- 浏览: 27006 次
- 性别:
- 来自: 上海
-
文章分类
最新评论
转摘与:http://okita.com/alex/
SCNTechnique in SceneKit
New in ios8 is the SCNTechnique. It’s a way to get your models to pass through a custom shader program. This is an added layer on top of an objects filters. For instance, you’re able to apply a Gaussian blur to a single node in a SceneKit scene, then pass the scene to a fragment shader to change the color of the scene.
新的ios8 SCNTechnique技术。这是一种让你的模型通过一个自定义着色器程序。这是一个添加过滤器层上的一个对象。例如,你能够应用高斯模糊SceneKit现场单个节点,然后通过场景片段着色器改变现场的颜色。
Getting started I’m setting up a new ios game.
1、开始我设置一个新的ios游戏。
[img][/img]
This will create the scene view that SceneKit uses to render it’s 3d objects to. I’ve named the project SCNTechnique, this will make it obvious what this project is being used for.
2、这将创建SceneKit使用的场景视图呈现它的3 d对象。我将该项目命名为“SCNTechnique,这将使它明显被用于这一项目。
I’m also enabling the local source control, I think git is required for this to work. If you don’t have this then I suggest you use it. If you break something it’s useful to know what you changed.
3..
In the project we’ll want to set up a new dictionary that’s used to reference and define data going to and from the SCNTechnique rendering pass. I’m adding an iOS property list. Selecting add new file to the project to open this choose a template for your new file dialog:
4、项目中我们想要建立一个新的字典,用来引用和定义数据和从SCNTechnique呈现通过。我添加一个iOS属性列表。选择将新文件添加到项目中打开这个为你的新文件对话框:选择一个模板
Then I’m naming it firstPass, it’ll add the plist file extension for me. A property list is an XML file which Xcode allows us to edit with a more friendly interface.
5、然后我给它命名firstPass,它会增加我的plist文件扩展名。一个Xcode属性列表是一个XML文件允许我们编辑更友好的界面。
The file appears with Root as the only section of data. We need to populate this with a few things to turn it into something that can be used by SCNTechnique. There are three entries [sequence, passes, symbols] where sequence is an Array and passes and symbols are both Dictionaries. These are added with the plus icon, and the type is changed with a popup menu under the type column.
6、文件只出现与根部分的数据。我们需要填充这几件事,把它变成SCNTechnique可以使用的东西。有三个条目(序列,通过符号),序列是一个数组,通过和符号都是字典。这些添加的加号图标,弹出菜单的类型是改变类型列。
sequence defines what pass is rendered when. To be honest, I think this means that you can define multiple passes in a single SCNTechnique, but so far this seems to be quite buggy and I can’t seem to get more than one pass working. Passes defines what parameters are passed to and from the shader programs. We’ll get to shader programs in a moment. symbols defines what name and type the data is passed from your code into the shaders.
7、序列定义了通过时呈现。老实说,我认为,这意味着您可以定义多个传入一个SCNTechnique,但到目前为止,这似乎是相当车,我似乎无法得到不止一个传递工作。通过定义了参数传递的着色器程序。我们会着色器程序。符号定义了名称和类型的数据从您的代码传递到着色器。
So shader programs, I couldn’t find any appropriate templates to start with for these, so I ended up picking iOS/Other/Empty template. Which isn’t much of a template… But it is necessary to ensure that the project is aware of your new file. I added two files, a firstProgram.vsh and a firstProgram.fsh.
8、所以着色器程序,我找不到任何合适的模板,从这些开始,所以我最终选择iOS /其他/空模板。这并不是很大的模板…但它是必要的,以确保该项目是意识到自己的新文件。我添加了两个文件,一个firstProgram。太小,firstProgram.fsh。
These live in the project like so.
What is the fsh and vsh for? the fsh means fragment shader and the vsh means vertex shader. Basically these are common OpenGL type shader programs. To make the connection between these shader programs and SCNTechnique in your SceneKit scene you’ll need to add them to the firstPass.plist so back to defining the technique’s property list.
9、fsh和vsh是什么?fsh意味着片段着色器和太小意味着顶点着色器。基本上这些都是常见的OpenGL渲染程序类型。这些着色器程序之间的联系和SCNTechnique SceneKit场景你需要将它们添加到firstPass。plist所以回定义技术的属性列表。
In the Sequence array we need to name a rendering pass in the passes list. This seems to be the entry point for the technique. I’m naming it renderingPass.
10、序列数组中我们需要呈现通过通过列表中的名称。这似乎是入口点的技术。我命名它renderingPass。
This tells the Technique where to start. The item 0 of the sequence needs to point to an entry in the passes item. Then in passes we are require to have 4 entries.
11、这告诉技术从哪里开始。0项的序列需要指向一个条目的条目。然后在通过我们需要有4个条目。
draw program inputs and outputs, draw is a string program is another string and inputs and outputs are both dictionaries.
12、画程序输入和输出,平局是一个字符串的程序是另一个字符串,输入和输出都是字典。
draw needs to be set to DRAW_QUAD which is used to draw data piped into the shader program, we also have DRAW_NODE or DRAW_SCENE. Each is used for specific reasons, but for now we’ll use DRAW_QUAD. The program refers to the .vsh and .fsh files we created and added to the project a moment ago. (note: the case and underscore are important) Don’t add the .vsh or .fsh to the program, Technique knows what to do with the name. I’ll always look for both files, if one or the other are missing the Technique will fail and your app will stop when looking for the program.
13、将需要设置DRAW_QUAD用于将数据输送到着色器程序,我们也有DRAW_NODE或DRAW_SCENE。每个用于特定的原因,但现在我们将使用DRAW_QUAD。程序指的是。太小。fsh文件创建和添加到项目中。(注:和下划线)很重要不要添加。太小。fsh的项目,技术知道如何处理这个名字。我总是会找两个文件,如果一个或另一个缺少技术会失败,应用程序会停止当寻找项目。
It seems rather necessary that one of the inputs is COLOR which goes into a colorSampler. COLOR is an openGL data source and colorSampler will be available in the shader program with data coming from COLOR. the a_position is a variable which points to a_position-symbol. We will need to add this to the symbols section of the technique’s plist. So we’ll add that in next.
14、似乎而必要的输入是进了colorSampler颜色。颜色是一个openGL数据源和colorSampler将着色器程序中可用的数据来自颜色。a_position是一个变量,指向a_position-symbol。我们将需要添加这个符号部分技术的plist。所以接下来我们将添加进去。
In the a_position we add a_position-symbol and in symbols create a_position-symbol as a dictionary and add semantic vertex string to create a link between your SCNTechnique and the program. I’m not exactly sure why we don’t need to do this for colorSampler, but that’s how it works.
now we should add our code to both the .vsh and .fsh to make this work. In the firstProgram.fsh I’ve added the following code:
uniform sampler2D colorSampler;
varying vec2 uv;
void main()
{
vec4 color = texture2D(colorSampler, uv);
gl_FragColor = color;
}
This isn’t objective-c it’s c, and the colorSampler here is being piped in from the plist which SCNTechnique is using to tunnel data through. gl_fragColor is the final output to the fragment shader.
In the vsh we need to add in the following code:
attribute vec4 a_position;
varying vec2 uv;
void main(void)
{
uv = (a_position.xy + 1.0) * 0.5;
gl_Position = a_position;
}
The gl_Position is the final output for the vertices in the vertex shader. With these two parts of the firstProgram in place and the firstPass.plist setup we can now use it in the GameViewController.m
...
// configure the view
scnView.backgroundColor = [UIColor blackColor];
NSURL *url;
url = [[NSBundle mainBundle] URLForResource:@"firstPass" withExtension:@"plist"];
SCNTechnique *firstTechnique = [SCNTechnique techniqueWithDictionary:[NSDictionary dictionaryWithContentsOfURL:url]];
scnView.technique = firstTechnique;
...
In the template code we follow after the scnView is setup in the scene. Then we create a NSURL *url; to fill with url = [[NSBundle mainBundoe] URLForResource:@”firstPass” withExtension:@”plist”]; this makes a url that points to the firstPass.plist that we created with all of the data used to connect our shader program with the SCNTechnique. The we use SCNTechnique *firstTechnique to load in that dictionary. Finally we assign scnView.technique to the SCNTechnique we created from the plist.
IMG_0104
Horray, we’re drawing using a SCNTechnique, it doesn’t look like anything interesting is happening, but it’s really going through our shader program and not the usual scene.view. We can prove this by editing the shader program. We can draw the technique as red by changing the fsh to the following code.
uniform sampler2D colorSampler;
varying vec2 uv;
void main()
{
gl_FragColor = vec4(1.0, 0.0, 0.0, 0.0);
}
This sets the gl_fragColor to red. And now the iPad draws the image as all red. I’m still working on more interesting things to do with all of this but if you’re familiar with openGL then you’ll be able to do quite a lot. I’m not that familiar with openGL myself, so I’m learning what I can while I can. Hope this tutorial helps.
Read More
July 25, 2014
SceneKit shaderModifiers
So I started with the basic GameKit, this gives you a colorful jet object in the scene.
By default the code in the GameViewController.m looks like the following:
55
- (void)viewDidLoad
{
[super viewDidLoad];
// create a new scene
SCNScene *scene = [SCNScene sceneNamed:@"art.scnassets/ship.dae"];
// create and add a camera to the scene
SCNNode *cameraNode = [SCNNode node];
cameraNode.camera = [SCNCamera camera];
[scene.rootNode addChildNode:cameraNode];
// place the camera
cameraNode.position = SCNVector3Make(0, 0, 15);
// create and add a light to the scene
SCNNode *lightNode = [SCNNode node];
lightNode.light = [SCNLight light];
lightNode.light.type = SCNLightTypeOmni;
lightNode.position = SCNVector3Make(0, 10, 10);
[scene.rootNode addChildNode:lightNode];
// create and add an ambient light to the scene
SCNNode *ambientLightNode = [SCNNode node];
ambientLightNode.light = [SCNLight light];
ambientLightNode.light.type = SCNLightTypeAmbient;
ambientLightNode.light.color = [UIColor darkGrayColor];
[scene.rootNode addChildNode:ambientLightNode];
// retrieve the ship node
SCNNode *ship = [scene.rootNode childNodeWithName:@"ship" recursively:YES];
[ship runAction:[SCNAction repeatActionForever:[SCNAction rotateByX:0 y:0.2 z:0 duration:1]]];
// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;
// set the scene to the view
scnView.scene = scene;
// allows the user to manipulate the camera
scnView.allowsCameraControl = YES;
// show statistics such as fps and timing information
scnView.showsStatistics = YES;
// configure the view
scnView.backgroundColor = [UIColor blackColor];
// add a tap gesture recognizer
UITapGestureRecognizer *tapGesture = [[UITapGestureRecognizer alloc] initWithTarget:self action:@selector(handleTap:)];
NSMutableArray *gestureRecognizers = [NSMutableArray array];
[gestureRecognizers addObject:tapGesture];
[gestureRecognizers addObjectsFromArray:scnView.gestureRecognizers];
scnView.gestureRecognizers = gestureRecognizers;
}
There’s not much going on other than adding models, lights and cameras to the scene. I wanted to do some learning up on shaderModifiers so I started by getting the mesh in the ship.dae.
To do that I need to get to the material on the ship.
1
ship.geometry.firstMaterial
The above shows up with nothing, the ship included in the scene has no geometry in the ship node. This took a few minutes of fiddling before I found that the ship has a shipMesh child object.
Screen Shot 2014-07-25 at 6.48.44 PMThe child is called shipMesh, and that’s the node that would have a firstMaterial. To get to that I used
1
SCNNode *shipMesh = [ship childNodeWithName:@"shipMesh" recursively:YES];
The line assigns the actual mesh I need to get to the *shipMesh SCNNode object. now I can use the following:
1
SCNMaterial *mat = shipMesh.geometry.firstMaterial;
This assigns the shipMesh’s material to the SCNMaterial *mat so I can start adding shaderModifiers to the object in the scene.
Starting with the basics I tried out:
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color.rgb = vec3(0.5);"};
this turned the ship to a grey color. on the iPad:
Screen Shot 2014-07-25 at 6.55.28 PMSo this was expected, vec3(0.5) tells GLSL to make a rgb color of r 0.5, g 0.5. b 0.5, it’s a handy short-hand for color making. Another thing I tried was the following.
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color = vec4(0.5);"};
This wasn’t assigning color.rgb but color, which expects a vec4, and I got the same result; a grey jet appears on the iPad. Just to be thorough, I tried assigning an interesting value to the color.
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color = vec4(0.5, 0.1, 0.2, 0.3);"};
The above turned into a reddish jet.
Screen Shot 2014-07-25 at 6.58.46 PM
So this again was expected. I took some code from the WWDC presentation and found some code to try out on the jet.
mat.shaderModifiers = @{SCNShaderModifierEntryPointGeometry : @"// Waves Modifier\n"
"float Amplitude = 1.2;\n"
"float Frequency = 5.0;\n"
"vec2 nrm = _geometry.position.xz;\n"
"float len = length(nrm)+0.0001; // for robustness\n"
"nrm /= len;\n"
"float a = len + Amplitude*sin(Frequency * _geometry.position.z + u_time * 10.0);\n"
"_geometry.position.xz = nrm * a;\n"};
The above made the jet all wobbly.
Screen Shot 2014-07-25 at 7.00.46 PMAll of the verts were going off of a sin(u_time) which is a value in the GLSL world that all shaders have access to. Cool stuff so far. After this I found some interesting car paint shader from the WWDC presentation and tweaked it to get the following result.
mat.shaderModifiers = @{SCNShaderModifierEntryPointSurface : @"\n"
"float flakeSize = sin(u_time * 0.2);\n"
"float flakeIntensity = 0.7;\n"
"vec3 paintColor0 = vec3(0.9, 0.4, 0.3);\n"
"vec3 paintColor1 = vec3(0.9, 0.75, 0.2);\n"
"vec3 flakeColor = vec3(flakeIntensity, flakeIntensity, flakeIntensity);\n"
"vec3 rnd = texture2D(u_diffuseTexture, _surface.diffuseTexcoord * vec2(1.0) * sin(u_time*0.1) ).rgb;\n"
"vec3 nrm1 = normalize(0.05 * rnd + 0.95 * _surface.normal);\n"
"vec3 nrm2 = normalize(0.3 * rnd + 0.4 * _surface.normal);\n"
"float fresnel1 = clamp(dot(nrm1, _surface.view), 0.0, 1.0);\n"
"float fresnel2 = clamp(dot(nrm2, _surface.view), 0.0, 1.0);\n"
"vec3 col = mix(paintColor0, paintColor1, fresnel1);\n"
"col += pow(fresnel2, 106.0) * flakeColor;\n"
"_surface.normal = nrm1;\n"
"_surface.diffuse = vec4(col.r,col.b,col.g, 1.0);\n"
"_surface.emission = (_surface.reflective * _surface.reflective) * 2.0;\n"
"_surface.reflective = vec4(0.0);\n"};
Screen Shot 2014-07-25 at 7.04.07 PMStrangely enough I didn’t delete the code that made the jet wobbly, so I’m guessing something was overwritten. The shaderModifiers is being assigned one value when we use = to assign the value an @{“”}; object. So a bit of looking at the shaderModifiers object in the materials and I see that it’s an NSDictionary. The NSMutableDictionary and NSDictionary are supposedly compatible, so I make a new NSMutableDictionary with the following:
1
NSMutableDictionary *shaders = [[NSMutableDictionary alloc]init];
I’ll use that and assign multiple keys with code to the *shaders dictionary.
this looks like the following:
NSMutableDictionary *shaders = [[NSMutableDictionary alloc]init];
shaders[SCNShaderModifierEntryPointGeometry] =
@"// Waves Modifier\n"
"float Amplitude = 1.2;\n"
"float Frequency = 5.0;\n"
"vec2 nrm = _geometry.position.xz;\n"
"float len = length(nrm)+0.0001; // for robustness\n"
"nrm /= len;\n"
"float a = len + Amplitude*sin(Frequency * _geometry.position.z + u_time * 10.0);\n"
"_geometry.position.xz = nrm * a;\n";
shaders[SCNShaderModifierEntryPointSurface] =
@"float flakeSize = sin(u_time * 0.2);\n"
"float flakeIntensity = 0.7;\n"
"vec3 paintColor0 = vec3(0.9, 0.4, 0.3);\n"
"vec3 paintColor1 = vec3(0.9, 0.75, 0.2);\n"
"vec3 flakeColor = vec3(flakeIntensity, flakeIntensity, flakeIntensity);\n"
"vec3 rnd = texture2D(u_diffuseTexture, _surface.diffuseTexcoord * vec2(1.0) * sin(u_time*0.1) ).rgb;\n"
"vec3 nrm1 = normalize(0.05 * rnd + 0.95 * _surface.normal);\n"
"vec3 nrm2 = normalize(0.3 * rnd + 0.4 * _surface.normal);\n"
"float fresnel1 = clamp(dot(nrm1, _surface.view), 0.0, 1.0);\n"
"float fresnel2 = clamp(dot(nrm2, _surface.view), 0.0, 1.0);\n"
"vec3 col = mix(paintColor0, paintColor1, fresnel1);\n"
"col += pow(fresnel2, 106.0) * flakeColor;\n"
"_surface.normal = nrm1;\n"
"_surface.diffuse = vec4(col.r,col.b,col.g, 1.0);\n"
"_surface.emission = (_surface.reflective * _surface.reflective) * 2.0;\n"
"_surface.reflective = vec4(0.0);\n";
mat.shaderModifiers = shaders;
The different SCNShaderModifierEntryPointGeometry and PointSurfaces are key values with objects assigned to them. At the end we assign mat.shaderModifiers = shaders to assign both of these objects in the NSMutableDictionary to the material. So now the final result looks like the following:
Screen Shot 2014-07-25 at 7.09.39 PM
A wobbly pink jet. The significance of all of this is that to apply multiple shaders to the object you need to create a dictionary first, and use the different entrypoint constant values as keys. Hope this all made sense.
Read More
June 18, 2014
Looking for some Unreal Stuff?
http://okita.com/alex/unreal-game-development-archive/
The archives and what’s been going on can be found on the link above. Updates and adventures will be forthcoming as well as a few project announcements.
IMG_20140610_083914Making the most of a small workshop means approaching a critical density of stuff. I need to organize this into something more sensible, and some cool gizmos will be coming to this site soon. Check back often!
SCNTechnique in SceneKit
New in ios8 is the SCNTechnique. It’s a way to get your models to pass through a custom shader program. This is an added layer on top of an objects filters. For instance, you’re able to apply a Gaussian blur to a single node in a SceneKit scene, then pass the scene to a fragment shader to change the color of the scene.
新的ios8 SCNTechnique技术。这是一种让你的模型通过一个自定义着色器程序。这是一个添加过滤器层上的一个对象。例如,你能够应用高斯模糊SceneKit现场单个节点,然后通过场景片段着色器改变现场的颜色。
Getting started I’m setting up a new ios game.
1、开始我设置一个新的ios游戏。
[img][/img]
This will create the scene view that SceneKit uses to render it’s 3d objects to. I’ve named the project SCNTechnique, this will make it obvious what this project is being used for.
2、这将创建SceneKit使用的场景视图呈现它的3 d对象。我将该项目命名为“SCNTechnique,这将使它明显被用于这一项目。
I’m also enabling the local source control, I think git is required for this to work. If you don’t have this then I suggest you use it. If you break something it’s useful to know what you changed.
3..
In the project we’ll want to set up a new dictionary that’s used to reference and define data going to and from the SCNTechnique rendering pass. I’m adding an iOS property list. Selecting add new file to the project to open this choose a template for your new file dialog:
4、项目中我们想要建立一个新的字典,用来引用和定义数据和从SCNTechnique呈现通过。我添加一个iOS属性列表。选择将新文件添加到项目中打开这个为你的新文件对话框:选择一个模板
Then I’m naming it firstPass, it’ll add the plist file extension for me. A property list is an XML file which Xcode allows us to edit with a more friendly interface.
5、然后我给它命名firstPass,它会增加我的plist文件扩展名。一个Xcode属性列表是一个XML文件允许我们编辑更友好的界面。
The file appears with Root as the only section of data. We need to populate this with a few things to turn it into something that can be used by SCNTechnique. There are three entries [sequence, passes, symbols] where sequence is an Array and passes and symbols are both Dictionaries. These are added with the plus icon, and the type is changed with a popup menu under the type column.
6、文件只出现与根部分的数据。我们需要填充这几件事,把它变成SCNTechnique可以使用的东西。有三个条目(序列,通过符号),序列是一个数组,通过和符号都是字典。这些添加的加号图标,弹出菜单的类型是改变类型列。
sequence defines what pass is rendered when. To be honest, I think this means that you can define multiple passes in a single SCNTechnique, but so far this seems to be quite buggy and I can’t seem to get more than one pass working. Passes defines what parameters are passed to and from the shader programs. We’ll get to shader programs in a moment. symbols defines what name and type the data is passed from your code into the shaders.
7、序列定义了通过时呈现。老实说,我认为,这意味着您可以定义多个传入一个SCNTechnique,但到目前为止,这似乎是相当车,我似乎无法得到不止一个传递工作。通过定义了参数传递的着色器程序。我们会着色器程序。符号定义了名称和类型的数据从您的代码传递到着色器。
So shader programs, I couldn’t find any appropriate templates to start with for these, so I ended up picking iOS/Other/Empty template. Which isn’t much of a template… But it is necessary to ensure that the project is aware of your new file. I added two files, a firstProgram.vsh and a firstProgram.fsh.
8、所以着色器程序,我找不到任何合适的模板,从这些开始,所以我最终选择iOS /其他/空模板。这并不是很大的模板…但它是必要的,以确保该项目是意识到自己的新文件。我添加了两个文件,一个firstProgram。太小,firstProgram.fsh。
These live in the project like so.
What is the fsh and vsh for? the fsh means fragment shader and the vsh means vertex shader. Basically these are common OpenGL type shader programs. To make the connection between these shader programs and SCNTechnique in your SceneKit scene you’ll need to add them to the firstPass.plist so back to defining the technique’s property list.
9、fsh和vsh是什么?fsh意味着片段着色器和太小意味着顶点着色器。基本上这些都是常见的OpenGL渲染程序类型。这些着色器程序之间的联系和SCNTechnique SceneKit场景你需要将它们添加到firstPass。plist所以回定义技术的属性列表。
In the Sequence array we need to name a rendering pass in the passes list. This seems to be the entry point for the technique. I’m naming it renderingPass.
10、序列数组中我们需要呈现通过通过列表中的名称。这似乎是入口点的技术。我命名它renderingPass。
This tells the Technique where to start. The item 0 of the sequence needs to point to an entry in the passes item. Then in passes we are require to have 4 entries.
11、这告诉技术从哪里开始。0项的序列需要指向一个条目的条目。然后在通过我们需要有4个条目。
draw program inputs and outputs, draw is a string program is another string and inputs and outputs are both dictionaries.
12、画程序输入和输出,平局是一个字符串的程序是另一个字符串,输入和输出都是字典。
draw needs to be set to DRAW_QUAD which is used to draw data piped into the shader program, we also have DRAW_NODE or DRAW_SCENE. Each is used for specific reasons, but for now we’ll use DRAW_QUAD. The program refers to the .vsh and .fsh files we created and added to the project a moment ago. (note: the case and underscore are important) Don’t add the .vsh or .fsh to the program, Technique knows what to do with the name. I’ll always look for both files, if one or the other are missing the Technique will fail and your app will stop when looking for the program.
13、将需要设置DRAW_QUAD用于将数据输送到着色器程序,我们也有DRAW_NODE或DRAW_SCENE。每个用于特定的原因,但现在我们将使用DRAW_QUAD。程序指的是。太小。fsh文件创建和添加到项目中。(注:和下划线)很重要不要添加。太小。fsh的项目,技术知道如何处理这个名字。我总是会找两个文件,如果一个或另一个缺少技术会失败,应用程序会停止当寻找项目。
It seems rather necessary that one of the inputs is COLOR which goes into a colorSampler. COLOR is an openGL data source and colorSampler will be available in the shader program with data coming from COLOR. the a_position is a variable which points to a_position-symbol. We will need to add this to the symbols section of the technique’s plist. So we’ll add that in next.
14、似乎而必要的输入是进了colorSampler颜色。颜色是一个openGL数据源和colorSampler将着色器程序中可用的数据来自颜色。a_position是一个变量,指向a_position-symbol。我们将需要添加这个符号部分技术的plist。所以接下来我们将添加进去。
In the a_position we add a_position-symbol and in symbols create a_position-symbol as a dictionary and add semantic vertex string to create a link between your SCNTechnique and the program. I’m not exactly sure why we don’t need to do this for colorSampler, but that’s how it works.
now we should add our code to both the .vsh and .fsh to make this work. In the firstProgram.fsh I’ve added the following code:
uniform sampler2D colorSampler;
varying vec2 uv;
void main()
{
vec4 color = texture2D(colorSampler, uv);
gl_FragColor = color;
}
This isn’t objective-c it’s c, and the colorSampler here is being piped in from the plist which SCNTechnique is using to tunnel data through. gl_fragColor is the final output to the fragment shader.
In the vsh we need to add in the following code:
attribute vec4 a_position;
varying vec2 uv;
void main(void)
{
uv = (a_position.xy + 1.0) * 0.5;
gl_Position = a_position;
}
The gl_Position is the final output for the vertices in the vertex shader. With these two parts of the firstProgram in place and the firstPass.plist setup we can now use it in the GameViewController.m
...
// configure the view
scnView.backgroundColor = [UIColor blackColor];
NSURL *url;
url = [[NSBundle mainBundle] URLForResource:@"firstPass" withExtension:@"plist"];
SCNTechnique *firstTechnique = [SCNTechnique techniqueWithDictionary:[NSDictionary dictionaryWithContentsOfURL:url]];
scnView.technique = firstTechnique;
...
In the template code we follow after the scnView is setup in the scene. Then we create a NSURL *url; to fill with url = [[NSBundle mainBundoe] URLForResource:@”firstPass” withExtension:@”plist”]; this makes a url that points to the firstPass.plist that we created with all of the data used to connect our shader program with the SCNTechnique. The we use SCNTechnique *firstTechnique to load in that dictionary. Finally we assign scnView.technique to the SCNTechnique we created from the plist.
IMG_0104
Horray, we’re drawing using a SCNTechnique, it doesn’t look like anything interesting is happening, but it’s really going through our shader program and not the usual scene.view. We can prove this by editing the shader program. We can draw the technique as red by changing the fsh to the following code.
uniform sampler2D colorSampler;
varying vec2 uv;
void main()
{
gl_FragColor = vec4(1.0, 0.0, 0.0, 0.0);
}
This sets the gl_fragColor to red. And now the iPad draws the image as all red. I’m still working on more interesting things to do with all of this but if you’re familiar with openGL then you’ll be able to do quite a lot. I’m not that familiar with openGL myself, so I’m learning what I can while I can. Hope this tutorial helps.
Read More
July 25, 2014
SceneKit shaderModifiers
So I started with the basic GameKit, this gives you a colorful jet object in the scene.
By default the code in the GameViewController.m looks like the following:
55

- (void)viewDidLoad
{
[super viewDidLoad];
// create a new scene
SCNScene *scene = [SCNScene sceneNamed:@"art.scnassets/ship.dae"];
// create and add a camera to the scene
SCNNode *cameraNode = [SCNNode node];
cameraNode.camera = [SCNCamera camera];
[scene.rootNode addChildNode:cameraNode];
// place the camera
cameraNode.position = SCNVector3Make(0, 0, 15);
// create and add a light to the scene
SCNNode *lightNode = [SCNNode node];
lightNode.light = [SCNLight light];
lightNode.light.type = SCNLightTypeOmni;
lightNode.position = SCNVector3Make(0, 10, 10);
[scene.rootNode addChildNode:lightNode];
// create and add an ambient light to the scene
SCNNode *ambientLightNode = [SCNNode node];
ambientLightNode.light = [SCNLight light];
ambientLightNode.light.type = SCNLightTypeAmbient;
ambientLightNode.light.color = [UIColor darkGrayColor];
[scene.rootNode addChildNode:ambientLightNode];
// retrieve the ship node
SCNNode *ship = [scene.rootNode childNodeWithName:@"ship" recursively:YES];
[ship runAction:[SCNAction repeatActionForever:[SCNAction rotateByX:0 y:0.2 z:0 duration:1]]];
// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;
// set the scene to the view
scnView.scene = scene;
// allows the user to manipulate the camera
scnView.allowsCameraControl = YES;
// show statistics such as fps and timing information
scnView.showsStatistics = YES;
// configure the view
scnView.backgroundColor = [UIColor blackColor];
// add a tap gesture recognizer
UITapGestureRecognizer *tapGesture = [[UITapGestureRecognizer alloc] initWithTarget:self action:@selector(handleTap:)];
NSMutableArray *gestureRecognizers = [NSMutableArray array];
[gestureRecognizers addObject:tapGesture];
[gestureRecognizers addObjectsFromArray:scnView.gestureRecognizers];
scnView.gestureRecognizers = gestureRecognizers;
}
There’s not much going on other than adding models, lights and cameras to the scene. I wanted to do some learning up on shaderModifiers so I started by getting the mesh in the ship.dae.
To do that I need to get to the material on the ship.
1
ship.geometry.firstMaterial
The above shows up with nothing, the ship included in the scene has no geometry in the ship node. This took a few minutes of fiddling before I found that the ship has a shipMesh child object.
Screen Shot 2014-07-25 at 6.48.44 PMThe child is called shipMesh, and that’s the node that would have a firstMaterial. To get to that I used
1
SCNNode *shipMesh = [ship childNodeWithName:@"shipMesh" recursively:YES];
The line assigns the actual mesh I need to get to the *shipMesh SCNNode object. now I can use the following:
1
SCNMaterial *mat = shipMesh.geometry.firstMaterial;
This assigns the shipMesh’s material to the SCNMaterial *mat so I can start adding shaderModifiers to the object in the scene.
Starting with the basics I tried out:
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color.rgb = vec3(0.5);"};
this turned the ship to a grey color. on the iPad:
Screen Shot 2014-07-25 at 6.55.28 PMSo this was expected, vec3(0.5) tells GLSL to make a rgb color of r 0.5, g 0.5. b 0.5, it’s a handy short-hand for color making. Another thing I tried was the following.
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color = vec4(0.5);"};
This wasn’t assigning color.rgb but color, which expects a vec4, and I got the same result; a grey jet appears on the iPad. Just to be thorough, I tried assigning an interesting value to the color.
1
mat.shaderModifiers = @{SCNShaderModifierEntryPointFragment : @"_output.color = vec4(0.5, 0.1, 0.2, 0.3);"};
The above turned into a reddish jet.
Screen Shot 2014-07-25 at 6.58.46 PM
So this again was expected. I took some code from the WWDC presentation and found some code to try out on the jet.
mat.shaderModifiers = @{SCNShaderModifierEntryPointGeometry : @"// Waves Modifier\n"
"float Amplitude = 1.2;\n"
"float Frequency = 5.0;\n"
"vec2 nrm = _geometry.position.xz;\n"
"float len = length(nrm)+0.0001; // for robustness\n"
"nrm /= len;\n"
"float a = len + Amplitude*sin(Frequency * _geometry.position.z + u_time * 10.0);\n"
"_geometry.position.xz = nrm * a;\n"};
The above made the jet all wobbly.
Screen Shot 2014-07-25 at 7.00.46 PMAll of the verts were going off of a sin(u_time) which is a value in the GLSL world that all shaders have access to. Cool stuff so far. After this I found some interesting car paint shader from the WWDC presentation and tweaked it to get the following result.
mat.shaderModifiers = @{SCNShaderModifierEntryPointSurface : @"\n"
"float flakeSize = sin(u_time * 0.2);\n"
"float flakeIntensity = 0.7;\n"
"vec3 paintColor0 = vec3(0.9, 0.4, 0.3);\n"
"vec3 paintColor1 = vec3(0.9, 0.75, 0.2);\n"
"vec3 flakeColor = vec3(flakeIntensity, flakeIntensity, flakeIntensity);\n"
"vec3 rnd = texture2D(u_diffuseTexture, _surface.diffuseTexcoord * vec2(1.0) * sin(u_time*0.1) ).rgb;\n"
"vec3 nrm1 = normalize(0.05 * rnd + 0.95 * _surface.normal);\n"
"vec3 nrm2 = normalize(0.3 * rnd + 0.4 * _surface.normal);\n"
"float fresnel1 = clamp(dot(nrm1, _surface.view), 0.0, 1.0);\n"
"float fresnel2 = clamp(dot(nrm2, _surface.view), 0.0, 1.0);\n"
"vec3 col = mix(paintColor0, paintColor1, fresnel1);\n"
"col += pow(fresnel2, 106.0) * flakeColor;\n"
"_surface.normal = nrm1;\n"
"_surface.diffuse = vec4(col.r,col.b,col.g, 1.0);\n"
"_surface.emission = (_surface.reflective * _surface.reflective) * 2.0;\n"
"_surface.reflective = vec4(0.0);\n"};
Screen Shot 2014-07-25 at 7.04.07 PMStrangely enough I didn’t delete the code that made the jet wobbly, so I’m guessing something was overwritten. The shaderModifiers is being assigned one value when we use = to assign the value an @{“”}; object. So a bit of looking at the shaderModifiers object in the materials and I see that it’s an NSDictionary. The NSMutableDictionary and NSDictionary are supposedly compatible, so I make a new NSMutableDictionary with the following:
1
NSMutableDictionary *shaders = [[NSMutableDictionary alloc]init];
I’ll use that and assign multiple keys with code to the *shaders dictionary.
this looks like the following:
NSMutableDictionary *shaders = [[NSMutableDictionary alloc]init];
shaders[SCNShaderModifierEntryPointGeometry] =
@"// Waves Modifier\n"
"float Amplitude = 1.2;\n"
"float Frequency = 5.0;\n"
"vec2 nrm = _geometry.position.xz;\n"
"float len = length(nrm)+0.0001; // for robustness\n"
"nrm /= len;\n"
"float a = len + Amplitude*sin(Frequency * _geometry.position.z + u_time * 10.0);\n"
"_geometry.position.xz = nrm * a;\n";
shaders[SCNShaderModifierEntryPointSurface] =
@"float flakeSize = sin(u_time * 0.2);\n"
"float flakeIntensity = 0.7;\n"
"vec3 paintColor0 = vec3(0.9, 0.4, 0.3);\n"
"vec3 paintColor1 = vec3(0.9, 0.75, 0.2);\n"
"vec3 flakeColor = vec3(flakeIntensity, flakeIntensity, flakeIntensity);\n"
"vec3 rnd = texture2D(u_diffuseTexture, _surface.diffuseTexcoord * vec2(1.0) * sin(u_time*0.1) ).rgb;\n"
"vec3 nrm1 = normalize(0.05 * rnd + 0.95 * _surface.normal);\n"
"vec3 nrm2 = normalize(0.3 * rnd + 0.4 * _surface.normal);\n"
"float fresnel1 = clamp(dot(nrm1, _surface.view), 0.0, 1.0);\n"
"float fresnel2 = clamp(dot(nrm2, _surface.view), 0.0, 1.0);\n"
"vec3 col = mix(paintColor0, paintColor1, fresnel1);\n"
"col += pow(fresnel2, 106.0) * flakeColor;\n"
"_surface.normal = nrm1;\n"
"_surface.diffuse = vec4(col.r,col.b,col.g, 1.0);\n"
"_surface.emission = (_surface.reflective * _surface.reflective) * 2.0;\n"
"_surface.reflective = vec4(0.0);\n";
mat.shaderModifiers = shaders;
The different SCNShaderModifierEntryPointGeometry and PointSurfaces are key values with objects assigned to them. At the end we assign mat.shaderModifiers = shaders to assign both of these objects in the NSMutableDictionary to the material. So now the final result looks like the following:
Screen Shot 2014-07-25 at 7.09.39 PM
A wobbly pink jet. The significance of all of this is that to apply multiple shaders to the object you need to create a dictionary first, and use the different entrypoint constant values as keys. Hope this all made sense.
Read More
June 18, 2014
Looking for some Unreal Stuff?
http://okita.com/alex/unreal-game-development-archive/
The archives and what’s been going on can be found on the link above. Updates and adventures will be forthcoming as well as a few project announcements.
IMG_20140610_083914Making the most of a small workshop means approaching a critical density of stuff. I need to organize this into something more sensible, and some cool gizmos will be coming to this site soon. Check back often!
发表评论
-
iOS与JS交互实战篇(ObjC版)
2016-05-04 10:42 544转载于: iOS开发技术分享 前言 ObjectiveC与J ... -
Objective-C与JavaScript交互的那些事
2016-05-04 10:44 503转载于:http://www.cocoachina.com/i ... -
Import Cheetah3D Model in SceneKit
2015-01-23 16:18 788http://blog.manbolo.com/2014/08 ... -
Scene Kit (翻译)
2015-01-23 10:35 654前言 http://segmentfault.com/ ... -
iOS 图形编程总结
2015-01-22 11:07 682iOS实现图形编程可以 ... -
Introduction to Scene Kit
2015-01-21 14:35 510Scene Kit Programming Guide[/b] ... -
使用scenekit的时候不能打开程序
2015-01-21 13:59 646问题一: nib上能加载class 程序却找不到,在使用sce ... -
报错: dyld: Library not loaded
2015-01-21 13:02 1045一、问题 dyld: Library not loaded: ... -
iOS Sprite Kit最新特性Physics Field虚拟物理场Swift测试
2015-01-19 16:30 592转载于:http://blog.csdn.ne ... -
Sprite Kit编程指南(1)-深入Sprite Kit
2015-01-19 15:53 659Sprite Kit编程指南(1)- ...
相关推荐
SCNTechnique是SceneKit中的一个重要概念,它允许我们自定义渲染管道,实现更高级的图形效果。本文将深入探讨SCNTechnique的简单实现及其在iOS开发中的应用。 首先,我们需要理解SCNTechnique是什么。SCNTechnique...
在这个特定的项目“scenekit-outline-shader-scntechnique”中,我们将关注如何在Xcode 9.3中利用`SCNTechnique`来实现一种特定的着色效果——轮廓描边。这个项目提供了一个简单的游乐场(Playground)示例,展示了...
`SCNTechnique`是SceneKit提供的一种机制,用于自定义渲染管道,它允许开发者利用Metal的强大功能来扩展SceneKit的功能。 在"SCNTechniqueTest"这个示例中,我们有两个关键的演示点: 1. **法线渲染为纹理**: 这...
技术测试SCN技术实验此类的文献资料非常丰富,没有任何示例。... 该项目探索SceneKit的SCNTechnique类及其各种可配置参数。 到目前为止,我已经能够创建以下技术高斯模糊与噪声戴着面具的夜视
内容概要:本文探讨了模糊故障树(FFTA)在工业控制系统可靠性分析中的应用,解决了传统故障树方法无法处理不确定数据的问题。文中介绍了模糊数的基本概念和实现方式,如三角模糊数和梯形模糊数,并展示了如何用Python实现模糊与门、或门运算以及系统故障率的计算。此外,还详细讲解了最小割集的查找方法、单元重要度的计算,并通过实例说明了这些方法的实际应用场景。最后,讨论了模糊运算在处理语言变量方面的优势,强调了在可靠性分析中处理模糊性和优化计算效率的重要性。 适合人群:从事工业控制系统设计、维护的技术人员,以及对模糊数学和可靠性分析感兴趣的科研人员。 使用场景及目标:适用于需要评估复杂系统可靠性的场合,特别是在面对不确定数据时,能够提供更准确的风险评估。目标是帮助工程师更好地理解和预测系统故障,从而制定有效的预防措施。 其他说明:文中提供的代码片段和方法可用于初步方案验证和技术探索,但在实际工程项目中还需进一步优化和完善。
内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王软件构建的八层电梯控制系统。首先阐述了系统的硬件配置,包括PLC的IO分配策略,如输入输出信号的具体分配及其重要性。接着深入探讨了梯形图编程逻辑,涵盖外呼信号处理、轿厢运动控制以及楼层判断等关键环节。随后讲解了组态王的画面设计,包括动画效果的实现方法,如楼层按钮绑定、轿厢移动动画和门开合效果等。最后分享了一些调试经验和注意事项,如模拟困人场景、防抖逻辑、接线艺术等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的人群。 使用场景及目标:适用于需要设计和实施小型电梯控制系统的工程项目。主要目标是帮助读者掌握PLC编程技巧、组态画面设计方法以及系统联调经验,从而提高项目的成功率。 其他说明:文中提供了详细的代码片段和调试技巧,有助于读者更好地理解和应用相关知识点。此外,还强调了安全性和可靠性方面的考量,如急停按钮的正确接入和硬件互锁设计等。
内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。
包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51单片机作为主控; 2、采用AD0809(仿真0808)检测"PH、氨、亚硝酸盐、硝酸盐"模拟传感; 3、采用DS18B20检测温度; 4、采用1602液晶显示检测值; 5、检测值同时串口上传,调试助手监看; 6、亦可通过串口指令对加热器、制氧机进行控制;
内容概要:本文详细介绍了双馈永磁风电机组并网仿真模型及其短路故障分析方法。首先构建了一个9MW风电场模型,由6台1.5MW双馈风机构成,通过升压变压器连接到120kV电网。文中探讨了风速模块的设计,包括渐变风、阵风和随疾风的组合形式,并提供了相应的Python和MATLAB代码示例。接着讨论了双闭环控制策略,即功率外环和电流内环的具体实现细节,以及MPPT控制用于最大化风能捕获的方法。此外,还涉及了短路故障模块的建模,包括三相电压电流特性和离散模型与phasor模型的应用。最后,强调了永磁同步机并网模型的特点和注意事项。 适合人群:从事风电领域研究的技术人员、高校相关专业师生、对风电并网仿真感兴趣的工程技术人员。 使用场景及目标:适用于风电场并网仿真研究,帮助研究人员理解和优化风电机组在不同风速条件下的性能表现,特别是在短路故障情况下的应对措施。目标是提高风电系统的稳定性和可靠性。 其他说明:文中提供的代码片段和具体参数设置有助于读者快速上手并进行实验验证。同时提醒了一些常见的错误和需要注意的地方,如离散化步长的选择、初始位置对齐等。
适用于空手道训练和测试场景
内容概要:本文介绍了金牌音乐作词大师的角色设定、背景经历、偏好特点、创作目标、技能优势以及工作流程。金牌音乐作词大师凭借深厚的音乐文化底蕴和丰富的创作经验,能够为不同风格的音乐创作歌词,擅长将传统文化元素与现代流行文化相结合,创作出既富有情感又触动人心的歌词。在创作过程中,会严格遵守社会主义核心价值观,尊重用户需求,提供专业修改建议,确保歌词内容健康向上。; 适合人群:有歌词创作需求的音乐爱好者、歌手或音乐制作人。; 使用场景及目标:①为特定主题或情感创作歌词,如爱情、励志等;②融合传统与现代文化元素创作独特风格的歌词;③对已有歌词进行润色和优化。; 阅读建议:阅读时可以重点关注作词大师的创作偏好、技能优势以及工作流程,有助于更好地理解如何创作出高质量的歌词。同时,在提出创作需求时,尽量详细描述自己的情感背景和期望,以便获得更贴合心意的作品。
linux之用户管理教程.md
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示设置及状态; 3、采用L298驱动两个电机,模拟机械臂动力、移动底盘动力; 3、首先按键配置-待搬运物块的高度和宽度(为0不能开始搬运); 4、按下启动键开始搬运,搬运流程如下: 机械臂先把物块抓取到机器车上, 机械臂减速 机器车带着物块前往目的地 机器车减速 机械臂把物块放下来 机械臂减速 机器车回到物块堆积处(此时机器车是空车) 机器车减速 蜂鸣器提醒 按下复位键,结束本次搬运
内容概要:本文详细介绍了基于下垂控制的三相逆变器电压电流双闭环控制的仿真方法及其在MATLAB/Simulink和PLECS中的具体实现。首先解释了下垂控制的基本原理,即有功调频和无功调压,并给出了相应的数学表达式。随后讨论了电压环和电流环的设计与参数整定,强调了两者带宽的差异以及PI控制器的参数选择。文中还提到了一些常见的调试技巧,如锁相环的响应速度、LC滤波器的谐振点处理、死区时间设置等。此外,作者分享了一些实用的经验,如避免过度滤波、合理设置采样周期和下垂系数等。最后,通过突加负载测试展示了系统的动态响应性能。 适合人群:从事电力电子、微电网研究的技术人员,尤其是有一定MATLAB/Simulink和PLECS使用经验的研发人员。 使用场景及目标:适用于希望深入了解三相逆变器下垂控制机制的研究人员和技术人员,旨在帮助他们掌握电压电流双闭环控制的具体实现方法,提高仿真的准确性和效率。 其他说明:本文不仅提供了详细的理论讲解,还结合了大量的实战经验和调试技巧,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了光伏并网逆变器的全栈开发资料,涵盖了从硬件设计到控制算法的各个方面。首先,文章深入探讨了功率接口板的设计,包括IGBT缓冲电路、PCB布局以及EMI滤波器的具体参数和设计思路。接着,重点讲解了主控DSP板的核心控制算法,如MPPT算法的实现及其注意事项。此外,还详细描述了驱动扩展板的门极驱动电路设计,特别是光耦隔离和驱动电阻的选择。同时,文章提供了并联仿真的具体实现方法,展示了环流抑制策略的效果。最后,分享了许多宝贵的实战经验和调试技巧,如主变压器绕制、PWM输出滤波、电流探头使用等。 适合人群:从事电力电子、光伏系统设计的研发工程师和技术爱好者。 使用场景及目标:①帮助工程师理解和掌握光伏并网逆变器的硬件设计和控制算法;②提供详细的实战经验和调试技巧,提升产品的可靠性和性能;③适用于希望深入了解光伏并网逆变器全栈开发的技术人员。 其他说明:文中不仅提供了具体的电路设计和代码实现,还分享了许多宝贵的实际操作经验和常见问题的解决方案,有助于提高开发效率和产品质量。
内容概要:本文详细介绍了粒子群优化(PSO)算法与3-5-3多项式相结合的方法,在机器人轨迹规划中的应用。首先解释了粒子群算法的基本原理及其在优化轨迹参数方面的作用,随后阐述了3-5-3多项式的数学模型,特别是如何利用不同阶次的多项式确保轨迹的平滑过渡并满足边界条件。文中还提供了具体的Python代码实现,展示了如何通过粒子群算法优化时间分配,使3-5-3多项式生成的轨迹达到时间最优。此外,作者分享了一些实践经验,如加入惩罚项以避免超速,以及使用随机扰动帮助粒子跳出局部最优。 适合人群:对机器人运动规划感兴趣的科研人员、工程师和技术爱好者,尤其是有一定编程基础并对优化算法有初步了解的人士。 使用场景及目标:适用于需要精确控制机器人运动的应用场合,如工业自动化生产线、无人机导航等。主要目标是在保证轨迹平滑的前提下,尽可能缩短运动时间,提高工作效率。 其他说明:文中不仅给出了理论讲解,还有详细的代码示例和调试技巧,便于读者理解和实践。同时强调了实际应用中需要注意的问题,如系统的建模精度和安全性考量。
KUKA机器人相关资料
内容概要:本文详细探讨了光子晶体中的束缚态在连续谱中(BIC)及其与轨道角动量(OAM)激发的关系。首先介绍了光子晶体的基本概念和BIC的独特性质,随后展示了如何通过Python代码模拟二维光子晶体中的BIC,并解释了BIC在光学器件中的潜在应用。接着讨论了OAM激发与BIC之间的联系,特别是BIC如何增强OAM激发效率。文中还提供了使用有限差分时域(FDTD)方法计算OAM的具体步骤,并介绍了计算本征态和三维Q值的方法。此外,作者分享了一些实验中的有趣发现,如特定条件下BIC表现出OAM特征,以及不同参数设置对Q值的影响。 适合人群:对光子晶体、BIC和OAM感兴趣的科研人员和技术爱好者,尤其是从事微纳光子学研究的专业人士。 使用场景及目标:适用于希望通过代码模拟深入了解光子晶体中BIC和OAM激发机制的研究人员。目标是掌握BIC和OAM的基础理论,学会使用Python和其他工具进行模拟,并理解这些现象在实际应用中的潜力。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实验心得和技巧,帮助读者避免常见错误,提高模拟精度。同时,强调了物理离散化方式对数值计算结果的重要影响。
内容概要:本文详细介绍了如何使用C#和Halcon 17.12构建一个功能全面的工业视觉项目。主要内容涵盖项目配置、Halcon脚本的选择与修改、相机调试、模板匹配、生产履历管理、历史图像保存以及与三菱FX5U PLC的以太网通讯。文中不仅提供了具体的代码示例,还讨论了实际项目中常见的挑战及其解决方案,如环境配置、相机控制、模板匹配参数调整、PLC通讯细节、生产数据管理和图像存储策略等。 适合人群:从事工业视觉领域的开发者和技术人员,尤其是那些希望深入了解C#与Halcon结合使用的专业人士。 使用场景及目标:适用于需要开发复杂视觉检测系统的工业应用场景,旨在提高检测精度、自动化程度和数据管理效率。具体目标包括但不限于:实现高效的视觉处理流程、确保相机与PLC的无缝协作、优化模板匹配算法、有效管理生产和检测数据。 其他说明:文中强调了框架整合的重要性,并提供了一些实用的技术提示,如避免不同版本之间的兼容性问题、处理实时图像流的最佳实践、确保线程安全的操作等。此外,还提到了一些常见错误及其规避方法,帮助开发者少走弯路。