`
zhangxiong0301
  • 浏览: 361021 次
社区版块
存档分类
最新评论

HADOOP平台优化综述(转自董的博客)

阅读更多

1.     概述

 

随着企业要处理的数据量越来越大,MapReduce思想越来越受到重视。Hadoop是MapReduce的一个开源实现,由于其良好的扩展性和容错性,已得到越来越广泛的应用。Hadoop作为一个基础数据处理平台,虽然其应用价值已得到大家认可,但仍存在很多问题,以下是主要几个:

(1)     Namenode/jobtracker单点故障。 Hadoop采用的是master/slaves架构,该架构管理起来比较简单,但存在致命的单点故障和空间容量不足等缺点,这已经严重影响了Hadoop的可扩展性。

(2)     HDFS小文件问题。在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1000 0000个小文件,每个文件占用一个block,则namenode需要2G空间。如果存储1亿个文件,则namenode需要20G空间。这样namenode内存容量严重制约了集群的扩展。

(3)     jobtracker同时进行监控和调度,负载过大。为了解决该问题,yahoo已经开始着手设计下一代Hadoop MapReduce(见参考资料1)。他们的主要思路是将监控和调度分离,独立出一个专门的组件进行监控,而jobtracker只负责总体调度,至于局部调度,交给作业所在的client。

(4)     数据处理性能。 很多实验表明,其处理性能有很大的提升空间。Hadoop类似于数据库,可能需要专门的优化工程师根据实际的应用需要对Hadoop进行调优,有人称之为“Hadoop Performance Optimization” (HPO)。

为了提高其数据性能,很多人开始优化Hadoop。总结看来,对于Hadoop,当前主要有几个优化思路:

(1)  从应用程序角度进行优化。由于mapreduce是迭代逐行解析数据文件的,怎样在迭代的情况下,编写高效率的应用程序,是一种优化思路。

(2)  对Hadoop参数进行调优。当前hadoop系统有190多个配置参数,怎样调整这些参数,使hadoop作业运行尽可能的快,也是一种优化思路。

(3) 从系统实现角度进行优化。这种优化难度是最大的,它是从hadoop实现机制角度,发现当前Hadoop设计和实现上的缺点,然后进行源码级地修改。该方法虽难度大,但往往效果明显。

以上三种思路出发点均是提高hadoop应用程序的效率。实际上,随着社会的发展,绿色环保观念也越来越多地融入了企业,因而很多人开始研究Green Hadoop,即怎样让Hadoop完成相应数据处理任务的同时,使用最少的能源(见参考资料[14][15])。

本文主要介绍了当前学术界的一些优化思路,有人试图从Hadoop自动配置角度对Hadoop进行优化,但更多的是从系统实现角度进行优化,概括其优化点和实验效果如下:

(1)   论文[6]试图从参数自动调优角度对Hadoop进行优化,论文只给出了可能的解决方案,并未给出实现,因而效果不可知。但它给出了一种Hadoop优化的新思路,即怎样对其190多个配置参数进行自动调整,使应用程序执行效率最高。

(2)  论文[7]提出prefetching和preshuffling机制,在不同负载不同规模集群下测试,效率提升了约73%。

(3)  论文[8]研究了影响Hadoop效率的五个因素,并通过提出相应的解决方案,使Hadoop效率提高了2.5~3.5倍。

(4)  论文[9]为Hadoop提供了一种索引机制– Trojan Index,同时提出了一种高效的join算法– Trojan Join,实验表明,效率比Hadoop和HadoopDB高很多。

除了学术界的优化,工业界也在不断进行优化以适应自己公司的产品需要,主要有:

(1)Baidu公司。baidu对Hadoop中关键组件使用C++进行了重写(包括map, shuffler和reducer等),经他们内部测试(5 nodes,40GB data),效率提升了约20%(见参考资料[4])。

(2)淘宝。淘宝针对自己集群特点(作业小,slot多,作业之间有依赖,集群共享,有些作业有时效性),对jobtracker和namenode进行了优化,据其官方博客称,其jobtracker有较大性能提升,且namenode吞吐量提升了8+倍(见参考资料[5])。但其具体优化方法,未公开。

2.     从应用程序角度进行优化

(1) 避免不必要的reduce任务

如果要处理的数据是排序且已经分区的,或者对于一份数据, 需要多次处理, 可以先排序分区;然后自定义InputSplit, 将单个分区作为单个mapred的输入;在map中处理数据, Reducer设置为空。

这样, 既重用了已有的 “排序”, 也避免了多余的reduce任务。

(2)外部文件引入

有些应用程序要使用外部文件,如字典,配置文件等,这些文件需要在所有task之间共享,可以放到分布式缓存DistributedCache中(或直接采用-files选项,机制相同)。

更多的这方面的优化方法,还需要在实践中不断积累。

(3) 为job添加一个Combiner

为job添加一个combiner可以大大减少shuffle阶段从map task拷贝给远程reduce task的数据量。一般而言,combiner与reducer相同。

(4) 根据处理数据特征使用最适合和简洁的Writable类型

Text对象使用起来很方便,但它在由数值转换到文本或是由UTF8字符串转换到文本时都是低效的,且会消耗大量的CPU时间。当处理那些非文本的数据时,可以使用二进制的Writable类型,如IntWritable, FloatWritable等。二进制writable好处:避免文件转换的消耗;使map task中间结果占用更少的空间。

(5) 重用Writable类型

很多MapReduce用户常犯的一个错误是,在一个map/reduce方法中为每个输出都创建Writable对象。例如,你的Wordcout mapper方法可能这样写:

1
2
3
4
5
6
7
8
9
10
11
public void map(...) {
 
  
 
  for (String word : words) {
 
    output.collect(new Text(word), new IntWritable(1));
 
  }
 
}

这样会导致程序分配出成千上万个短周期的对象。Java垃圾收集器就要为此做很多的工作。更有效的写法是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class MyMapper … {
 
  Text wordText = new Text();
 
  IntWritable one = new IntWritable(1);
 
  public void map(...) {
 
    for (String word: words) {
 
      wordText.set(word);
 
      output.collect(wordText, one);
 
    }
 
  }
 
}

(6) 使用StringBuffer而不是String

当需要对字符串进行操作时,使用StringBuffer而不是String,String是read-only的,如果对它进行修改,会产生临时对象,而StringBuffer是可修改的,不会产生临时对象。

(7)调试

最重要,也是最基本的,是要掌握MapReduce程序调试方法,跟踪程序的瓶颈。具体可参考:

http://www.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/

3.     对参数进行调优

3.1    参数自动调优

论文[6]试图从自动化参数调优角度对hadoop应用程序运行效率进行优化。Hadoop目前有190多个配置参数,其中大约有25个对hadoop应用程序效率有显著的影响。

论文首先分析了database优化思路。Database会根据用户输入的SQL建立一个代价模型:,其中y表示查询q优化目标(如运行时间),p表示q的查询计划,r表示为执行计划p而申请的资源量,d表示一些统计信息。数据库会根据该代价模型评估不同的查询计划,并选择一个最优的执行查询。这种数据库模型很难扩展应用到mapreduce环境中,主要是因为:

(1)    mapreduce作业一般是采用C,C++或java编写,与声明性语言SQL有明显不同。

(2)    缺少有关输入数据的统计信息。Mapreduce作业通常是运行时解析动态输入文件的,因而运行之前schema或者统计信息均是未知的。

(3)    它们的优化空间不同。数据库的查询优化空间(主要是选择最优的plan)与mapreduce的优化空间(主要是配置参数调优)不同。

本论文提出了三种可行的方案,第一种是基于采样的方法,借鉴Terasort作业的思路,先对输入数据进行采样,然后通过样本估算不同配置下作业的执行时间,最后选择一种最优的配置。该方法需要解决的一个问题是,由于reduce阶段和map阶段存在数据依赖,因而map完成之前,reduce的所有信息均是未知的。有一种也是可行的思路是,执行作业之前,先采样选择一个样本组成一个小作业,然后执行该小作业以估算大作业性能。该方法也存在一个需要解决的问题,怎样采样才能使样本最能代表总体?

第二种是Late Binding,即延迟绑定,其思想是延迟设置其中的一个或多个参数,直到job已经部分执行,且这些参数可以确定。比如hadoop中的combiner操作实际就是采用的这一机制,作业在执行完map()之前不知道要不要进行combine。

第三种是Competition-based Approaches,其思想是,首先,同时执行多个配置有不同参数的task,然后,尽快决定哪种配置的task执行速度快,最后,杀掉其它task。

该文章完全是个调研性的论文,它先研究了数据库的一些调优方法,经过研究发现不可以直接将这些方法应用于mapreduce系统中,进而针对mapreduce独有的特点,提出了几种也许可行的方法,但论文中并未给出实现。

3.2    参数手工配置

3.2.1 Linux文件系统参数调整

(1) noatime 和 nodiratime属性

文件挂载时设置这两个属性可以明显提高性能。。默认情况下,Linux ext2/ext3 文件系统在文件被访问、创建、修改时会记录下文件的时间戳,比如:文件创建时间、最近一次修改时间和最近一次访问时间。如果系统运行时要访问大量文件,关闭这些操作,可提升文件系统的性能。Linux 提供了 noatime 这个参数来禁止记录最近一次访问时间戳。

(2) readahead buffer

调整linux文件系统中预读缓冲区地大小,可以明显提高顺序读文件的性能。默认buffer大小为256 sectors,可以增大为1024或者2408 sectors(注意,并不是越大越好)。可使用blockdev命令进行调整。

(3) 避免RAID和LVM操作

避免在TaskTracker和DataNode的机器上执行RAID和LVM操作,这通常会降低性能。

3.2.2 Hadoop通用参数调整

(1) dfs.namenode.handler.count或mapred.job.tracker.handler.count

namenode或者jobtracker中用于处理RPC的线程数,默认是10,较大集群,可调大些,比如64。

(2) dfs.datanode.handler.count

datanode上用于处理RPC的线程数。默认为3,较大集群,可适当调大些,比如8。需要注意的是,每添加一个线程,需要的内存增加。

(3) tasktracker.http.threads

HTTP server上的线程数。运行在每个TaskTracker上,用于处理map task输出。大集群,可以将其设为40~50。

3.2.3 HDFS相关配置

(1) dfs.replication

文件副本数,通常设为3,不推荐修改。

(2) dfs.block.size

HDFS中数据block大小,默认为64M,对于较大集群,可设为128MB或者256MB。(也可以通过参数mapred.min.split.size配置)

(3) mapred.local.dir和dfs.data.dir

这两个参数mapred.local.dir和dfs.data.dir 配置的值应当是分布在各个磁盘上目录,这样可以充分利用节点的IO读写能力。运行 Linux sysstat包下的iostat -dx 5命令可以让每个磁盘都显示它的利用率。

3.2.4 map/reduce 相关配置

(1) {map/reduce}.tasks.maximum

同时运行在TaskTracker上的最大map/reduce task数,一般设为(core_per_node)/2~2*(cores_per_node)。

(2) io.sort.factor

当一个map task执行完之后,本地磁盘上(mapred.local.dir)有若干个spill文件,map task最后做的一件事就是执行merge sort,把这些spill文件合成一个文件(partition)。执行merge sort的时候,每次同时打开多少个spill文件由该参数决定。打开的文件越多,不一定merge sort就越快,所以要根据数据情况适当的调整。

(3) mapred.child.java.opts

设置JVM堆的最大可用内存,需从应用程序角度进行配置。

3.2.5 map task相关配置

(1) io.sort.mb

Map task的输出结果和元数据在内存中所占的buffer总大小。默认为100M,对于大集群,可设为200M。当buffer达到一定阈值,会启动一个后台线程来对buffer的内容进行排序,然后写入本地磁盘(一个spill文件)。

(2) io.sort.spill.percent

这个值就是上述buffer的阈值,默认是0.8,即80%,当buffer中的数据达到这个阈值,后台线程会起来对buffer中已有的数据进行排序,然后写入磁盘。

(3) io.sort.record

Io.sort.mb中分配给元数据的内存百分比,默认是0.05。这个需要根据应用程序进行调整。

(4) mapred.compress.map.output/ Mapred.output.compress

中间结果和最终结果是否要进行压缩,如果是,指定压缩方式(Mapred.compress.map.output.codec/ Mapred.output.compress.codec)。推荐使用LZO压缩。Intel内部测试表明,相比未压缩,使用LZO压缩的TeraSort作业运行时间减少60%,且明显快于Zlib压缩。

3.2.6 reduce task相关配置

(1) Mapred.reduce.parallel

 

Reduce shuffle阶段copier线程数。默认是5,对于较大集群,可调整为16~25。

 

4.     从系统实现角度进行优化

 

4.1    在可移植性和性能之间进行权衡

论文[16]主要针对HDFS进行了优化,它分析了HDFS性能低下的两个原因:调度延迟和可移植性假设。

(1) 调度延迟

Hadoop采用的是动态调度算法,即:当某个tasktracker上出现空slot时,它会通过HEARBEAT(默认时间间隔为3s,当集群变大时,会适当调大)告诉jobtracker,之后jobtracker采用某种调度策略从待选task中选择一个,再通过HEARBEAT告诉tasktracker。从整个过程看,HDFS在获取下一个task之前,一直处于等待状态,这造成了资源利用率不高。此外,由于tasktracker获取新task后,其数据读取过程是完全串行化的,即:tasktracker获取task后,依次连接namenode,连接datanode并读取数据,处理数据。在此过程中,当tasktracker连接namenode和datanode时,HDFS仍在处于等待状态。

为了解决调度延迟问题,可以考虑的解决方案有:重叠I/O和CPU阶段(pipelining),task预取(task prefetching),数据预取(data prefetching)等

(2)可移植性假设

为了增加Hadoop的可移植性,它采用java语言编写,这实际上也潜在的造成了HDFS低效。Java尽管可以让Hadoop的可移植性增强,但是它屏蔽了底层文件系统,这使它没法利用一些底层的API对数据存储和读写进行优化。首先,在共享集群环境下,大量并发读写会增加随机寻道,这大大降低读写效率;另外,并发写会增加磁盘碎片,这将增加读取代价(HDFS适合文件顺序读取)。

为了解决该问题,可以考虑的解决方案有:修改tasktracker上的线程模型,现在Hadoop上的采用的模型是one thread per client,即每个client连接由一个线程处理(包括接受请求,处理请求,返回结果);修改之后,可将线程分成两组,一组用于处理client通信(Client Thread),一组用于存取数据(Disk Threads,可采用one thread per disk)。

4.2    Prefetching与preshuffling

论文[7]提出了两种优化策略,分别为Prefetching和preshuffling。

(1) PreFetching


preFetching包括Block-intra prefetching和Block-inter prefetching:

Block-intra Prefetching对block内部数据处理方式进行优化。采用的策略是以双向处理(bi-directional processing)方式提升效率,即一端进行计算,一端预取将要用到的数据(同步机制)。

需解决两个问题,一是计算和预取同步。借用进度条(processing bar)的概念,进度条监控两端的进度,当同步将被打破时,调用一个信号。二是确定合适的预取率。通过实验发现,预取数据量并不是越多越好。采用重复实验的方法确定预取数据率。

Block-inter Prefetching在block层面预取数据。当某个task正在处理数据块A1时,预测器预测它接下来要处理的数据块,假设是A2,A3,A4,则将这几个数据块读到task所在的rack上,这样加快了task接下来数据读取速度。

(2) PreShuffling

数据被map task处理之前,由预测器判断每条记录将要被哪个reduce task处理,将这些数据交由靠近该reduce task的节点上的map task处理。

主页:http://incubator.apache.org/projects/hama.html

4.3    Five Factors

论文[8]分析了5个影响Hadoop性能的因素,分别为计算模型,I/O模型,数据解析,索引和调度,同时针对这5个因素提高了相应的提高性能的方法,最后实验证明,通过这些方法可以将Hadoop性能提高2.5到3.5倍。

(1) 计算模型

在Hadoop中,map task产生的中间结果经过sort-merge策略处理后交给reduce task。而这种处理策略(指sort-merge)不能够定制,这对于有些应用而言(有些应用程序可能不需要排序处理),性能不佳。此外,即使是需要排序归并处理的,sort-merge也并不是最好的策略。

本文实现了Fingerprinting Based Grouping(基于hash)策略,该方法明显提高了Hadoop性能。

(2) I/O模型

Reader可以采用两种方式从底层的存储系统中读取数据:direct I/O和streaming I/O。direct I/O是指reader直接从本地文件中读取数据;streaming I/O指使用某种进程间通信方式(如TCP或者JDBC)从另外一个进程中获取数据。从性能角度考虑,direct I/O性能更高,各种数据库系统都是采用direct I/O模式。但从存储独立性考虑,streaming I/O使Hadoop能够从任何进程获取数据,如datanode或database,此外,如果reader不得不从远程节点上读取数据,streaming I/O是仅有的选择。

本文对hadoop的文件读写方式进行了改进,当文件位于本地时,采用direct I/O方式;当文件位于其它节点上时,采用streaming I/O方式。(改进之前,hadoop全是采用streaming I/O方式)。改进后,效率约提高10%。

(3) 数据解析

在hadoop中,原始数据要被转换成key/value的形式以便进一步处理,这就是数据解析。现在有两种数据解析方法:immutable decoding and mutable decoding。Hadoop是采用java语言编写的,java中很多对象是immutable,如String。当用户试图修改一个String内容时,原始对象会被丢弃而新对象会被创建以存储新内容。在Hadoop中,采用了immutable对象存储字符串,这样每解析一个record就会创建一个新的对象,这就导致了性能低下。

本文比较了immutable实现和mutable实现,immutable性能远高于mutable(join是10倍,select是2倍)。

(4) 索引

HDFS设计初衷是处理无结构化数据,既然这样,怎么可能为数据添加索引。实际上,考虑到以下几个因素,仍可以给数据添加索引:

A、 hadoop提供了结构将数据记录解析成key/value对,这样也许可以给key添加索引。

B、 如果作业的输入是一系列索引文件,可以实现一个新的reader高效处理这些文件。

本文设计了一个range 索引,与原系统比较,连接操作提高了大约10倍,选择操作大约提高了2.5倍。

(5) 调度

Hadoop采用的是动态调度策略,即每次调度一个task运行,这样会带来部分开销。而database采用的静态调度的策略,即在编译的时候就确定了调度方案。当用户提交一个sql时,优化器会生成一个分布式查询计划交给每一个节点进行处理。

本文使用一个benchmark评估运行时调度的代价,最终发现运行时调度策略从两个角度影响性能:需要调度的task数;调度算法。对于第一个因素,可以调整block的大小减少task数,对于第二个因素,需要做更多研究,设计新的算法。

本文调整block大小(从64增大到5G),发现block越大,效率越高,提升性能约20%~30%。

主页:http://www.comp.nus.edu.sg/~epic/

总结

这只是一篇研究性的论文,它只是用实验验证了这5个因素会影响hadoop性能,具体实现不具有通用性,如果想将这5个方面在hadoop中实现,并能够实际的使用,也会还有比较长的距离。

4.4    Hadoop++

论文[9]提出了Hadoop++系统,它为处理结构化或者半结构化数据而设计的,它在Hadoop基础上做了两点改进,一是为HDFS设计了一种索引—Trojan Index。思路是:当数据被加载到HDFS时,自动为每个split建立索引,这样虽然会增加数据加载时的代价,但不影响数据处理过程;二是设计了一种新的join算法—Trojan join。该join算法在数据加载时,将需要join的数据表按照join属性的hash值存放到相同split中,这样只要在map阶段进行局部join便可以得到最终结果,该算法跳过了mapreduce的shuffle和reduce阶段,避免了数据传输的带来的通信代价,因而大大提高了效率。

Hadoop++系统最大的优点是没有直接修改hadoop代码,只是在Hadoop之上提供了供应用程序访问的API。

官方主页:http://infosys.cs.uni-saarland.de/hadoop++.php

5.     Hadoop其它问题

5.1    单点故障问题

Hadoop采用的是C/S架构,因而存在明显的namenode/jobtracker单点故障问题。相比于jobtracker,namenode的单点故障问题更为急迫,因为namenode的故障恢复时间很长,其时间主要花在fsimage加载和blockReport上,下面是一组测试数据:

当前主要的解决思路有:

(1)    Zookeeper。利用分布式系统的可靠协调系统zookeeper维护主从namenode之间的一致性。

(2)    热备。添加热备从namenode,主从namenode之间通过分布式协议维护数据一致性。

(3)    分布式namespace。多个namenode共同管理底层的datanode。

5.2    小文件问题

小文件是指文件size小于HDFS上block大小的文件。这样的文件会给hadoop的扩展性和性能带来严重问题。首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1000 0000个小文件,每个文件占用一个block,则namenode需要2G空间(存两份)。如果存储1亿个文件,则namenode需要20G空间。这样namenode内存容量严重制约了集群的扩展。 其次,访问大量小文件速度远远小于访问几个大文件。HDFS最初是为流式访问大文件开发的,如果访问大量小文件,需要不断的从一个datanode跳到另一个datanode,严重影响性能。最后,处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个slot,而task启动将耗费大量时间甚至大部分时间都耗费在启动task和释放task上。

对于Hadoop小文件问题,当前主要有两种解决方案,(1)设计一种工具(比如mapreduce作业)交给用户,让用户自己每隔一段时间将小文件打包成大文件,当前Hadoop本身提供了几个这样的工具,包括Hadoop Archive(Hadoop提供了shell命令),Sequence file(需自己写程序实现)和CombineFileInputFormat(需自己写程序实现)。(2)从系统层面解决HDFS小文件,论文[10][11]介绍了它们思路,大体上说思路基本一致:在原有HDFS基础上添加一个小文件处理模块,当用户上传一个文件时,判断该文件是否属于小文件,如果是,则交给小文件处理模块处理,否则,交给通用文件处理模块处理。小文件处理模块的设计思想是,先将很多小文件合并成一个大文件,然后为这些小文件建立索引,以便进行快速存取和访问。

6.     总结

本文档介绍Hadoop现有的优化点,总体来说,对于Hadoop平台,现在主要有三种优化思路,分别为:从应用程序角度角度进行优化;从参数配置角度进行优化;从系统实现角度进行优化。对于第一种思路,需要根据具体应用需求而定,同时也需要在长期实践中积累和总结;对于第二种思路,大部分采用的方法是根据自己集群硬件和具体应用调整参数,找到一个最优的。对于第三种思路,难度较大,但效果往往非常明显,总结这方面的优化思路,主要有以下几个:

(1)    namenode进行优化,包括增加其吞吐率和解决其单点故障问题。当前主要解决方案有3种:分布式namenode,namenode热备和zookeeper。

(2)    HDFS小文件问题。当Hadoop中存储大量小文件时,namenode扩展性和性能受到极大制约。现在Hadoop中已有的解决方案包括:Hadoop Archive,Sequence file和CombineFileInputFormat。

(3)    调度框架优化。在Hadoop中,每当出现一个空闲slot后,tasktracker都需要通过HEARBEAT向jobtracker所要task,这个过程的延迟比较大。可以用task预调度的策略解决该问题。

(4)    共享环境下的文件并发存取。在共享环境下,HDFS的随机寻道次数增加,这大大降低了文件存取效率。可以通过优化磁盘调度策略的方法改进。

(5)    索引。索引可以大大提高数据读取效率,如果能根据实际应用需求,为HDFS上的数据添加索引,将大大提高效率。

分享到:
评论

相关推荐

    Hadoop平台优化文献综述.docx

    最后,绿色计算的观念也被引入到Hadoop优化中,研究如何在保证处理性能的同时,降低能耗,实现可持续的数据处理。 总的来说,Hadoop平台的优化涵盖了从应用程序、系统参数、架构设计到算法改进等多个层面,未来的...

    Hadoop平台性能优化

    Hadoop平台的性能优化研究涉及了如何在大型分布式系统中提升任务处理速度和效率,这对于当前数据密集型应用的发展至关重要。本文将从以下几个关键点详细解读Hadoop平台性能优化的知识点。 首先,了解Hadoop平台的...

    hadoop的优化.docx

    Hadoop 优化 Hadoop 作为大数据处理的核心技术,优化其性能是非常重要的。本文将总结 Hadoop 的优化技术,涵盖 MapReduce、Hive、Linux 层面的优化技术。 一、Hardware 配置优化 在 Hadoop 集群中,硬件配置的...

    Hadoop研究综述

    Hadoop,作为Apache软件基金会的一个开源分布式计算平台,因其高容错性和高扩展性在处理大规模数据时展现出显著优势。该系统主要由两个核心组件构成:HDFS(Hadoop Distributed File System)和MapReduce。 HDFS是...

    基于GPU的Hadoop平台优化实现.pdf

    【基于GPU的Hadoop平台优化实现】 随着大数据的爆发式增长,互联网和物联网等领域产生的数据量呈现出指数级上升,这使得数据处理技术面临新的挑战。Hadoop作为一种分布式计算框架,因其强大的数据处理能力而在大...

    Hadoop平台监控预警自动化

    hadoop平台的监控个、优化、自动调度等,强烈推荐大家

    hadoop平台的搭建过程简介

    hadoop平台的搭建过程涉及多个步骤,包括虚拟机的配置、Hadoop环境的安装和配置、集群节点的设置以及开发环境的搭建。以下是对搭建过程中关键知识点的详细介绍。 1. 虚拟机配置:搭建Hadoop平台前,通常需要在...

    Hadoop平台搭建.ppt

    "Hadoop平台搭建" Hadoop是一个分布式计算框架,具有高可扩展性、高可靠性和高性能的特点。Hadoop平台搭建是指在分布式环境中部署和配置Hadoop集群的过程。该过程涉及到硬件环境、软件环境、虚拟机安装、Ubuntu安装...

    Hadoop集群高可用与性能优化

    在大数据处理领域,Hadoop是不可或缺的核心组件,它以其分布式计算框架著称,为企业和科研机构提供了海量数据处理的能力。...理解并熟练应用上述知识点,有助于构建出一个强大、可靠的Hadoop大数据处理平台。

    Hadoop平台的性能优化研究 Hadoop论文

    【Hadoop平台的性能优化研究】这篇论文着重探讨了如何提升Hadoop分布式计算框架的效率。Hadoop基于MapReduce模型,随着其应用范围的扩大,性能优化变得至关重要。Hadoop的性能很大程度上取决于运行在其上的应用程序...

    Hadoop平台详细搭建过程

    根据文件内容,以下是关于Hadoop平台搭建的知识点总结: 1. Hadoop简介: Hadoop是一个开源的分布式计算框架,由Apache基金会维护,允许用户通过简单的编程模型存储和处理大数据。它主要由两个核心组件构成:...

    hadoop平台搭建流程

    hadoop

    大数据技术之Hadoop(优化&新特性).doc

    本文将重点讨论Hadoop在大数据处理中的优化与新特性,特别是关于数据压缩的方面。 首先,Hadoop 提供了多种数据压缩格式,包括 DEFLATE、Gzip、Bzip2、LZO 和 Snappy。每种压缩算法都有其特点。DEFLATE 是一种通用...

    Hadoop平台技术 Hadoop平台技术-课程标准.docx

    Hadoop平台技术 Hadoop平台技术-课程标准.docx 学习资料 复习资料 教学资源

    Hadoop平台搭建步骤.pdf

    Hadoop平台搭建步骤.pdf

Global site tag (gtag.js) - Google Analytics