450ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析二(任务调度)
2017-04-06 12:56 2116ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析一(调度任务,任务队列)
2017-04-04 22:59 4986Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析四(线程池关闭)
2017-04-03 23:02 9096Executor接口的定义:http: ... -
ThreadPoolExecutor解析三(线程池执行提交任务)
2017-04-03 12:06 6079Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析二(线程工厂、工作线程,拒绝策略等)
2017-04-01 17:12 3036Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析一(核心线程池数量、线程池状态等)
2017-03-31 22:01 20513Executor接口的定义:http://donald-dra ... -
ScheduledExecutorService接口定义
2017-03-29 12:53 1501Executor接口的定义:http://donald-dra ... -
AbstractExecutorService解析
2017-03-29 08:27 1071Executor接口的定义:http: ... -
ExecutorCompletionService解析
2017-03-28 14:27 1586Executor接口的定义:http://donald-dra ... -
CompletionService接口定义
2017-03-28 12:39 1061Executor接口的定义:http://donald-dra ... -
FutureTask解析
2017-03-27 12:59 1324package java.util.concurrent; ... -
Future接口定义
2017-03-26 09:40 1190/* * Written by Doug Lea with ... -
ExecutorService接口定义
2017-03-25 22:14 1158Executor接口的定义:http://donald-dra ... -
Executor接口的定义
2017-03-24 23:24 1671package java.util.concurrent; ... -
简单测试线程池拒绝执行任务策略
2017-03-24 22:37 2023线程池多余任务的拒绝执行策略有四中,分别是直接丢弃任务Disc ... -
JAVA集合类简单综述
2017-03-23 22:51 920Queue接口定义:http://donald-draper. ... -
DelayQueue解析
2017-03-23 11:00 1732Queue接口定义:http://donald-draper. ... -
SynchronousQueue解析下-TransferQueue
2017-03-22 22:20 2133Queue接口定义:http://donald-draper. ...
相关推荐
- **Node类解析**:`Node`类中定义了两个核心字段:`item`用于存储队列元素,`next`用于指向下一个节点。这两个字段都被声明为`volatile`类型,确保了内存可见性。 - **构造方法**:构造方法使用`Unsafe`类的`...
并发容器ConcurrentLinkedQueue原理与使用.mp4 Java中的阻塞队列原理与使用.mp4 实战:简单实现消息队列.mp4 并发容器ConcurrentHashMap原理与使用.mp4 线程池的原理与使用.mp4 Executor框架详解.mp4 实战:简易web...
以下是对JUC库的详细解析: 1. **线程池(ExecutorService)**: - `ExecutorService`是线程池的核心接口,它负责管理线程的创建和执行。通过`Executors`类提供的静态工厂方法,可以创建不同类型的线程池,如`...
本篇将基于2023年的最新趋势,解析Java面试中的常见问题及答案。 1. **Java基础** - **面向对象**:理解类、对象、封装、继承、多态的概念。 - **异常处理**:熟悉try-catch-finally语句块,了解Checked与...
Java编程cas操作全面解析 Java编程中CAS操作是现代CPU广泛支持的一种对内存中的共享数据进行操作的特殊指令。CAS指令会对内存中的共享数据做原子的读写操作。简单介绍一下这个指令的操作过程:首先,CPU会将内存...
private final ConcurrentLinkedQueue<Object> eventQueue = new ConcurrentLinkedQueue(); private ConcurrentHashMap, ConcurrentLinkedQueue<Subscriber>> subscribersMap = new ConcurrentHashMap(); public...
14. **减少DOM解析**:处理XML时,DOM解析器会将整个文档加载到内存,而SAX或StAX解析器则按需读取,适用于大文件。 15. **数据库优化**:正确设计数据库索引,减少JOIN操作,使用批处理更新和查询,都能显著提高...
第48节并发容器ConcurrentLinkedQueue原理与使用00:31:03分钟 | 第49节Java中的阻塞队列原理与使用00:26:18分钟 | 第50节实战:简单实现消息队列00:11:07分钟 | 第51节并发容器ConcurrentHashMap原理与使用00:38:...
第48节并发容器ConcurrentLinkedQueue原理与使用00:31:03分钟 | 第49节Java中的阻塞队列原理与使用00:26:18分钟 | 第50节实战:简单实现消息队列00:11:07分钟 | 第51节并发容器ConcurrentHashMap原理与使用00:38:...
第48节并发容器ConcurrentLinkedQueue原理与使用00:31:03分钟 | 第49节Java中的阻塞队列原理与使用00:26:18分钟 | 第50节实战:简单实现消息队列00:11:07分钟 | 第51节并发容器ConcurrentHashMap原理与使用00:38:...
第48节并发容器ConcurrentLinkedQueue原理与使用00:31:03分钟 | 第49节Java中的阻塞队列原理与使用00:26:18分钟 | 第50节实战:简单实现消息队列00:11:07分钟 | 第51节并发容器ConcurrentHashMap原理与使用00:38:...
数据结构java队列——queue详细解析Queue:先进先出(FIFO)的数据结构。与List、Set同一级别,都是继承了Collection接口。LinkedList、ConCurrentLinkedQueue、LinkedBkockingQueue对比分析存储无序不重复的值对象的...
本文将深入探讨如何在Android系统上实现串口连接通信,并重点解析采用队列排队发送数据以及多线程处理发送与接收的过程。 一、Android串口基础 串口通信,又称为串行通信,是一种通过串行数据传输接口进行设备间...
1. **并发容器**:Java 提供了线程安全的集合类,如 `ConcurrentHashMap`(线程安全的哈希表)、`ConcurrentLinkedQueue`(无界并发队列)和 `CopyOnWriteArrayList`(读多写少场景下的线程安全列表)。 2. **`...
11. **XML处理**:DOM、SAX、StaX解析XML,理解XML的结构和解析原理。 12. **JDBC数据库操作**:连接数据库,执行SQL语句,使用PreparedStatement,事务处理,结果集的遍历。 13. **GUI编程**:Swing或JavaFX库...
其次,书中深入解析了Java中的同步机制,如synchronized关键字、wait()、notify()和notifyAll()方法,以及Lock接口和ReentrantLock类。这些同步工具用于避免数据竞争,确保线程安全。书中还会讲解死锁、活锁和饥饿等...
2. **同步机制**:深入解析了Java的同步控制工具,如`synchronized`关键字、`wait()`、`notify()`和`notifyAll()`方法,以及如何避免死锁、活锁和饥饿问题。还讨论了volatile变量和Java内存模型的作用。 3. **并发...
7. 并发集合基础知识:ConcurrentHashMap实战与原理、源码详解、ConcurrentLinkedQueue实战与原理、源码详解、ConcurrentSkipListMap实战与原理、源码详解、CopyOnWriteArrayList实战与原理、源码详解等。...