- 浏览: 980987 次
文章分类
- 全部博客 (428)
- Hadoop (2)
- HBase (1)
- ELK (1)
- ActiveMQ (13)
- Kafka (5)
- Redis (14)
- Dubbo (1)
- Memcached (5)
- Netty (56)
- Mina (34)
- NIO (51)
- JUC (53)
- Spring (13)
- Mybatis (17)
- MySQL (21)
- JDBC (12)
- C3P0 (5)
- Tomcat (13)
- SLF4J-log4j (9)
- P6Spy (4)
- Quartz (12)
- Zabbix (7)
- JAVA (9)
- Linux (15)
- HTML (9)
- Lucene (0)
- JS (2)
- WebService (1)
- Maven (4)
- Oracle&MSSQL (14)
- iText (11)
- Development Tools (8)
- UTILS (4)
- LIFE (8)
最新评论
-
Donald_Draper:
Donald_Draper 写道刘落落cici 写道能给我发一 ...
DatagramChannelImpl 解析三(多播) -
Donald_Draper:
刘落落cici 写道能给我发一份这个类的源码吗Datagram ...
DatagramChannelImpl 解析三(多播) -
lyfyouyun:
请问楼主,执行消息发送的时候,报错:Transport sch ...
ActiveMQ连接工厂、连接详解 -
ezlhq:
关于 PollArrayWrapper 状态含义猜测:参考 S ...
WindowsSelectorImpl解析一(FdMap,PollArrayWrapper) -
flyfeifei66:
打算使用xmemcache作为memcache的客户端,由于x ...
Memcached分布式客户端(Xmemcached)
AtomicInteger解析:http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
下面我么来单独看一下,await和countDown,先看await
//AQS
来看CountDownLatch-内部同步器SYNC的tryAcquireShared实现
//尝试以公平的方式,获取锁,当锁状态为0,则返回1,获取成功,否则为-1,失败
再看第二步
//AQS
我们再来看一下
这一句是什么意思?
//释放锁
CountDownLatch-内部同步器SYNC的tryReleaseShared实现
//尝试释放共享锁
总结:
CountDownLatch本质上是一个共享锁,是一个多功能的同步工具,可用被用于很多场景。当count初始化为1时,CountDownLatch可以作为一个简单的on/off闭锁,或者可以理解为一扇门:所有调用await的线程,等待这扇门被线程调用countDown打开。
CountDownLatch初始化为N时,这种情况,可以用作一下场景:1.一个线程等待,直到N个线程完成工作或任务;2.一个任务被完成N次。CountDownLatch内部有一个基于AQS实现的共享
锁,用SYNC的状态status,来表示,锁可以被多少个线程所共享,当锁被所有的线程打开countDown,则其他线程可以获取锁。在锁没有被完全打开之前,其他线程,自旋,尝试获取共享锁,在这个过程中,线程可能被park,或者中断。
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.concurrent.locks.*; import java.util.concurrent.atomic.*; /** * A synchronization aid that allows one or more threads to wait until * a set of operations being performed in other threads completes. * 一个同步的辅助,允许一个或多个线程等待,直到一个集合操作或任务, 在其他线程中被执行完, * <p>A {@code CountDownLatch} is initialized with a given [i]count[/i]. * The {@link #await await} methods block until the current count reaches * zero due to invocations of the {@link #countDown} method, after which * all waiting threads are released and any subsequent invocations of * {@link #await await} return immediately. This is a one-shot phenomenon * -- the count cannot be reset. If you need a version that resets the * count, consider using a {@link CyclicBarrier}. CountDownLatch被初始化为一个给定的数量count。await方法阻塞,直到其他线程或自己, 调用#countDown方法,使count达到零为止;当count达到0时,所有await的线程,将被立刻 released唤醒。CountDownLatch是一次性的,不能被复位。如果需要将count,重置为初始值, 可以考虑用CyclicBarrier。 * * <p>A {@code CountDownLatch} is a versatile synchronization tool * and can be used for a number of purposes. A * {@code CountDownLatch} initialized with a count of one serves as a * simple on/off latch, or gate: all threads invoking {@link #await await} * wait at the gate until it is opened by a thread invoking {@link * #countDown}. A {@code CountDownLatch} initialized to [i]N[/i] * can be used to make one thread wait until [i]N[/i] threads have * completed some action, or some action has been completed N times. * CountDownLatch是一个多功能的同步工具,可用被用于很多场景。当count初始化为1时, CountDownLatch可以作为一个简单的on/off闭锁,或者可以理解为一扇门:所有调用await 的线程,等待这扇门被线程调用countDown打开。CountDownLatch初始化为N时,这种情况, 可以用作一下场景:1.一个线程等待,直到N个线程完成工作或任务;2.一个任务被完成N次。 * <p>A useful property of a {@code CountDownLatch} is that it * doesn't require that threads calling {@code countDown} wait for * the count to reach zero before proceeding, it simply prevents any * thread from proceeding past an {@link #await await} until all * threads could pass. * CountDownLatch一个很重要的属性是,它不需要关心,那些线程调用了countDown, 使count达到0,只需要阻止线程通过闭锁门,直到所有线程任务完成。 * <p><b>Sample usage:</b> Here is a pair of classes in which a group * of worker threads use two countdown latches: 这是一个用两个闭锁完成工作线程任务的实例 * [list] * <li>The first is a start signal that prevents any worker from proceeding * until the driver is ready for them to proceed; * <li>The second is a completion signal that allows the driver to wait * until all workers have completed. * [/list] * 开始闭锁,用于阻止所有线程开始工作,直到线程准备好;第二个闭锁用于等待所有的 工作线程完成任务 * <pre> * class Driver { // ... * void main() throws InterruptedException { * CountDownLatch startSignal = new CountDownLatch(1); * CountDownLatch doneSignal = new CountDownLatch(N); * * for (int i = 0; i < N; ++i) // create and start threads * new Thread(new Worker(startSignal, doneSignal)).start(); * * doSomethingElse(); // don't let run yet * startSignal.countDown(); // let all threads proceed * doSomethingElse(); * doneSignal.await(); // wait for all to finish * } * } * * class Worker implements Runnable { * private final CountDownLatch startSignal; * private final CountDownLatch doneSignal; * Worker(CountDownLatch startSignal, CountDownLatch doneSignal) { * this.startSignal = startSignal; * this.doneSignal = doneSignal; * } * public void run() { * try { * startSignal.await(); * doWork(); * doneSignal.countDown(); * } catch (InterruptedException ex) {} // return; * } * * void doWork() { ... } * } * * </pre> * * <p>Another typical usage would be to divide a problem into N parts, * describe each part with a Runnable that executes that portion and * counts down on the latch, and queue all the Runnables to an * Executor. When all sub-parts are complete, the coordinating thread * will be able to pass through await. (When threads must repeatedly * count down in this way, instead use a {@link CyclicBarrier}.) * 另一个典型的应用场景,是将一个问题分成N部分,每个部分用一个线程去执行, 执行完后,countdown,用线程池执行线程队列。当所有的分部分任务执行完, 协调线程可以pass await。若果想重复countdown,可以用CyclicBarrier * <pre> * class Driver2 { // ... * void main() throws InterruptedException { * CountDownLatch doneSignal = new CountDownLatch(N); * Executor e = ... * * for (int i = 0; i < N; ++i) // create and start threads * e.execute(new WorkerRunnable(doneSignal, i)); * * doneSignal.await(); // wait for all to finish * } * } * * class WorkerRunnable implements Runnable { * private final CountDownLatch doneSignal; * private final int i; * WorkerRunnable(CountDownLatch doneSignal, int i) { * this.doneSignal = doneSignal; * this.i = i; * } * public void run() { * try { * doWork(i); * doneSignal.countDown(); * } catch (InterruptedException ex) {} // return; * } * * void doWork() { ... } * } * * </pre> *这个不翻译了:翻译过后,没有原始的味道。 * <p>Memory consistency effects: Until the count reaches * zero, actions in a thread prior to calling * {@code countDown()} * [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url] * actions following a successful return from a corresponding * {@code await()} in another thread. * * @since 1.5 * @author Doug Lea */ public class CountDownLatch { /** * Synchronization control For CountDownLatch. * Uses AQS state to represent count. */ //基于AQS的内部同步器Sync private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; //构造同步器,设置状态为count Sync(int count) { setState(count); } //获取锁状态 int getCount() { return getState(); } //尝试以公平的方式,获取锁,当锁状态为0,则返回1,否则为-1 protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } //尝试释放共享锁 protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { //自旋尝试释放共享锁 int c = getState(); if (c == 0) //如果锁状态为0,则释放失败 return false; int nextc = c-1; //以CAS方式,修改锁状态,减1 if (compareAndSetState(c, nextc)) return nextc == 0; } } } //内部锁 private final Sync sync; /** * Constructs a {@code CountDownLatch} initialized with the given count. * * @param count the number of times {@link #countDown} must be invoked * before threads can pass through {@link #await} * @throws IllegalArgumentException if {@code count} is negative //构造CountDownLatch */ public CountDownLatch(int count) { if (count < 0) throw new IllegalArgumentException("count < 0"); this.sync = new Sync(count); } /** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}. *阻塞当前线程,直到锁count为零,或者线程被中断。 * <p>If the current count is zero then this method returns immediately. *count为0,则方法以及返回 * <p>If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of two things happen: 如果count大于零,当前线程,自旋获取锁,直到获取锁,或线程中断 * [list] * <li>The count reaches zero due to invocations of the * {@link #countDown} method; or * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread. * [/list] * * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. *当线程等待时,被中断;当抛出异常时,中断位将被清除。 * @throws InterruptedException if the current thread is interrupted * while waiting */ public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); } /** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}, * or the specified waiting time elapses. * 如果count大于零,当前线程,自旋获取锁,直到获取锁,或线程中断,或时间超时 * <p>If the current count is zero then this method returns immediately * with the value {@code true}. * * <p>If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of three things happen: * [list] * <li>The count reaches zero due to invocations of the * {@link #countDown} method; or * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or * <li>The specified waiting time elapses. * [/list] * * <p>If the count reaches zero then the method returns with the * value {@code true}. * * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * * <p>If the specified waiting time elapses then the value {@code false} * is returned. If the time is less than or equal to zero, the method * will not wait at all. * * @param timeout the maximum time to wait * @param unit the time unit of the {@code timeout} argument * @return {@code true} if the count reached zero and {@code false} * if the waiting time elapsed before the count reached zero * @throws InterruptedException if the current thread is interrupted * while waiting */ public boolean await(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } /** * Decrements the count of the latch, releasing all waiting threads if * the count reaches zero. *释放共享锁 * <p>If the current count is greater than zero then it is decremented. * If the new count is zero then all waiting threads are re-enabled for * thread scheduling purposes. * * <p>If the current count equals zero then nothing happens. */ public void countDown() { sync.releaseShared(1); } /** * Returns the current count.返回当前锁状态 * <p>This method is typically used for debugging and testing purposes. * @return the current count */ public long getCount() { return sync.getCount(); } }
下面我么来单独看一下,await和countDown,先看await
public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); }
//AQS
** * Acquires in shared mode, aborting if interrupted. Implemented * by first checking interrupt status, then invoking at least once * {@link #tryAcquireShared}, returning on success. Otherwise the * thread is queued, possibly repeatedly blocking and unblocking, * invoking {@link #tryAcquireShared} until success or the thread * is interrupted. 获取共享模式锁,如果中断,则aborting,首先检查中断状态,然后自旋, 尝试获取共享锁,直到成功。如果线程由于未获取锁,进入队列,可能需要 重复blocking and unblocking,尝试获取共享锁,直到成功,或线程中断。 * @param arg the acquire argument * This value is conveyed to {@link #tryAcquireShared} but is * otherwise uninterpreted and can represent anything * you like. * @throws InterruptedException if the current thread is interrupted */ public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) //如果线程中断,则抛出中断异常 throw new InterruptedException(); 尝试获取锁,如果失败doAcquireSharedInterruptibly if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); } //待父类扩展 protected int tryAcquireShared(int arg) { throw new UnsupportedOperationException(); }
来看CountDownLatch-内部同步器SYNC的tryAcquireShared实现
//尝试以公平的方式,获取锁,当锁状态为0,则返回1,获取成功,否则为-1,失败
protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; }
再看第二步
doAcquireSharedInterruptibly(arg);
//AQS
/** * Acquires in shared interruptible mode. * @param arg the acquire argument */ //以共享可中断方式,获取锁 private void doAcquireSharedInterruptibly(int arg) throws InterruptedException { //添加共享节点到同步等待队列 final Node node = addWaiter(Node.SHARED); boolean failed = true; try { //自旋,尝试获取锁,成功则返回 for (;;) { final Node p = node.predecessor(); /*如果节点的前驱是头节点,当前节点为第一个有效节点, 则尝试获取锁,如果获取成功*/ if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { /*设置当前节点为头结点,如果需要唤醒后继节点线程,则unpark 后继节点线程,如果状态为0,则是指状态为PROPAGATE,通知后继节点 锁已释放。*/ setHeadAndPropagate(node, r); p.next = null; // help GC failed = false; return; } } /*如果前驱不是头结点,则判断尝试获取失败,是否应该park, 如果是,则park,检查是否应该中断,当前线程,如果是,则中断 当前线程。*/ if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) //获取锁过程,失败则,移除线程节点 cancelAcquire(node); } }
我们再来看一下
setHeadAndPropagate(node, r);
这一句是什么意思?
/** * Sets head of queue, and checks if successor may be waiting * in shared mode, if so propagating if either propagate > 0 or * PROPAGATE status was set. *设置队列的头结点,检查后继节点是否在等待共享锁,成功回去则返回1, 所以这里propagate==1 * @param node the node * @param propagate the return value from a tryAcquireShared */ private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below //当节点获取锁,成功则设置为头结点 setHead(node); /* * Try to signal next queued node if: * Propagation was indicated by caller, * or was recorded (as h.waitStatus) by a previous operation * (note: this uses sign-check of waitStatus because * PROPAGATE status may transition to SIGNAL.) 唤醒后继节点 * and * The next node is waiting in shared mode, * or we don't know, because it appears null * * The conservatism in both of these checks may cause * unnecessary wake-ups, but only when there are multiple * racing acquires/releases, so most need signals now or soon * anyway. */ if (propagate > 0 || h == null || h.waitStatus < 0) { Node s = node.next; if (s == null || s.isShared()) doReleaseShared(); } } /** * Release action for shared mode -- signal successor and ensure * propagation. (Note: For exclusive mode, release just amounts * to calling unparkSuccessor of head if it needs signal.) */ 释放共享模式锁,唤醒后继,确保后继获取锁 private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. 确保释放锁信号,传递,即使与其他线程在尝试获取或释放锁。如果头结点的 后继需要唤醒,则需要unpark后继节点。如果不需要,则设置状态为PROPAGATE ,确保等待线程知道,锁已经释放,继续传播锁释放信号。 */ for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { //如果头结点,需要唤醒后继节点线程,则以CAS方式, //设置节点头结点状态为初始化锁状态0 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases //unpark 头结点后继节点 unparkSuccessor(h); } else if (ws == 0 && //如果状态为0,则需要设置节点状态为PROPAGATE,通知后继节点,锁已释放 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
//释放锁
public void countDown() { sync.releaseShared(1); }
/** * Releases in shared mode. Implemented by unblocking one or more * threads if {@link #tryReleaseShared} returns true. *释放共享模式锁 * @param arg the release argument. This value is conveyed to * {@link #tryReleaseShared} but is otherwise uninterpreted * and can represent anything you like. * @return the value returned from {@link #tryReleaseShared} */ public final boolean releaseShared(int arg) { //CountDownLatch-内部同步器SYNC的tryReleaseShared实现 if (tryReleaseShared(arg)) { //这个在前面以说过 doReleaseShared(); return true; } return false; } 待子类扩展 protected boolean tryReleaseShared(int arg) { throw new UnsupportedOperationException(); }
CountDownLatch-内部同步器SYNC的tryReleaseShared实现
//尝试释放共享锁
protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { //自旋尝试释放共享锁 int c = getState(); if (c == 0) //如果锁状态为0,则释放失败 return false; int nextc = c-1; //以CAS方式,修改锁状态,减1 if (compareAndSetState(c, nextc)) return nextc == 0; } }
总结:
CountDownLatch本质上是一个共享锁,是一个多功能的同步工具,可用被用于很多场景。当count初始化为1时,CountDownLatch可以作为一个简单的on/off闭锁,或者可以理解为一扇门:所有调用await的线程,等待这扇门被线程调用countDown打开。
CountDownLatch初始化为N时,这种情况,可以用作一下场景:1.一个线程等待,直到N个线程完成工作或任务;2.一个任务被完成N次。CountDownLatch内部有一个基于AQS实现的共享
锁,用SYNC的状态status,来表示,锁可以被多少个线程所共享,当锁被所有的线程打开countDown,则其他线程可以获取锁。在锁没有被完全打开之前,其他线程,自旋,尝试获取共享锁,在这个过程中,线程可能被park,或者中断。
发表评论
-
Executors解析
2017-04-07 14:38 1246ThreadPoolExecutor解析一(核心线程池数量、线 ... -
ScheduledThreadPoolExecutor解析三(关闭线程池)
2017-04-06 20:52 4451ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析二(任务调度)
2017-04-06 12:56 2117ScheduledThreadPoolExecutor解析一( ... -
ScheduledThreadPoolExecutor解析一(调度任务,任务队列)
2017-04-04 22:59 4987Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析四(线程池关闭)
2017-04-03 23:02 9100Executor接口的定义:http: ... -
ThreadPoolExecutor解析三(线程池执行提交任务)
2017-04-03 12:06 6082Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析二(线程工厂、工作线程,拒绝策略等)
2017-04-01 17:12 3036Executor接口的定义:http://donald-dra ... -
ThreadPoolExecutor解析一(核心线程池数量、线程池状态等)
2017-03-31 22:01 20514Executor接口的定义:http://donald-dra ... -
ScheduledExecutorService接口定义
2017-03-29 12:53 1503Executor接口的定义:http://donald-dra ... -
AbstractExecutorService解析
2017-03-29 08:27 1072Executor接口的定义:http: ... -
ExecutorCompletionService解析
2017-03-28 14:27 1586Executor接口的定义:http://donald-dra ... -
CompletionService接口定义
2017-03-28 12:39 1061Executor接口的定义:http://donald-dra ... -
FutureTask解析
2017-03-27 12:59 1325package java.util.concurrent; ... -
Future接口定义
2017-03-26 09:40 1193/* * Written by Doug Lea with ... -
ExecutorService接口定义
2017-03-25 22:14 1159Executor接口的定义:http://donald-dra ... -
Executor接口的定义
2017-03-24 23:24 1672package java.util.concurrent; ... -
简单测试线程池拒绝执行任务策略
2017-03-24 22:37 2025线程池多余任务的拒绝执行策略有四中,分别是直接丢弃任务Disc ... -
JAVA集合类简单综述
2017-03-23 22:51 920Queue接口定义:http://donald-draper. ... -
DelayQueue解析
2017-03-23 11:00 1733Queue接口定义:http://donald-draper. ... -
SynchronousQueue解析下-TransferQueue
2017-03-22 22:20 2133Queue接口定义:http://donald-draper. ...
相关推荐
CountDownLatch 是 Java 中的一个同步工具类,位于 `java.util.concurrent` 包下,它主要用于多线程间的协作,尤其在需要等待所有线程执行完指定任务后才能继续执行的情况。这个类通过一个计数器(计数down)来实现...
6.3 Semaphorer&CountDownLatch详 解副本.mp4
CountDownLatch 是 Java 中一个强大的并发工具类,常用于线程间的协调与同步。它由 Java Concurrency Utilities (JCU) 包中的 `java.util.concurrent` 类库提供。CountDownLatch 的核心功能是允许一个或多个线程等待...
6.3 Semaphorer&CountDownLatch详 解副本副本.mp4
6.3 Semaphorer&CountDownLatch详 解副本副本副本.mp4
并发工具类CountDownLatch详解.mp4 并发工具类CyclicBarrier 详解.mp4 并发工具类Semaphore详解.mp4 并发工具类Exchanger详解.mp4 CountDownLatch,CyclicBarrier,Semaphore源码解析.mp4 提前完成任务之FutureTask...
第37节并发工具类CountDownLatch详解00:22:04分钟 | 第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节...
第37节并发工具类CountDownLatch详解00:22:04分钟 | 第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节...
第37节并发工具类CountDownLatch详解00:22:04分钟 | 第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节...
第37节并发工具类CountDownLatch详解00:22:04分钟 | 第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节...
JAVA多线程CountDownLatch使用详解 JAVA多线程CountDownLatch是JAVA多线程编程中的一种同步工具,主要用来让某个线程等待其他线程执行完毕后再继续执行。下面我们将详细介绍JAVA多线程CountDownLatch的使用和原理。...
Java中CountDownLatch进行多线程同步详解及实例代码 CountDownLatch是Java中的一种多线程同步辅助类,主要用来同步多个任务的执行。它允许一个或多个线程等待,直到一组正在其他线程中执行的操作完成。下面是对...
"Java 并发工具类详解" Java 并发工具类是 Java 并发编程的核心组件之一,提供了多种同步结构和并发容器,帮助开发者创建高效、可靠的并发程序。本文将详细介绍 Java 并发工具类的四大类:CountDownLatch、...
### CountDownLatch 和 CyclicBarrier 的运用(含AQS详解) #### CountDownLatch **定义与特点:** CountDownLatch 是 Java 并发包中的一个重要组件,它主要用于解决“一个或多个线程等待其他线程完成任务”的问题。...
CountDownLatch同步工具类使用详解 CountDownLatch是一个java.util.concurrent包下的同步工具类,它允许一个或多个线程等待直到在其他线程中一组操作执行完成。CountDownLatch的用法非常简单,它可以用来控制线程的...
CountDownLatch 是 Java 中一个强大的并发工具,用于协调多个线程之间的同步。它是 java.util.concurrent 包中的一个类,主要用于在多线程环境下让一个或多个线程等待其他线程完成操作。CountDownLatch 的核心功能是...
Java CountDownLatch 完成异步回调实例详解 Java 中的 CountDownLatch 是一个同步辅助类,允许一个线程等待其他线程完成操作。它是一种非常有用的工具,用于在多线程环境中实现异步回调。在本文中,我们将学习如何...
Java中的CountDownLatch是一种多线程同步工具类,它允许一个或多个线程等待其他线程完成操作。在Java多线程编程中,CountDownLatch扮演着“共享锁”的角色,类似于读写锁中的ReadLock,其核心功能是通过一个计数器来...