论坛首页 海阔天空论坛

上帝掷骰子吗——量子物理史话(转载)

浏览 83543 次
该帖已经被评为精华帖
作者 正文
   发表时间:2004-05-01  
第十章 不等式



玻姆的隐变量理论是德布罗意导波的一个增强版,只不过他把所谓的“导波”换成了“量子势”(quantum potential)的概念。在他的描述中,电子或者光子始终是一个实实在在的粒子,不论我们是否观察它,它都具有确定的位置和动量。但是,一个电子除了具有通常的一些性质,比如电磁势之外,还具有所谓的“量子势”。这其实就是一种类似波动的东西,它按照薛定谔方程发展,在电子的周围扩散开去。但是,量子势所产生的效应和它的强度无关,而只和它的形状有关,这使它可以一直延伸到宇宙的尽头,而不发生衰减。

在玻姆理论里,我们必须把电子想象成这样一种东西:它本质上是一个经典的粒子,但以它为中心发散出一种势场,这种势弥漫在整个宇宙中,使它每时每刻都对周围的环境了如指掌。当一个电子向一个双缝进发时,它的量子势会在它到达之前便感应到双缝的存在,从而指导它按照标准的干涉模式行动。如果我们试图关闭一条狭缝,无处不在的量子势便会感应到这一变化,从而引导电子改变它的行为模式。特别地,如果你试图去测量一个电子的具体位置的话,你的测量仪器将首先与它的量子势发生作用,这将使电子本身发生微妙的变化,这种变化是不可预测的,因为主宰它们的是一些“隐变量”,你无法直接探测到它们。

玻姆用的数学手法十分高超,他的体系的确基本做到了传统的量子力学所能做到的一切!但是,让我们感到不舒服的是,这样一个隐变量理论始终似乎显得有些多余。量子力学从世纪初一路走来,诸位物理大师为它打造了金光闪闪的基本数学形式。它是如此漂亮而简洁,在实际中又是如此管用,以致于我们觉得除非绝对必要,似乎没有理由给它强迫加上笨重而丑陋的附加假设。玻姆的隐函数理论复杂繁琐又难以服众,他假设一个电子具有确定的轨迹,却又规定因为隐变量的扰动关系,我们绝对观察不到这样的轨迹!这无疑违反了奥卡姆剃刀原则:存在却绝对观测不到,这和不存在又有何分别呢?难道,我们为了这个世界的实在性,就非要放弃物理原理的优美、明晰和简洁吗?这连爱因斯坦本人都会反对,他对科学美有着比任何人都要深的向往和眷恋。事实上,爱因斯坦,甚至德布罗意生前都没有对玻姆的理论表示过积极的认同。

更不可原谅的是,玻姆在不惜一切代价地地恢复了世界的实在性和决定性之后,却放弃了另一样同等重要的东西:定域性(Locality)。定域性指的是,在某段时间里,所有的因果关系都必须维持在一个特定的区域内,而不能超越时空来瞬间地作用和传播。简单来说,就是指不能有超距作用的因果关系,任何信息都必须以光速这个上限而发送,这也就是相对论的精神!但是在玻姆那里,他的量子势可以瞬间把它的触角伸到宇宙的尽头,一旦在某地发生什么,其信息立刻便传达到每一个电子耳边。如果玻姆的理论成立的话,超光速的通讯在宇宙中简直就是无处不在,爱因斯坦不会容忍这一切的!

但是,玻姆他的确打破了因为冯诺伊曼的错误而造成的坚冰,至少给隐变量从荆棘中艰难地开辟出了一条道路。不管怎么样,隐变量理论在原则上毕竟是可能的,那么,我们是不是至少还保有一线希望,可以发展出一个完美的隐变量理论,使得我们在将来的某一天得以同时拥有一个确定、实在,而又拥有定域性的温暖世界呢?这样一个世界,不就是爱因斯坦的终极梦想吗?

1928年7月28日,距离量子论最精彩的华章——不确定性原理的谱写已经过去一年有余。在这一天,约翰•斯图尔特•贝尔(John Stewart Bell)出生在北爱尔兰的首府贝尔法斯特。小贝尔在孩提时代就表现出了过人的聪明才智,他在11岁上向母亲立志,要成为一名科学家。16岁时贝尔因为尚不够年龄入读大学,先到贝尔法斯特女王大学的实验室当了一年的实习工,然而他的才华已经深深感染了那里的教授和员工。一年后他顺理成章地进入女王大学攻读物理,虽然主修的是实验物理,但他同时也对理论物理表现出非凡的兴趣。特别是方兴未艾的量子论,它展现出的深刻的哲学内涵令贝尔相当沉迷。

贝尔在大学的时候,量子论大厦主体部分的建设已经尘埃落定,基本的理论框架已经由海森堡和薛定谔所打造完毕,而玻尔已经为它作出了哲学上最意味深长的诠释。20世纪物理史上最激动人心的那些年代已经逝去,没能参予其间当然是一件遗憾的事,但也许正是因为这样,人们得以稍稍冷静下来,不致于为了那伟大的事业而过于热血沸腾,身不由己地便拜倒在尼尔斯•玻尔那几乎不可抗拒的个人魔力之下。贝尔不无吃惊地发现,自己并不同意老师和教科书上对于量子论的正统解释。海森堡的不确定性原理——它听上去是如此具有主观的味道,实在不讨人喜欢。贝尔想要的是一个确定的,客观的物理理论,他把自己描述为一个爱因斯坦的忠实追随者。

毕业以后,贝尔先是进入英国原子能研究所(AERE)工作,后来转去了欧洲粒子中心(CERN)。他的主要工作集中在加速器和粒子物理领域方面,但他仍然保持着对量子物理的浓厚兴趣,在业余时间里密切关注着它的发展。1952年玻姆理论问世,这使贝尔感到相当兴奋。他为隐变量理论的想法所着迷,认为它恢复了实在论和决定论,无疑迈出了通向那个终极梦想的第一步。这个终极梦想,也就是我们一直提到的,使世界重新回到客观独立,优雅确定,严格遵守因果关系的轨道上来。贝尔觉得,隐变量理论正是爱因斯坦所要求的东西,可以完成对量子力学的完备化。然而这或许是贝尔的一厢情愿,因为极为讽刺的是,甚至爱因斯坦本人都不认同玻姆!

不管怎么样,贝尔准备仔细地考察一下,对于德布罗意和玻姆的想法是否能够有实际的反驳,也就是说,是否真如他们所宣称的那样,对于所有的量子现象我们都可以抛弃不确定性,而改用某种实在论来描述。1963年,贝尔在日内瓦遇到了约克教授,两人对此进行了深入的讨论,贝尔逐渐形成了他的想法。假如我们的宇宙真的是如爱因斯坦所梦想的那样,它应当具有怎样的性质呢?要探讨这一点,我们必须重拾起爱因斯坦昔日与玻尔论战时所提到的一个思想实验——EPR佯谬。

要是你已经忘记了EPR是个什么东西,可以先复习一下我们史话的8-4。我们所描述的实际上是经过玻姆简化过的EPR版本,不过它们在本质上是一样的。现在让我们重做EPR实验:一个母粒子分裂成向相反方向飞开去的两个小粒子A和B,它们理论上具有相反的自旋方向,但在没有观察之前,照量子派的讲法,它们的自旋是处在不确定的叠加态中的,而爱因斯坦则坚持,从分离的那一刻起,A和B的状态就都是确定了的。

我们用一个矢量来表示自旋方向,现在甲乙两人站在遥远的天际两端等候着A和B的分别到来(比方说,甲在人马座的方向,乙在双子座的方向)。在某个按照宇宙标准时间所约好了的关键时刻(比方说,宇宙历767年8月12日9点整,听起来怎么像银英传,呵呵),两人同时对A和B的自旋在同一个方向上作出测量。那么,正如我们已经讨论过的,因为要保持总体上的守恒,这两个自旋必定相反,不论在哪个方向上都是如此。假如甲在某方向上测量到A的自旋为正(+),那么同时乙在这个方向上得到的B自旋的测量结果必定为负(-)!

换句话说,A和B——不论它们相隔多么遥远——看起来似乎总是如同约好了那样,当A是+的时候B必定是-,它们的合作率是100%!在统计学上,拿稍微正式一点的术语来说,(A+,B-)的相关性(correlation)是100%,也就是1。我们需要熟悉一下相关性这个概念,它是表示合作程度的一个变量,假如A和B每次都合作,比如A是+时B总是-,那么相关性就达到最大值1,反过来,假如B每次都不和A合作,每当A是+是B偏偏也非要是+,那么(A+,B-)的相关率就达到最小值-1。当然这时候从另一个角度看,(A+,B+)的相关就是1了。要是B不和A合作也不有意对抗,它的取值和A毫无关系,显得完全随机,那么B就和A并不相关,相关性是0。

在EPR里,不管两个粒子的状态在观测前究竟确不确定,最后的结果是肯定的:在同一个方向上要么是(A+,B-),要么是(A-,B+),相关性是1。但是,这是在同一方向上,假设在不同方向上呢?假设甲沿着x轴方向测量A的自旋,乙沿着y轴方向测量B,其结果的相关率会是如何呢?冥冥中一丝第六感告诉我们,决定命运的时刻就要到来了。

实际上我们生活在一个3维空间,可以在3个方向上进行观测,我们把这3个方向假设为x,y,z。它们并不一定需要互相垂直,任意地取便是。每个粒子的自旋在一个特定的方向无非是正负两种可能,那么在3个方向上无非总共是8种可能(把每个方向想像成一根爻,那么组合结果无非是8个卦)。

x y z

-
-
- -
-
- -
- -
- - -

对于A来说有8种可能,那么对于A和B总体来说呢?显然也是8种可能,因为我们一旦观测了A,B也就确定了。如果A是(+,+,-),那么因为要守恒,B一定是(-,-,+)。现在让我们假设量子论是错误的,A和B的观测结果在分离时便一早注定,我们无法预测,只不过是不清楚其中的隐变量究竟是多少的缘故。不过没关系,我们假设这个隐变量是H,它可以取值1-8,分别对应于一种观测的可能性。再让我们假设,对应于每一种可能性,其出现的概率分别是N1,N2……一直到N8。现在我们就有了一个可能的观测结果的总表:

Ax Ay Az Bx By Bz 出现概率
      -  -  -   N1
    -  -  -     N2
  -    -    -   N3
  -  -  -       N4
-         -  -   N5
-     -    -     N6
-   -        -   N7
-   -  -         N8

上面的每一行都表示一种可能出现的结果,比如第一行就表示甲观察到A在x,y,z三个方向上的自旋都为+,而乙观察到B在3个方向上的自旋相应地均为-,这种结果出现的可能性是N1。因为观测结果8者必居其一,所以N1+N2+…+N8=1,这个各位都可以理解吧?

现在让我们运用一点小学数学的水平,来做一做相关性的练习。我们暂时只察看x方向,在这个方向上,(Ax+,Bx-)的相关性是多少呢?我们需要这样做:当一个记录符合两种情况之一:当在x方向上A为+而B同时为-,或者A不为+而B也同时不为-,如果这样,它便符合我们的要求,标志着对(Ax+,Bx-)的合作态度,于是我们就加上相应的概率。相反,如果在x上A为+而B也同时为+,或者A为-而B也为-,这是对(Ax+,Bx-)组合的一种破坏和抵触,我们必须减去相应的概率。

从上表可以看出,前4种可能都是Ax为+而Bx同时为-,后4种可能都是Ax不为+而Bx也不为-,所以8行都符合我们的条件,全是正号。我们的结果是N1+N2+…+N8=1!所以(Ax+,Bx-)的相关是1,这毫不奇怪,我们的表本来就是以此为前提编出来的。如果我们要计算(Ax+,Bx+)的相关,那么8行就全不符合条件,全是负号,我们的结果是-N1-N2-…-N8=-1。

接下来我们要走得远一点,A在x方向上为+,而B在y方向上为+,这两个观测结果的相关性是多少呢?现在是两个不同的方向,不过计算原则是一样的:要是一个记录符合Ax为+以及By为+,或者Ax不为+以及By也不为+时,我们就加上相应的概率,反之就减去。让我们仔细地考察上表,最后得到的结果应该是这样的,用Pxy来表示:

Pxy=-N1-N2+N3+N4+N5+N6-N7-N8

嗯,蛮容易的嘛,我们再来算算Pxz,也就是Ax为+同时Bz为+的相关:

Pxz=-N1+N2-N3+N4+N5-N6+N7-N8

再来,这次是Pzy,也就是Az为+且By为+:

Pzy=-N1+N2+N3-N4-N5+N6+N7-N8

好了,差不多了,现在我们把玩一下我们的计算结果,把Pxz减去Pzy再取绝对值:

|Pxz-Pzy|=|-2N3+2N4+2N5-2N6|=2 |N3+N4-N5-N6|

这里需要各位努力一下,超越小学数学的水平,回忆一下初中的知识。关于绝对值,我们有关系式|x-y|≤|x|+|y|,所以套用到上面的式子里,我们有:

|Pxz-Pzy|=2 |N3+N4-N5-N6|≤2(|N3+N4|+|N5+N6|)

因为所有的概率都不为负数,所以2(|N3+N4|+|N5+N6|)=2(N3+N4+N5+N6)。最后,我们还记得N1+N2+... N8=1,所以我们可以从上式中凑一个1出来:

2(N3+N4+N5+N6)=1+(-N1-N2+N3+N4+N5+N6-N7-N8)

看看我们前面的计算,后面括号里的一大串不正是Pxy吗?所以我们得到最终的结果:

|Pxz-Pzy|≤1+Pxy

恭喜你,你已经证明了这个宇宙中最为神秘和深刻的定理之一。现在放在你眼前的,就是名垂千古的“贝尔不等式”。它被人称为“科学中最深刻的发现”,它即将对我们这个宇宙的终极命运作出最后的判决。

(我们的证明当然是简化了的,隐变量不一定是离散的,而可以定义为区间λ上的一个连续函数。即使如此,只要稍懂一点积分知识也不难推出贝尔不等式来,各位有兴趣的可以动手一试。)
0 请登录后投票
   发表时间:2004-05-01  
EPR的测量
0 请登录后投票
   发表时间:2004-05-01  
第十一章 上帝的判决



这已经是我们第三次在精疲力竭之下无功而返了。隐变量所给出的承诺固然美好,可是最终的兑现却是大打折扣的,这未免教人丧气。虽然还有玻姆在那里热切地召唤,但为了得到一个决定性的理论,我们付出的代价是不是太大了点?这仍然是很值得琢磨的事情,同时也使得我们不敢轻易地投下赌注,义无反顾地沿着这样的方向走下去。

如果量子论注定了不能是决定论的,那么我们除了推导出类似“坍缩”之类的概念以外,还可以做些什么假设呢?

有一种功利而实用主义的看法,是把量子论看作一种纯统计的理论,它无法对单个系统作出任何预测,它所推导出的一切结果,都是一个统计上的概念!也就是说,在量子论看来,我们的世界中不存在什么“单个”(individual)的事件,每一个预测,都只能是平均式的,针对“整个集合”(ensemble)的,这也就是“系综解释”(the ensemble interpretation)一词的来源。

大多数系综论者都喜欢把这个概念的源头上推到爱因斯坦,比如John Taylor,或者加拿大McGill大学的B. C. Sanctuary。爱因斯坦曾经说过:“任何试图把量子论的描述看作是对于‘单个系统’的完备描述的做法都会使它成为极不自然的理论解释。但只要接受这样的理解方式,也即(量子论的)描述只能针对系统的‘全集’,而非单个个体,上述的困难就马上不存在了。”这个论述成为了系综解释的思想源泉(见于Max Jammer《量子力学的哲学》一书)。

嗯,怎么又是爱因斯坦?我们还记忆犹新的是,隐变量不是也把他拉出来作为感召和口号吗?或许爱因斯坦的声望太隆,任何解释都希望从他那里取得权威性,不过无论如何,从这一点来说,系综和隐变量实际上是有着相同的文化背景的。但是它们之间不同的是,隐变量在作出“量子论只不过是统计解释”这样的论断后,仍然怀着满腔热情去寻找隐藏在它背后那个更为终极的理论,试图把我们所看不见的隐变量找出来以最终实现物理世界所梦想的最高目标:理解和预测自然。它那锐意进取的精神固然是可敬的,但正如我们已经看到的那样,在现实中遭到了严重的困难和阻挠,不得不为此放弃许多东西。

相比隐变量那勇敢的冲锋,系综解释选择固本培元,以退为进的战略。在它看来,量子论是一个足够伟大的理论,它已经界定了这个世界可理解的范畴。的确,量子论给我们留下了一些盲点,一些我们所不能把握的东西,比如我们没法准确地同时得到一个电子的位置和动量,这叫一些持完美主义的人们觉得坐立不宁,寝食难安。但系综主义者说:“不要徒劳地去探索那未知的领域了,因为实际上不存在这样的领域!我们的世界本质上就是统计性质的,没有一个物理理论可以描述‘单个’的事件,事实上,在我们的宇宙中,只有‘系综’,或者说‘事件的全集’才是有物理意义的。”

这是什么意思呢?我们还是用大家都熟悉的老例子,双缝前的电子来说明问题。当电子通过双缝后,假设我们没有刻意地去观察它,那么按照量子论,它应该有一个确定而唯一的,按照时间和薛定谔方程发展的态矢量:

|电子>=|穿过左缝>+|穿过右缝>

按照标准哥本哈根解释,这意味着单个电子必须同时处在|左>和|右>两个态的叠加之中,电子没有一个确定的位置,它同时又在这里又在那里!按照MWI,这是一种两个世界的叠加。按照隐变量,所谓的叠加都是胡扯,量子论的这种数学形式是靠不住的,假如我们考虑了不可见的隐变量,我们就能确实地知道,电子究竟通过了左边还是右边。那么,系综解释对此又有何高见呢?

它所持的是一种外交式的圆滑态度:量子论的数学形式经得起时间考验,是一定要保留的。但“叠加”什么的明显违背常识,是不对的。反过来,一味地急功冒进,甚至搞出什么不可观察的隐变量,这也太过火了,更不能当真。再怎么说,实验揭示给我们的结果是纯随机性质的,没人可以否认。

那么,我们应该怎么办呢?

系综解释说:我们应当知足,相信理论告诉我们的已经是这个世界的本质:它本就是统计性的!所以,徒劳地去设计隐变量是没有用的,因为实验已经告诉我们定域的隐变量理论是没有的,而且实验也告诉我们对同样的系统的观测不会每次都给出确定的结果。但是,我们也不能相信所谓的“叠加”是一种实际上的存在,电子不可能又通过左边又通过右边!我们的结论应该是:对于电子的态矢量,它永远都只代表系统“全集”的统计值,也就是一种平均情况!

什么叫只代表“全集”呢?换句话说,当我们写下:

|电子>=1/SQRT(2) [ |穿过左缝>+|穿过右缝> ]

这样的式子时(1/SQRT(2)代表根号2分之1,我们假设两种可能相等,所以系数的平方,也就是概率之和等于1),我们所指的并不是“一个电子”的运动情况,而永远是无限个电子在相同情况下的一个统计平均!这个式子只描述了当无穷多个电子在相同的初状态下通过双缝(或者,一个电子无穷次地在同样的情况下通过双缝)时会出现的结果。根据量子论,世界并非决定论的,也就是说,哪怕我们让两个电子在完全相同的状态下通过双缝,观测到的结果也不一定每次都一样,而是有多种可能。而量子论的数学所能告诉我们的,正是所有这些可能的“系综”,也就是统计预期!

如此一来,当我们说“电子=左+右”的时候,意思就并非指一个单独的电子同时处于左和右两个态,而只是在经典概率的概念上指出它有50%的可能通过左,而50%的可能通过右罢了。当我们“准备”这样一个实验的时候,量子论便能够给出它的系综,在一个统计的意义上告诉我们实验的结果。

态矢量只代表系统的系综!嗯,听上去蛮容易理解的,似乎皆大欢喜。可是这样一来,量子论也就变成一个统计学的理论了,好吧,当许多电子穿过双缝时,我们知道有50%通过了左边,50%通过了右边,可现在我们关心的是单个电子!单个电子是如何通过双缝并与自己发生干涉,最后在荧屏上打出一个组成干涉图纹的一点的呢?我们想听听系综解释对此有何高见。

但要命的是,它对此什么都没说!在它看来,所谓“单个电子通过了哪里”之类的问题,是没有物理意义的!当John Taylor被问道,他是否根本没有想去描述单个系统中究竟发生了什么的时候,他甚至说,这是不被允许的。量子物理所给出的只是统计性,that’s all,没有别的了。如果这个世界能够被我们用数学方法去理解的话,那就是在一种统计的意义上说的,我们不自量力地想去追寻更多,那只不过是自讨苦吃。单个电子的轨迹,那是一个没有物理定义的概念,正如“时间被创造前1秒”,“比光速更快1倍”,或者“绝对零度低1度”这样的名词,虽然没有语法上的障碍阻止我们提出这样的问题,但它们在物理上却是没什么意思的。和哥本哈根派不同的是,玻尔等人假设每个电子都实际地按照波函数发散开来,而系综解释则是简单地把这个问题踢出了理论框架中去,来个眼不见为净:现在我们不必为“坍缩”操心了,谈论单个电子是没有意义的事情!

不过,这实在是太掩耳盗铃了。好吧,量子论只给出系综,可是我们对于物理理论的要求毕竟要比这样的统计报告要高那么一点啊。假如我去找占卜师算命,想知道我的寿限是多少,她却只告诉我:这个城市平均寿命是70岁,那对我来说似乎没有很大的用处啊,我还不如去找保险公司!更可恨的是,她居然对我说,你一个人的寿命是没什么意义的,有意义的只是千千万万个你的寿命的“系综”!

系综解释是一种非常保守和现实主义的解释,它保留了现有量子论的全部数学形式,因为它们已经被实践所充分证明。但在令人目眩的哲学领域,它却试图靠耍小聪明而逃避那些形而上的探讨,用划定理论适用界限这样的方法来把自己封闭在一个刀枪不入的外壳中。是的,如果我们采纳系综主义,那么的确在纯理论方面说,我们的一切问题都解决了:没有什么坍缩,电子永远只是粒子(波性只能用来描述粒子的“全集”),不确定原理也只是被看成一个统计极限,而不理会单个电子到底能不能同时拥有动量和位置(这个问题“没有意义”)。但是,这样似乎有点自欺欺人的味道,把搞不清楚的问题划为“没有意义”也许是方便的,但的确是这样的问题使得科学变得迷人!每个人都知道,当许多电子通过双缝时产生了干涉图纹,可我们更感兴趣的还是当单个电子通过时究竟发生了什么,而不是简单地转过头不去面对!

Taylor在访谈中的确被问道,这样的做法不是一个当“逃兵”的遁词吗?他非常精明地回答说:“我认为你应当问一问,如果陷进去是否比逃之夭夭确实会惹出更多的麻烦。”系综主义者持有的是极致的实用主义,他们炮轰隐变量和多宇宙解释,因为后两者都带来了许多形而上学的“麻烦”。只要我们充分利用现有的体系,搞出一个又不违反实验结果,又能在逻辑上自洽的体系,那不就足够了吗?系综解释的精神,就是尽可能少地避免“麻烦”,绝不引入让人头痛的假设,比如多宇宙或者坍缩之类的。

但是,我们还是不能满足于这样的关起门来然后自称所有的问题都已经解决的做法。或许,是因为我们血液中的热情还没有冷却,或许,是因为我们仍然年少轻狂,对于这个宇宙还怀有深深的激动和无尽的好奇。我们并不畏惧进入更为幽深和神秘的峡谷和森林,去探究那事实的真相。哪怕注定要被一些更加恼人和挥之不去的古怪精灵所缠绕,我们还是不可以放弃了前进的希望和动力,因为那是我们最宝贵的财富。

接下来我们还要去看看两条新的道路,虽然它们都新辟不久,坎坷颠簸,行进艰难,但沿途那奇峰连天,枯松倒挂,瀑布飞湍,冰崖怪石的绝景一定不会令你失望。
0 请登录后投票
   发表时间:2004-05-01  
第十一章 上帝的判决



我们已经厌倦了光子究竟通过了哪条狭缝这样的问题,管它通过了哪条,这和我们又有什么关系呢?一个小小的光子是如此不起眼,它的世界和我们的世界相去霄壤,根本无法联系在一起。在大多数情况下,我们甚至根本没法看见单个的光子(有人做过实验,肉眼看见单个光子是有可能的,但机率极低,而且它的波长必须严格地落在视网膜杆状细胞最敏感的那个波段),在这样的情况下,大众对于探究单个光子究竟是“幽灵”还是“实在”无疑持有无所谓的态度,甚至觉得这是一种杞人忧天的探索。

真正引起人们担忧的,还是那个当初因为薛定谔而落下的后遗症:从微观到宏观的转换。如果光子又是粒子又是波,那么猫为什么不是又死而又活着?如果电子同时又在这里又在那里,那么为什么桌子安稳地呆在它原来的地方,没有扩散到整间屋子中去?如果量子效应的基本属性是叠加,为什么日常世界中不存在这样的叠加,或者,我们为什么从未见过这种情况?

我们已经听取了足够多耐心而不厌其烦的解释:猫的确又死又活,只不过在我们观测的时候“坍缩”了;有两只猫,它们在一个宇宙中活着,在另一个宇宙中死去;猫从未又死又活,它的死活由看不见的隐变量决定;单个猫的死活是无意义的事件,我们只能描述无穷只猫组成的“全集”……诸如此类的答案。也许你已经对其中的某一种感到满意,但仍有许多人并不知足:一定还有更好,更可靠的答案。为了得到它,我们仍然需要不断地去追寻,去开拓新的道路,哪怕那里本来是荒芜一片,荆棘丛生。毕竟世上本没有路,走的人多了才成为路。

现在让我们跟着一些开拓者小心翼翼地去考察一条新辟的道路,和当年扬帆远航的哥伦布一样,他们也是意大利人。这些开拓者的名字刻在路口的纪念碑上:Ghirardi,Rimini和Weber,下面是落成日期:1986年7月。为了纪念这些先行者,我们顺理成章地把这条道路以他们的首字母命名,称为GRW大道。

这个思路的最初设想可以回溯到70年代的Philip Pearle:哥本哈根派的人物无疑是伟大和有洞见的,但他们始终没能给出“坍缩”这一物理过程的机制,而且对于“观测者”的主观依赖也太重了些,最后搞出一个无法收拾的“意识”不说,还有堕落为唯心论的嫌疑。是否能够略微修改薛定谔方程,使它可以对“坍缩”有一个让人满意的解释呢?

1986年7月15日,我们提到的那3位科学家在《物理评论》杂志上发表了一篇论文,题为《微观和宏观系统的统一动力学》(Unified dynamics for microscopic and macroscopic systems),从而开创了GRW理论。GRW的主要假定是,任何系统,不管是微观还是宏观的,都不可能在严格的意义上孤立,也就是和外界毫不相干。它们总是和环境发生着种种交流,为一些随机(stochastic)的过程所影响,这些随机的物理过程——不管它们实质上到底是什么——会随机地造成某些微观系统,比如一个电子的位置,从一个弥漫的叠加状态变为在空间中比较精确的定域(实际上就是哥本哈根口中的“坍缩”),尽管对于单个粒子来说,这种过程发生的可能性是如此之低——按照他们原本的估计,平均要等上10^16秒,也就是近10亿年才会发生一次。所以从整体上看,微观系统基本上处于叠加状态是不假的,但这种定域过程的确偶尔发生,我们把这称为一个“自发的定域过程”(spontaneous localization)。GRW有时候也称为“自发定域理论”。

关键是,虽然对于单个粒子来说要等上如此漫长的时间才能迎来一次自发过程,可是对于一个宏观系统来说可就未必了。拿薛定谔那只可怜的猫来说,一只猫由大约10^27个粒子组成,虽然每个粒子平均要等上几亿年才有一次自发定域,但对像猫这样大的系统,每秒必定有成千上万的粒子经历了这种过程。

Ghirardi等人把薛定谔方程换成了所谓的密度矩阵方程,然后做了复杂的计算,看看这样的自发定域过程会对整个系统造成什么样的影响。他们发现,因为整个系统中的粒子实际上都是互相纠缠在一起的,少数几个粒子的自发定域会非常迅速地影响到整个体系,就像推倒了一块骨牌然后造成了大规模的多米诺效应。最后的结果是,整个宏观系统会在极短的时间里完成一次整体上的自发定域。如果一个粒子平均要花上10亿年时间,那么对于一个含有1摩尔粒子的系统来说(数量级在10^23个),它只要0.1微秒就会发生定域,使得自己的位置从弥漫开来变成精确地出现在某个地点。这里面既不要“观测者”,也不牵涉到“意识”,它只是基于随机过程!

如果真的是这样,那么当决定薛定谔猫的生死的那一刻来临时,它的确经历了死/活的叠加!只不过这种叠加只维持了非常短,非常短的时间,然后马上“自发地”精确化,变成了日常意义上的,单纯的非死即活。因为时间很短,我们没法感觉到这一叠加过程!这听上去的确不错,我们有了一个统一的理论,可以一视同仁地解释微观上的量子叠加和宏观上物体的不可叠加性。

但是,GRW自身也仍然面临着严重的困难,这条大道并不是那样顺畅的。他们的论文发表当年,海德堡大学的E.Joos就向《物理评论》递交了关于这个理论的评论,而这个评论也在次年发表,对GRW提出了置疑。自那时起,对GRW的疑问声一直很大,虽然有的人非常喜欢它,但是从未在物理学家中变成主流。怀疑的理由有许多是相当技术化的,对于我们史话的读者,我只想在最肤浅的层次上稍微提一些。

GRW的计算是完全基于随机过程的,而并不引入类如“观测使得波函数坍缩”之类的假设。他们在这里所假设的“自发”过程,虽然其概念和“坍缩”类似,实际上是指一个粒子的位置从一个非常不精确的分布变成一个比较精确的分布,而不是完全确定的位置!换句话说,不管坍缩前还是坍缩后,粒子的位置始终是一种不确定的分布,必须为统计曲线(高斯钟形曲线)所描述。所谓坍缩,只不过是它从一个非常矮平的曲线变成一个非常尖锐的曲线罢了。在哥本哈根解释中,只要一观测,系统的位置就从不确定变成完全确定了,而GRW虽然不需要“观测者”,但在它的框架里面没有什么东西是实际上确定的,只有“非常精确”,“比较精确”,“非常不精确”之类的区别。比如说当我盯着你看的时候,你并没有一个完全确定的位置,虽然组成你的大部分物质(粒子)都聚集在你所站的那个地方,但真正描述你的还是一个钟形线(虽然是非常尖锐的钟形线)!我只能说,“绝大部分的你”在你所站的那个地方,而组成你的另外的那“一小撮”(虽然是极少极少的一小撮)却仍然弥漫在空间中,充斥着整个屋子,甚至一直延伸到宇宙的尽头!

也就是说,在任何时候,“你”都填满了整个宇宙,只不过“大部分”的你聚集在某个地方而已。作为一个宏观物体的好处是,明显的量子叠加可以在很短的时间内完成自发定域,但这只是意味着大多数粒子聚集到了某个地方,总有一小部分的粒子仍然留在无穷的空间中。单纯地从逻辑上讲,这也没什么不妥,谁知道你是不是真有小到无可觉察的一部分弥漫在空间中呢?但这毕竟违反了常识!如果必定要违反常识,那我们干脆承认猫又死又活,似乎也不见得糟糕多少。

GRW还抛弃了能量守恒(当然,按照相对论,其实是质能守恒)。自发的坍缩使得这样的守恒实际上不成立,但破坏是那样微小,所需等待的时间是那样漫长,使得人们根本不注意到它。抛弃能量守恒在许多人看来是无法容忍的行为。我们还记得,当年玻尔的BKS理论遭到了爱因斯坦和泡利多么严厉的抨击。

还有,如果自发坍缩的时间是和组成系统的粒子数量成反比的,也就是说组成一个系统的粒子越少,其位置精确化所要求的平均时间越长,那么当我们描述一些非常小的探测装置时,这个理论的预测似乎就不太妙了。比如要探测一个光子的位置,我们不必动用庞大而复杂的仪器,而可以用非常简单的感光剂来做到。如果好好安排,我们完全可以只用到数十亿个粒子(主要是银离子)来完成这个任务。按照哥本哈根,这无疑也是一次“观测”,可以立刻使光子的波函数坍缩而得到一个确定的位置,但如果用GRW的方法来计算,这样小的一个系统必须等上平均差不多一年才会产生一次“自发”的定域。

Roland Omnes后来提到,Ghirardi在私人的谈话中承认了这一困难。但他争辩说,就算在光子使银离子感光这一过程中牵涉到的粒子数目不足以使系统足够快地完成自发定域,我们谁都无法意识到这一点!如果作为观测者的我们不去观测这个实验的结果,谁知道呢,说不定光子真的需要等上一年来得到精确的位置。可是一旦我们去观察实验结果,这就把我们自己的大脑也牵涉进整个系统中来了。关键是,我们的大脑足够“大”(有没有意识倒不重要),足够大的物体便使得光子迅速地得到了一个相对精确的定位!

推而广之,因为我们长着一个大脑袋,所以不管我们看什么,都不会出现位置模糊的量子现象。要是我们拿复杂的仪器去测量,那么当然,测量的时候对象就马上变得精确了。即使仪器非常简单细小,测量以后对象仍有可能保持在模糊状态,它也会在我们观测结果时因为拥有众多粒子的“大脑”的介入而迅速定域。我们是注定无法直接感觉到任何量子效应了,不知道一个足够小的病毒能否争取到足够长的时间来感觉到“光子又在这里又在那里”的奇妙景象(如果它能够感觉的话!)?

最后,薛定谔方程是线性的,而GRW用密度矩阵方程将它取而代之以后,实际上把整个理论体系变成了非线性的!这实际上会使它作出一些和标准量子论不同的预言,而它们可以用实验来检验(只要我们的技术手段更加精确一些)!可是,标准量子论在实践中是如此成功,它的辉煌是如此灿烂,以致任何想和它在实践上比高低的企图都显得前途不太美妙。我们已经目睹了定域隐变量理论的惨死,不知GRW能否有更好的运气?另一位量子论专家,因斯布鲁克大学的Zeilinger(提出GHZ检验的那个)在2000年为Nature杂志撰写的庆祝量子论诞生100周年的文章中大胆地预测,将来的实验会进一步证实标准量子论的预言,把非线性的理论排除出去,就像当年排除掉定域隐变量理论一样。

OK,我们将来再来为GRW的终极命运而担心,我们现在只是关心它的生存现状。GRW保留了类似“坍缩”的概念,试图在此基础上解释微观到宏观的转换。从技术上讲它是成功的,避免了“观测者”的出现,但它没有解决坍缩理论的基本难题,也就是坍缩本身是什么样的机制?再加上我们已经提到的种种困难,使得它并没有吸引到大部分的物理学家来支持它。不过,GRW不太流行的另一个重要原因,恐怕是很快就出现了另一种解释,可以做到GRW所能做到的一切。虽然同样稀奇古怪,但它却不具备GRW的基本缺点。这就是我们马上就要去观光的另一条道路:退相干历史(Decoherent Histories)。这也是我们的漫长旅途中所重点考察的最后一条道路了。
0 请登录后投票
   发表时间:2004-06-10  
第十二章 新探险



1953年,年轻,但是多才多艺的物理学家穆雷•盖尔曼(Murray Gell-Mann)离开普林斯顿,到芝加哥大学担任讲师。那时的芝加哥,仍然笼罩在恩里科•费米的光辉之下,自从这位科学巨匠在1938年因为对于核物理理论的杰出贡献而拿到诺贝尔奖之后,已经过去了近16年。盖尔曼也许不会想到,再过16年,相同的荣誉就会落在自己身上。

虽然已是功成名就,但费米仍然抱着宽厚随和的态度,愿意和所有的人讨论科学问题。在核物理迅猛发展的那个年代,量子论作为它的基础,已经被奉为神圣而不可侵犯的经典,但费米却总是有着一肚子的怀疑,他不止一次地问盖尔曼:

既然量子论是正确的,那么叠加性必然是一种普遍现象。可是,为什么火星有着一条确定的轨道,而不是从轨道上向外散开去呢?

自然,答案在哥本哈根派的锦囊中是唾手可得:火星之所以不散开去,是因为有人在“观察”它,或者说有人在看着它。每看一次,它的波函数就坍缩了。但无论费米还是盖尔曼,都觉得这个答案太无聊和愚蠢,必定有一种更好的解释。

可惜在费米的有生之年,他都没能得到更好的答案。他很快于1954年去世,而盖尔曼则于次年又转投加州理工,在那里开创属于他的伟大事业。加州理工的好学生源源不断,哈特尔(James B Hartle)就是其中一个。60年代,他在盖尔曼的手下攻读博士学位,对量子宇宙学进行了充分的研究和思考,有一个思想逐渐在他的脑海中成型。那个时候,费因曼的路径积分方法已经被创立了20多年,而到了70年代,正如我们在史话的前面所提起过的那样,一种新的理论——退相干理论在Zurek和Zeh等人的努力下也被建立起来了。进入80年代,埃弗莱特的多宇宙解释在物理学界死灰复燃,并迅速引起了众人的兴趣……一切外部条件都逐渐成熟,等1984年,格里菲斯(Robert Griffiths)发表了他的论文之后,退相干历史(简称DH)解释便正式瓜熟蒂落了。

我们还记得埃弗莱特的MWI:宇宙在薛定谔方程的演化中被投影到多个“世界”中去,在每个世界中产生不同的结果。这样一来,在宇宙的发展史上,就逐渐产生越来越多的“世界”。历史只有一个,但世界有很多个!

当哈特尔和盖尔曼读到格里菲斯关于“历史”的论文之后,他们突然之间恍然大悟。他们开始叫嚷:“不对!事实和埃弗莱特的假定正好相反:世界只有一个,但历史有很多个!”

提起“历史”(History)这个词,我们脑海中首先联想到的恐怕就是诸如古埃及、巴比伦、希腊罗马、唐宋元明清之类的概念。历史学是研究过去的学问。但在物理上,过去、现在、未来并不是分得很清楚的,至少理论中没有什么特征可以让我们明确地区分这些状态。站在物理的角度谈“历史”,我们只把它定义成一个系统所经历的一段时间,以及它在这段时间内所经历的状态变化。比如我们讨论封闭在一个盒子里的一堆粒子的“历史”,则我们可以预计它们将按照热力学第二定律逐渐地扩散开来,并最终达到最大的热辐射平衡状态为止。当然,也有可能在其中会形成一个黑洞并与剩下的热辐射相平衡,由于量子涨落和霍金蒸发,系统很有可能将在这两个平衡态之间不停地摇摆,但不管怎么样,对应于某一个特定的时刻,我们的系统将有一个特定的态,把它们连起来,就是我们所说的这个系统的“历史”。

我们要时刻记住,在量子力学中一切都是离散而非连续的,所以当我们讨论“一段时间”的时候,我们所说的实际上是一个包含了所有时刻的集合,从t0,t1,t2,一直到tn。所以我们说的“历史”,实际上就是指,对应于时刻tk来说,系统有相应的态Ak。

我们还是以广大人民群众喜闻乐见的比喻形式来说明问题。想象一支足球队参加某联赛,联赛一共要进行n轮。那么,这支球队的“历史”无非就是:对应于第k轮联赛(时刻k),如果我们进行观测,则得到这场比赛的结果Ak(Ak可以是1:0,2:1,3:3……等等)。如果完整地把这个球队的“历史”写出来,则大概是这个样子:

1:2, 2:3, 1:1, 4:1, 2:0, 0:0, 1:3……

为了简便起见,我们现在仅仅考察一场比赛的情况。一场比赛所有可能的“历史”的总数,理论上说是无穷多的,当然在现实里,比分一般不会太高。如果比赛尚未进行,或者至少,我们尚不知道其结果,那么对于每一种“历史”我们就只能估计它发生的可能性。在实际中,即使是概率也经常很难算准(尽管参考博彩公司的赔率或者浏览一些赌波网站或许能提供某些帮助,但它们有时候是相当误导的),但我们在此讨论的是理论问题,因此我们就假定通过计算,关于任何一种历史我们都能够得到一个准确的概率。比方说,1:0获胜这样一种“历史”发生的可能性是10%,1:2落败则有20%……等等。

说了这么多,这些有什么用呢?切莫心急,很快就见分晓。

到现在为止,因为我们处理的都还是经典概率,所以它们是“可加”的!也就是说,如果我们有两种历史a和b,它们发生的概率分别是Pa和Pb,则“a或者b”发生的概率就是Pa+Pb。拿我们的例子来说,如果我们想问:“净胜2球的可能性是多少?”,那么它必然等于所有“净胜两球”的历史概率的总和,也就是P(2:0)+P(3:1)+P(4:2)+…这看起来似乎是天经地义。

但让我们回到量子论中来。稀奇的是,在量子论里,这样的加法并不总是能够实现!拿我们已经讨论得口干舌燥的那个实验来说,如果“电子通过左缝”是一种历史,“电子通过右缝”是另一种历史,那么“电子通过左缝或者通过右缝”的可能性是多少呢?我们必须把它放到所谓的“密度矩阵”D中去计算,把它们排列成表格!

在这个表格中,呆在坐标(左,左)上的那个值就是“通过左缝”这个历史的概率。呆在(右,右)上的,则无疑是“通过右缝”的概率。但等等,我们还有两个多余的东西,D(左,右)和D(右,左)!这两个是什么东西?它们不是任何概率,而表明了“左”和“右”两种历史之间的交叉干涉!要命的是,计算结果往往显示这些干涉项不为0。

换句话说,“通过左缝”和“通过右缝”这两种历史不是独立自主的,而是互相纠缠在一起,它们之间有干涉项。当我们计算“电子通过左缝或者通过右缝”这样一种情况的时候,我们得到的并非一个传统的概率,干脆地说,这样一个“联合历史”是没有概率的!这也就是为什么在双缝实验中,我们不能说“电子要么通过左缝,要么通过右缝”的原因,它必定同时通过了双缝,因为这两种历史是“相干”的!

回到我们的足球比喻,在一场“量子联赛”中,所有可能的历史都是相干的,1:0这种历史和2:0这种历史互相干涉,所以它们的概率没有可加性!也就是说,如果1:0的可能性是10%,2:0的可能性是15%,那么“1:0或者2:0”的可能性却不是25%,而是某种模糊的东西,它无法被赋予一个概率!

这听上去可真不美妙,如果这些概率不能相加,那么赌球的人或者买足球彩票的人一定都不知所措,没法合理地投入资金了。如果不能计算概率, 那我们还能做什么呢?但是且莫着急,因为奇妙的事情马上就要发生了:虽然我们无法预测“1:0或者2:0”的概率是多少,然而我们却的确可以预言“胜或者平”的概率是多少!这都是因为“退相干”机制的存在!

魔术的秘密在这里:当我们不关心一场比赛的具体比分,而只关心其胜负关系的时候,我们实际上忽略了许多信息。比如说,当我们讨论一种历史是“胜,胜,平,负,胜,负……”,而不是具体的比分的时候,我们实际上构建了一种“粗略的”历史。在每一轮联赛中,我们观察到的态Ak都包含了无数种更加精细的态。例如当我们说第二轮球队“胜”的时候,其中包括了1:0,2:1,2:0,3:1……所有可以归纳为“胜”的具体赛果。在术语中,我们把每一种具体的可能比分称为“精粒历史”(fine-grained history),而把类似“胜”,“负”这样的历史称为“粗粒历史”(coarse-grained history)。

再一次为了简便起见,我们仅仅考察一场比赛的情况。对于单单一场比赛来说,它的“粗粒历史”无非有3种:胜,平,负。如果“胜”的可能性是30%,“平”的可能性是40%,那么“非胜即平”,也就是“不败”的可能性是多少呢?大家对我们上面的讨论还记忆犹新,可能会开始担忧,因为量子论或许不能给出一个经典的概率来,但这次不同了!这一次,量子论给出了一个类似经典概率的答案:“不败”的概率=30+40=70%!

这是为什么呢?原来,当我们计算“胜”和“平”之间的关系时,我们实际上计算了所有包含在它们之中的“精粒历史”之间的关系!如果我们把“胜”和“平”放到矩阵中去计算,我们的确也会得到干涉项如(胜,平),但这个干涉项是什么呢?它是所有组成两种粗粒历史的精粒历史的干涉之和!也就是说,它包括了“1:0和0:0之间的干涉”,“1:0和1:1之间的干涉”,“2:0和1:1之间的干涉”……等等。总之,每一对可能的干涉都被计算在内了,我们惊奇地发现,所有这些干涉加在一起,正好抵消了个干净。当最后的结果出来时,“胜”和“平”之间的干涉项即使没有完全消失,也已经变得小到足以忽略不计。“胜”和“平”两种粗粒历史不再相干,它们“退相干”了!

在量子力学中,我们具体可以采用所谓的“路径积分”(path integral)的办法,构造出一个“退相干函数”来计算所有的这些历史。我们史话的前面已经略微提起过路径积分,它是鼎鼎有名的美国物理学家费因曼在1942年发表的一种量子计算方法,费因曼本人后来也为此与人共同分享了1965年的诺贝尔物理奖。路径积分是一种对于整个时间和空间求和的办法,当粒子从A地运动到B地,我们把它的轨迹表达为所有可能的空间和所有可能的时间的叠加!我们只关心它的初始状态和最终状态,而忽略它的中间状态,对于这些我们不关心的状态,我们就把它在每一种可能的路径上遍历求和,精妙的是,最后这些路径往往会自相抵消掉。

在量子足球场上发生的是同样的事情:我们只关心比赛的胜负结果,而不关心更加细微的事情例如具体的比分。当我们忽略具体比分的时候,事实上就对于每一种可能的比分(历史)进行了遍历求和。当所有的精粒历史被加遍了以后,它们之间的干涉往往会完全抵消,或者至少,几乎完全抵消。这个时候,经典概率就又回到桌面上来,两个粗粒历史的概率又变得可加了,量子论终于又可以管用了!我们也许分不清一场比赛究竟是1:0还是2:0,但我们无疑可以分清一场比赛究竟是赢了还是平了!因为这两种历史之间不再相干!

关键在于,我们必须构建起足够“粗粒”的历史。这就像我传给你两张数字照片,分别是珍妮弗•洛佩兹和珍妮弗•安妮斯顿的特写,然后问你,你觉得两人谁更漂亮。假如你把这些照片放到最大最大,你看见的很可能只是一些颜色各异的色块,两张照片对你来说似乎也没什么大的分别。只有把分辨率调得足够低或者你退开足够远的距离,把这些色块都模糊化,你才能看见整个构图,从而有效地区分这两张照片的不同,进而作出比较。总之,只有当足够“粗粒”的时候,两张照片才能被区分开来,而我们的“历史”也是如此!如果两个历史的“颗粒太细”,以至于它们之间互相干涉,我们就无法把它们区分开来,比如我们无法区分“电子通过了左缝”和“电子通过了右缝”两种历史,它们同时发生着!但如果历史的粒子够“粗”,则我们便能够有效地分开两种历史,它们之间退相干了!

当我们观测了电子的行为,并得到最终结果后,我们实际上就构建了一种“粗粒历史”。我们可以把它归结成两种:“我们观测到粒子在左”以及“我们观测到粒子在右”。为什么说它们是粗粒历史呢?因为我们忽略的东西实在太多了。我们现在只关心我们观测到电子在哪个位置,而不关心我们站在实验室的哪个角落,今天吃了拉面还是汉堡还是寿司,更不关心当我们进行观测的时候,空气中有多少灰尘沾在我们身上,窗户里射进了多少光子与我们发生了相互作用……从理论上讲,每一种不同的情况都应该对应于一种特定的历史,比如“吃了拉面的我们观察到电子在左”和“吃了汉堡的我们观察到电子在左”其实是两种不同的历史。“观察到电子在左并同时被1亿个光子打中”与“观察到电子在左并同时被1亿零1个光子打中”也是两种不同的历史,但我们并不关心这些,而只是把它们简并到“我们观察到电子在左”这个类别里去,因此我们实际上构建了一个非常粗粒的历史。

现在,当我们计算“我们观测到电子在左”和“我们观测到电子在右”两个历史之间的干涉时,实际上就对太多的事情做了遍历求和。我们遍历了“吃了汉堡的你”,“吃了寿司的你”,“吃了拉面的你“……的不同命运。我们遍历了在这期间打到你身上的每一个光子,我们遍历了你和宇宙尽头的每一个电子所发生的相互作用……如果说“我们观测电子的位置”是一个系统,组成这个系统的有n个粒子,在这其中,有m个粒子的状态实际上决定了我们到底观测到电子在左还是在右。那么,除去这m个粒子之外,每一个粒子的命运都在计算中被加遍了。在时间上来说,除了实际观测的那一刻,每一个时刻——不管过去还是未来——所有粒子的状态也都被加遍了。在所有这些计算都完成了之后,在每一个方向上的干涉也就几乎相等了,它们将从结果中被抵消掉。最后,“我们观测到电子在左”和“我们观测到电子在右”两个粗粒历史退相干了,它们之间不再互相联系,而我们只能感觉到其中的某一种!

各位可能会觉得这听起来像一个魔幻故事,但这的确是最近非常流行的一种关于量子论的解释!1984年格里菲斯为它开拓了道路,而很快到了1991年,哈特尔就开始对它进行扩充和完善。不久盖尔曼和欧姆内斯(Roland Omnés)也加入到这一行列中来,这些杰出的物理学家很快把它变成了一个洋洋洒洒的体系。我们还是有必要进一步地考察这个思想,从而对量子论的内涵获取更深的领悟。
0 请登录后投票
   发表时间:2004-06-10  
第十二章 新探险



按照退相干历史(DH)的解释,假如我们把宇宙的历史分得足够精细,那么实际上每时每刻都有许许多多的精粒历史在“同时发生”(相干)。比如没有观测时,电子显然就同时经历着“通过左缝”和“通过右缝”两种历史。但一般来说,我们对于过分精细的历史没有兴趣,我们只关心我们所能观测到的粗粒历史的情况。因为互相脱散(退相干)的缘故,这些历史之间失去了联系,只有一种能够被我们感觉到。

按照历史颗粒的粗细,我们可以创建一棵“历史树”。还是拿我们的量子联赛来说,一个球队在联赛中的历史,最粗可以分到什么程度呢?也许我们可以把它仅仅分成两种:“得到联赛冠军”和“没有得到联赛冠军”。在这个极粗的层面上,我们只具体关心有否获得冠军,别的一概不理,它们都将在计算中被加遍。但是我们也可以继续“精确”下去,比如在“得到冠军”这个分支上,还可以继续按照胜率再区分成“夺冠并且胜率超过50%”和“夺冠但胜率不超过50%”两个分支。类似地我们可以一直分下去,具体到总共获胜了几场,具体到每场的胜负……一直具体到每场的详细比分为止。当然在现实中我们仍可以继续“精粒化”,具体到谁进了球,球场来了多少观众,其中多少人穿了红衣服,球场一共长了几根草之类。但在这里我们假设,一场球最详细的信息就是具体的比分,没有更加详细的了。这样一来,我们的历史树分到具体的比分就无法再继续分下去,这最底下的一层就是“树叶”,也称为“最精粒历史”(maximally fine-grained histories)。

对于两片树叶来讲,它们通常是互相相干的。我们无法明确地区分1:0获胜和2:0获胜这两种历史,因此也无法用传统的概率去计算它们。但我们可以通过适当的粗粒化来构建符合常识的那些历史,比如我们可以区分“胜”,“平”和“负”这三大类历史,因为它们之间已经失去了干涉,退相干了。如此一来,我们就可以用传统的经典概率来计算这些历史,这就形成了“一族”退相干历史(a decoherent family of histories),只有在同一族里,我们才能运用通常的理性逻辑来处理它们之间的概率关系。有的时候,我们也不说“退相干”,而把它叫做“一致历史”(consistent histories),DH的创建人之一格里菲斯就爱用这个词,因此“退相干历史”也常常被称为“一致历史”解释,更加通俗一点,也可以称为“多历史”(many histories)理论。

一般来说,在历史树上越接近根部(往上),粗粒化就越厉害,其干涉也就越小。当然,并非所有的粗粒历史之间都没有干涉,可以被赋予传统概率,具体地要符合某种“一致条件”(consistency condition),而这些条件可以由数学严格地推导出来。

现在让我们考虑薛定谔猫的情况:当那个决定命运的原子衰变时,就这个原子本身来说,它的确经历着衰变/不衰变两种可能的精粒历史。原子本身只是单个粒子,我们忽略的东西并不多。但一旦猫被拖入这个剧情之中,我们的历史剧本换成了猫死/猫活两种,情况就不同了!无论是“猫死”还是“猫活”都是非常模糊的陈述,描述一只猫具体要用到10^27个粒子,当我们说“猫活”的时候,我们忽略了这只猫与外界的一切作用,比如它如何呼吸,如何与外界进行物质和能量交换……等等。就算是“猫死”,它身上的n个粒子也仍然要和外界发生相互作用。换句话说,“猫活”和“猫死”其实是两大类历史的总和,就像“胜”是“1:0”,“2:0”,“2:1”……等历史的总和一样。当我们计算“猫死”和“猫活”之间的干涉时,我们其实穷尽了这两大类历史下的每一对精粒历史之间的干涉,而它们绝大多数都最终抵消掉了。“猫死”和“猫活”之间那千丝万缕的联系于是被切断,它们退相干,最终只有其中的一个真正发生!如果从密度矩阵的角度来看问题,则其表现为除了矩阵对角线上的那些经典概率之外,别的干涉项都迅速消减为0:矩阵“对角化”了!而这里面既没有自发的随机定域,也没有外部的“观测者”,更没有看不见的隐变量!

如果DH解释是正确的,那么我们每时每刻其实都经历着多重的历史,世界上的每一个粒子,事实上都处在所有可能历史的叠加中!但一旦涉及到宏观物体,我们所能够观察和描述的则无非是一些粗粒化的历史,当细节被抹去时,这些历史便互相退相干,永久地失去了联系。比方说如果最终猫还活着,那么“猫死”这个分支就从历史树上被排除了,按照奥卡姆剃刀,我们不妨说这些历史已经不存在于宇宙之中。

嗯,虽然听起来古怪,但它至少可以自圆其说,不是吗?粗粒化的方法看起来可能让人困惑,但其实却并没有那么大惊小怪,我们事实上经常有意无意地用到这些办法。比如在中学里我们计算地球和太阳之间的引力,我们把两个星球“粗粒化”为两个质点。实际上地球和太阳是两个庞大的球体,但以质心代替所有的点,而忽略它们的具体位置之后,我们实际上已经不知不觉地加遍了两个球体内部每一对质点之间的吸引力。在DH解释中,我们所做的只不过更加复杂一点罢了。

从数学上说,DH是定义得很好的一个理论,而从哲学的雅致观点来看,其支持者也颇为得意地宣称它是一种假设最少,而最能体现“物理真实”的理论。但是,DH的日子也并不像宣扬的那样好过,对其最猛烈的攻击来自我们在上一章提到过的,GRW理论的创立者之一GianCarlo Ghirardi。自从DH理论创立以来,这位意大利人和其同事至少在各类物理期刊上发表了5篇攻击退相干历史解释的论文。Ghirardi敏锐地指出,DH解释并不比传统的哥本哈根解释好到哪里去!

正如我们已经为大家所描述过的那样,在DH解释的框架内我们定义了一系列的“粗粒”的历史,当这些历史符合所谓的“一致条件”时,它们就形成了一个互相之间退相干的历史族(family)。比如在我们的联赛中,针对某一场具体的比赛,“胜”,“平”,“负”就是一个合法的历史族,在它们之间只有一个能够发生,因为它们互相之间都已经几乎没有联系。但是,在数学上利用同样的手法,我们也可以定义一些另外的历史族,它们同样合法!比如我们并不一定关注胜负关系,而可以考虑另外的方面比如进球数。现在我们进行另一种粗粒化,把比赛结果区分为“没有进球”,“进了一个球”,“进了两个球”以及“进了两个以上的球”。从数学上看,这4种历史同样符合“一致条件”,它们构成了另一个完好的退相干历史族!

现在,当我们观测了一场比赛,所得到的结果就取决于所选择的历史族。对于同一场比赛,我们可能观测到“胜”,但换一个角度,也可能观测到“进了两个球”。当然,它们之间并不矛盾,但如果我们仔细地考虑一下,在“现实中”真正发生了什么,这仍然叫我们困惑。

当我们观测到“胜”的时候,我们假设在其属下所有的精粒历史都在发生,比如1:0,2:1,2:0,3:0……所有的历史都发生了,只不过我们观测不到具体的精细结果,也对它们并不感兴趣。可对于同样一场比赛,我们也可能观测到“进了两个球”,这时候我们的假设其实是,所有进了两个球的历史都发生了。比如2:0,2:1,2:2,2:3……
现在我们考虑某种特定的精粒历史,比如说1:0这样一个历史。虽然我们从来不会实际观测到这样一个历史,但这并不妨碍我们去问:1:0的历史究竟发生了没有?当观测结果是“胜”的时候,它显然发生了;而当观测结果是“进了两个球”的时候,它却显然没有发生!可是,我们描述的却是同一场比赛!
DH的本意是推翻教科书上的哥本哈根解释,把观测者从理论中赶出去,还物理世界以一个客观实在的解释。也就是说,所有的物理属性都是超越于你我的观察之外独立存在的,它不因为任何主观事物而改变。但现在DH似乎是哑巴吃黄连——有苦说不出。“1:0的历史究竟是否为真”这样一个物理描述,看来的确要取决于历史族的选择,而不是“客观存在”的!这似乎和玻尔他们是殊途同归:宇宙中没有纯粹的客观的物理属性,所有的属性都只能和具体的观察手段连起来讲!
但DH的支持者辩护说,任何理性的逻辑推理(reasoning),都只能用在同一个退相干家族中,而不能跨家族使用。比如当我们在“胜,平,负”这样一族历史中得到了“1:0的精粒历史发生了”这样一个结论后,我们绝不能把它带到另一族历史(比如“没进球,进1球,进2球,进2球以上”)中去,并与其相互比较。他们把这总结成所谓的“同族原则”(single family rule),并宣称这是量子论中最重要的原则。

这一点先放在一边不论,DH的另一个难题是,在理论中实际上存在着种类繁多的“退相干族”,而我们在现实中观察到的却只有一个!还是拿我们的量子联赛来说,就单单一场比赛而言,我们在前面定义了一个退相干族,也就是“胜,平,负”。这一族中包含了3大种粗粒历史,它们之间都互相退相干。这看上去一点都不错,但问题是,并不只有“胜,平,负”这样的分法是可能的,还有无穷种其他的分法,其中的大部分甚至是千奇百怪,不符合常识的,但理论并没有解释我们为何观测到的不是这些另外的分类!

比方说,我们从理论上定义3种历史:“又胜又平”,“又胜又负”,“又平又负”,这3种历史在数学上同样构成一个合法并且完好的退相干族:它们的概率可以经典相加,你无论观测到其中的哪一种,就无法再观测到另外的两种。但显然在实际中,一场比赛不可能“又胜又负”,那么DH就欠我们一个解释,它必须说明为什么在现实中的比赛是分成“胜,平,负”的,而不是“又胜又平”之类,虽然它们在数学上并没有太大的不同!

在这个问题上,DH的辩护者也许会说,理论只有义务解释现实的运作,而没有义务解释现实的存在!我们是从现实出发去建立理论,而不是从理论出发去建立现实!好比说“1头牛加1头牛等于2头牛”和“1头斯芬克斯加1头斯芬克斯等于2头斯芬克斯”在数学上都是成立的,但数学没有义务解释为什么在现实世界中,实际可供我们相加的只有牛,而没有斯芬克斯这样的怪兽。在这一点上实证主义者和柏拉图主义者往往会产生尖锐的冲突,一个突出的例子是我们在后面将会略微讨论到的超弦理论。弦论用10个维度来解释我们的世界,其中6个维度是蜷缩的,但它没有说明为什么是6个维度蜷缩,而不是5个或者8个维度,这使它受到了一些尖锐的诘问。但实证主义者常常会对这样的穷追猛打感到奇怪:因为只有假设6个维度蜷缩才能解释我们观测到的现实世界(现实世界是4维的),这就够了嘛,这不就是所有的理由吗?哪还来的那么多刨根问底呢?

不过DH的支持者如果护定这样一种实证主义立场的话,他们也许暂时忽略了建立这个理论的初衷,也就是摆脱玻尔和海森堡的哥本哈根解释——那可是最彻底的实证主义!不管怎么说,在这上面DH的态度是有些尴尬的,而有关量子力学的大辩论也仍在进行之中,我们仍然无法确定究竟谁的看法是真正正确的。量子魔术在困扰了我们超过100年之后,仍然拒绝把它最深刻的秘密展示在世人面前。也许,这一秘密,将终究成为永久的谜题。

*********
饭后闲话:时间之矢

我们生活在一个4维的世界中,其中3维是空间,1维是时间。时间是一个很奇妙的东西,它似乎和另3维空间有着非常大的不同,最关键的一点是,它似乎是有方向性的!拿空间来说,各个方向没有什么区别,你可以朝左走,也可以向右走,但在时间上,你只能从“过去”向“未来”移动,而无法反过来!虽然有太多的科幻故事讲述人们如何回到过去,但在现实中,这从来也没有发生过,而且很可能永远不会发生!这样猜测的理由还是基于某种类似人择原理的东西:假如理论上可以回到过去,那么虽然我们不行,未来的人却可以,但从未见到他们“回来”我们这个时代。所以很有可能的是,未来任何时代的人们都无法做到让时钟反方向转动,它是理论上无法做到的!

这看起来很正常,无法逆着时间箭头运动,这似乎天经地义。但在物理上,这却是令人困惑的,因为在理论中,似乎没有什么特征可以显示出时间有一个特别的方向。不论是牛顿还是爱因斯坦的理论,它们都是时间对称的!中学老师告诉你t0时刻的状态,你就可以向“未来”前进,推出tn时刻,但也可以反过来向“过去”前进,推出-tn时刻。理论没有告诉我们为什么时间只能向tn移动,而不可以反过来向-tn移动!事实上,在基本层面上,不管时间是正着走还是倒着走,它都是符合物理定律的!但是,一旦脱离基本层面,上升到一个比较高的层次,时间之矢却神秘地出现了:假如我们不考虑单个粒子,而考虑许多粒子的组合,我们就发现一个强烈的方向。比如我们本身只能逐渐变老,而无法越来越年轻,杯子会打碎,但绝不会自动粘贴在一起。这些可以概括为一个非常强大的定律,即著名的热力学第二定律,它说,一个孤立体系的混乱程度总是不断增加的,它的量度称为“熵”。换句话说,熵总是在变大,时间的箭头指向熵变大的那个方向!

现在我们考察量子论。在本节我们讨论了DH解释,所有的“历史”都是定义得很好的,不管你什么时候去测量,这些历史——从过去到未来——都已经在那里存在。我们可以问,当观测了t0时刻后,历史们将会如何退相干,但同样合法的是,我们也可以观测tn时刻,看“之前”的那些时刻如何退相干。实际上,当我们用路径积分把时间加遍的时候,我们仍然没有考虑过时间的方向问题,它在两个方向上都是没有区别的!再说,如果考察量子论的基本数学形式,那么薛定谔方程本身也仍然是时间对称的,唯一引起不对称的是哥本哈根所谓的“坍缩”,难道时间的“流逝”,其实等价于波函数不停的“坍缩”?然而DH是不承认这种坍缩的,或许,我们应当考虑的是历史树的裁剪?盖尔曼和哈特等人也试图从DH中建立起一个自发的时间箭头来,并将它运用到量子宇宙学中去。

我们先不去管DH,如果仔细考虑“坍缩”,还会出现一个奇怪现象:假如我们一直观察系统,那么它的波函数必然“总是”在坍缩,薛定谔波函数从来就没有机会去发展和演化。这样,它必定一直停留在初始状态,看上去的效果相当于时间停滞了。也就是说,只要我们不停地观察,波函数就不演化,时间就会不动!这个佯谬叫做“量子芝诺效应”(quantum Zeno effect),我们在前面已经讨论过了芝诺的一个悖论,也就是阿喀琉斯追乌龟,他另有一个悖论是说,一支在空中飞行的箭,其实是不动的。为什么呢?因为在每一个瞬间,我们拍一张snapshot,那么这支箭在那一刻必定是不动的,所以一支飞行的箭,它等于千千万万个“不动”的组合。问题是,每一个瞬间它都不动,连起来怎么可能变成“动”呢?所以飞行的箭必定是不动的!在我们的实验里也是一样,每一刻波函数(因为观察)都不发展,那么连在一起它怎么可能发展呢?所以它必定永不发展!

从哲学角度来说我们可以对芝诺进行精彩的分析,比如恩格斯漂亮地反驳说,每一刻的箭都处在不动与动的矛盾中,而真实的运动恰好是这种矛盾本身!不过我们不在意哲学探讨,只在乎实验证据。已经有相当多的实验证实,当观测频繁到一定程度时,量子体系的确表现出芝诺效应。这是不是说,如果我们一直盯着薛定谔的猫看,则它永远也不会死去呢?

时间的方向是一个饶有趣味的话题,它很可能牵涉到深刻的物理定律,比如对称性破缺的问题。在极早期宇宙的研究中,为了彻底弄明白时间之矢如何产生,我们也迫切需要一个好的量子引力理论,在后面我们会更详细地讲到这一点。我们只能向着未来,而不是过去前进,这的确是我们神奇的宇宙最不可思议的方面之一。
0 请登录后投票
   发表时间:2004-06-10  
第十二章 新探险



好了各位,到此为止,我们在量子世界的旅途已经接近尾声。我们已经浏览了绝大多数重要的风景点,探索了大部分先人走过的道路。但是,正如我们已经强烈地感受到的那样,对于每一条道路来说,虽然一路上都是峰回路转,奇境叠出,但越到后来却都变得那样地崎岖不平,难以前进。虽说“入之愈深,其进愈难,而其见愈奇”,但精神和体力上的巨大疲惫到底打击了我们的信心,阻止了我们在任何一条道上顽强地冲向终点。

当一次又一次地从不同的道路上徒劳而返之后,我们突然发现,自己已经处在一个巨大的迷宫中央。在我们的身边,曲折的道路如同蛛网一般地辐射开来,每一条都通向一个幽深的不可捉摸的未来。我已经带领大家去探讨了哥本哈根、多宇宙、隐变量、系综、GRW、退相干历史等6条道路,但要告诉各位的是,仍然还有非常多的偏僻的小道,我们并没有提及。比如有人认为当进行了一次“观测”之后,宇宙没有分裂,只有我们大脑的状态(或者说“精神”)分裂了!这称为“多精神解释”(many-minds intepretation),它名副其实地算得上一种精神分裂症!还有人认为,在量子层面上我们必须放弃通常的逻辑(布尔逻辑),而改用一种“量子逻辑”来陈述!另一些人不那么激烈,他们觉得不必放弃通常的逻辑,但是通常的“概率”概念则必须修改,我们必须引入“复”的概率,也就是说概率并不是通常的0到1,而是必须描述为复数!华盛顿大学的物理学家克拉默(John G Cramer)建立了一种非定域的“交易模型”(The transactional model),而他在牛津的同行彭罗斯则认为波函数的缩减和引力有关。彭罗斯宣称只要空间的曲率大于一个引力子的尺度,量子线性叠加规则就将失效,这里面还牵涉到量子引力的复杂情况诸如物质在跌入黑洞时如何损失了信息……等等,诸如此类。即便是我们已经描述过的那些解释,我们的史话所做的也只是挂一漏万,只能给各位提供一点最基本的概念。事实上,每一种解释都已经衍生出无数个变种,它们打着各自的旗号,都在不遗余力地向世人推销自己,这已经把我们搞得头晕脑胀,不知所措了。现在,我们就像是被困在克里特岛迷宫中的那位忒修斯(Theseus),还在茫然而不停地摸索,苦苦等待着阿里阿德涅(Ariadne)——我们那位可爱的女郎——把那个指引方向,命运攸关的线团扔到我们手中。

1997年,在马里兰大学巴尔的摩郡分校(UMBC)召开了一次关于量子力学的研讨会。有人在与会者中间做了一次问卷调查,统计究竟他们相信哪一种关于量子论的解释。结果是这样的:哥本哈根解释13票,多宇宙8票,玻姆的隐变量4票,退相干历史4票,自发定域理论(如GRW)1票,还有18票都是说还没有想好,或者是相信上述之外的某种解释。到了1999年,在剑桥牛顿研究所举行的一次量子计算会议上,又作了一次类似的调查,这次哥本哈根4票,修订过的运动学理论(它们对薛定谔方程进行修正,比如GRW)4票,玻姆2票,而多世界(MWI)和多历史(DH)加起来(它们都属于那种认为“没有坍缩存在”的理论)得到了令人惊奇的30票。但更加令人惊奇的是,竟然有50票之多承认自己尚无法作出抉择。在宇宙学家和量子引力专家中,MWI受欢迎的程度要高一些,据统计有58%的人认为多世界是正确的理论,而只有18%明确地认为它不正确。但其实许多人对于各种“解释”究竟说了什么是搞不太清楚的,比如人们往往弄不明白多世界和多历史到底差别在哪里,或许,它们本来就没有明确的分界线。就算是相信哥本哈根的人,他们互相之间也会发生严重的分歧,甚至关于它到底是不是一个决定论的解释也会造成争吵。量子论仍然处在一个战国纷争的时代,玻尔,海森堡,爱因斯坦,薛定谔……他们的背影虽然已经离我们远去,但他们当年曾战斗过的这片战场上仍然硝烟弥漫,他们不同的信念仍然支撑着新一代的物理学家,激励着人们为了那个神圣的目标而继续奋战。

想想也真是讽刺,量子力学作为20世纪物理史上最重要的成就之一,到今天为止它的基本数学形式已经被创立了将近整整80年。它在每一个领域内都取得了巨大的成功,以致和相对论一起成为了支撑物理学的两大支柱。80年!任何一种事物如果经历了这样一段漫长时间的考验后仍然屹立不倒,这已经足够把它变成不朽的经典。岁月将把它磨砺成一个完美的成熟的体系,留给人们的只剩下深深的崇敬和无限的唏嘘,慨叹自己为何不能生于乱世,提三尺剑立不世功名,参予到这个伟大工作中去。但量子论是如此地与众不同,即使在它被创立了80年之后,它仍然没有被最后完成!人们仍在为了它而争吵不休,为如何“解释”它而闹得焦头烂额,这在物理史上可是前所未有的事情!想想牛顿力学,想想相对论,从来没有人为了如何“解释”它们而操心过,对比之下,这更加凸现出量子论那独一无二的神秘气质。

人们的确有理由感到奇怪,为什么在如此漫长的岁月过去之后,我们不但没有对量子论了解得更清楚,反而越来越感觉到它的奇特和不可思议。最杰出的量子论专家们各执一词,人人都声称只有他的理解才是正确的,而别人都错了。量子谜题已经成为物理学中一个最神秘和不可捉摸的部位,Zeilinger有一次说:“我做实验的唯一目的,就是给别的物理学家看看,量子论究竟有多奇怪。”到目前为止,我们手里已经攥下了超过一打的所谓“解释”,而且它的数目仍然有望不断地增加。很明显,在这些花样繁多的提议中间,除了一种以外,绝大多数都是错误的。甚至很可能,到目前为止所有的解释都是错误的,但这却并没有妨碍物理学家们把它们创造出来!我们只能说,物理学家的想象力和创造力是非凡的,但这也引起了我们深深的忧虑:到底在多大程度上,物理理论如同人们所骄傲地宣称的那样,是对于大自然的深刻“发现”,而不属于物理学家们杰出的智力“发明”?

但从另外一方面看,我们对于量子论本身的确是没有什么好挑剔的。它的成功是如此巨大,以致于我们除了咋舌之外,根本就来不及对它的奇特之处有过多的评头论足。从它被创立之初,它就挟着雷霆万钧的力量横扫整个物理学,把每个角落都塑造得焕然一新。或许就像狄更斯说的那样,这是最坏的时代,但也是最好的时代。

量子论的基本形式只是一个大的框架,它描述了单个粒子如何运动。但要描述在高能情况下,多粒子之间的相互作用时,我们就必定要涉及到场的作用,这就需要如同当年普朗克把能量成功地量子化一样,把麦克斯韦的电磁场也进行大刀阔斧的量子化——建立量子场论(quantum field theory)。这个过程是一个同样令人激动的宏伟故事,如果铺展开来叙述,势必又是一篇规模庞大的史话,因此我们只是在这里极简单地作一些描述。这一工作由狄拉克开始,经由约尔当、海森堡、泡利和维格纳的发展,很快人们就认识到:原来所有粒子都是弥漫在空间中的某种场,这些场有着不同的能量形态,而当能量最低时,这就是我们通常说的“真空”。因此真空其实只不过是粒子的一种不同形态(基态)而已,任何粒子都可以从中被创造出来,也可以互相湮灭。狄拉克的方程预言了所谓的“反物质”的存在,任何受过足够科普熏陶的读者对此都应该耳熟能详:比如一个正常的氢原子由带正电的质子和带负电的电子组成,但在一个“反氢原子”中,质子却带着负电,而电子带着正电!当一个原子和一个“反原子”相遇,它们就轰隆一声放出大量的能量辐射,然后双方同时消失得无影无踪,其关系就符合20世纪最有名的那个物理方程:E=mc^2!

最早的“反电子”由加州理工的安德森(Carl Anderson)于1932年在研究宇宙射线的时候发现。它的意义是如此重要,以致于仅仅过了4年,诺贝尔奖评委会就罕见地授予他这一科学界的最高荣誉。

但是,虽然关于辐射场的量子化理论在某些问题上是成功的,但麻烦很快就到来了。1947年,在《物理评论》上刊登了有关兰姆移位和电子磁矩的实验结果,这和现有的理论发生了微小的偏差,于是人们决定利用微扰办法来重新计算准确的值。但是,算来算去,人们惊奇地发现,当他们想尽可能地追求准确,而加入所有的微扰项之后,最后的结果却适得其反,它总是发散为无穷大!

这可真是让人沮丧的结果,理论算出了无穷大,总归是一件荒谬的事情。为了消除这个无穷大,无数的物理学家们进行了艰苦卓绝,不屈不挠的斗争。这个阴影是如此难以驱散,如附骨之蛆一般地叫人头痛,以至于在一段时间里把物理学变成了一个让人无比厌憎的学科。最后的解决方案是日本物理学家朝永振一郎、美国人施温格(Julian S Schwiger)和戴森(Freeman Dyson),还有那位传奇的费因曼所分别独立完成的,被称为“重正化”(renormalization)方法,具体的技术细节我们就不用理会了。虽然认为重正化牵强而不令人信服的科学家大有人在,但是采用这种手段把无穷大从理论中赶走之后,剩下的结果其准确程度令人吃惊得瞠目结舌:处理电子的量子电动力学(QED)在经过重正化的修正之后,在电子磁距的计算中竟然一直与实验值符合到小数点之后第11位!亘古以来都没有哪个理论能够做到这样教人咋舌的事情。

实际上,量子电动力学常常被称作人类有史以来“最为精确的物理理论”,如果不是实验值经过反复测算,这样高精度的数据实在是让人怀疑是不是存心伪造的。但巨大的胜利使得一切怀疑都最终迎刃而解,QED也最终作为量子场论一个最为悠久和成功的分支而为人们熟知。虽然最近彭罗斯声称说,由于对赫尔斯-泰勒脉冲星系统的观测已经积累起了如此确凿的关于引力波存在的证明,这实际上使得广义相对论的精确度已经和实验吻合到10的负14次方,因此超越了QED(赫尔斯和泰勒获得了1993年诺贝尔物理奖)。但无论如何,量子场论的成功是无人可以否认的。朝永振一郎,施温格和费因曼也分享了1965年的诺贝尔物理奖。

抛开量子场论的胜利不谈,量子论在物理界的几乎每一个角落都激起激动人心的浪花,引发一连串美丽的涟漪。它深入固体物理之中,使我们对于固体机械和热性质的认识产生了翻天覆地的变化,更打开了通向凝聚态物理这一崭新世界的大门。在它的指引下,我们才真正认识了电流的传导,使得对于半导体的研究成为可能,而最终带领我们走向微电子学的建立。它驾临分子物理领域,成功地解释了化学键和轨道杂化,从而开创了量子化学学科。如今我们关于化学的几乎一切知识,都建立在这个基础之上。而材料科学在插上了量子论的双翼之后,才真正展翅飞翔起来,开始深刻地影响社会的方方面面。在量子论的指引之下,我们认识了超导和超流,我们掌握了激光技术,我们造出了晶体管和集成电路,为一整个新时代的来临真正做好了准备。量子论让我们得以一探原子内部那最为精细的奥秘,我们不但更加深刻地理解了电子和原子核之间的作用和关系,还进一步拆开原子核,领略到了大自然那更为令人惊叹的神奇。在浩瀚的星空之中,我们必须借助量子论才能把握恒星的命运会何去何从:当它们的燃料耗尽之后,它们会不可避免地向内坍缩,这时支撑起它们最后骨架的就是源自泡利不相容原理的一种简并压力。当电子简并压力足够抵挡坍缩时,恒星就演化为白矮星。要是电子被征服,而要靠中子出来抵抗时,恒星就变为中子星。最后,如果一切防线都被突破,那么它就不可避免地坍缩成一个黑洞。但即使黑洞也不是完全“黑”的,如果充分考虑量子不确定因素的影响,黑洞其实也会产生辐射而逐渐消失,这就是以其鼎鼎大名的发现者史蒂芬•霍金而命名的“霍金蒸发”过程。

当物质落入黑洞的时候,它所包含的信息被完全吞噬了。因为按照定义,没什么能再从黑洞中逃出来,所以这些信息其实是永久地丧失了。这样一来,我们的决定论再一次遭到毁灭性的打击:现在,即使是预测概率的薛定谔波函数本身,我们都无法确定地预测!因为宇宙波函数需要掌握所有物质的信息,而这些信息却不断地被黑洞所吞没。霍金对此说了一句同样有名的话:“上帝不但掷骰子,他还把骰子掷到我们看不见的地方去!”这个看不见的地方就是黑洞奇点。不过由于蒸发过程的发现,黑洞是否在蒸发后又把这些信息重新“吐”出来呢?在这点上人们依旧争论不休,它关系到我们的宇宙和骰子之间那深刻的内在关系。

最后,很有可能,我们对于宇宙终极命运的理解也离不开量子论。大爆炸的最初发生了什么?是否存在奇点?在奇点处物理定律是否失效?因为在宇宙极早期,引力场是如此之强,以致量子效应不能忽略,我们必须采取有效的量子引力方法来处理。在采用了费因曼的路径积分手段之后,哈特尔(就是提出DH的那个)和霍金提出了著名的“无边界假设”:宇宙的起点并没有一个明确的边界,时间并不是一条从一点开始的射线,相反,它是复数的!时间就像我们地球的表面,并没有一个地方可以称之为“起点”。为了更好地理解这些问题,我们迫切地需要全新的量子宇宙学,需要量子论和相对论进一步强强联手,在史话的后面我们还会讲到这个事情。

量子论的出现彻底改变了世界的面貌,它比史上任何一种理论都引发了更多的技术革命。核能、计算机技术、新材料、能源技术、信息技术……这些都在根本上和量子论密切相关。牵强一点说,如果没有足够的关于弱相互作用力和晶体衍射的知识,DNA的双螺旋结构也就不会被发现,分子生物学也就无法建立,也就没有如今这般火热的生物技术革命。再牵强一点说,没有量子力学,也就没有欧洲粒子物理中心(CERN),而没有CERN,也就没有互联网的www服务,更没有划时代的网络革命,各位也就很可能看不到我们的史话,呵呵。

如果要评选20世纪最为深刻地影响了人类社会的事件,那么可以毫不夸张地说,这既不是两次世界大战,也不是共产主义运动的兴衰,也不是联合国的成立,或者女权运动,殖民主义的没落,人类探索太空……等等。它应该被授予量子力学及其相关理论的创立和发展。量子论深入我们生活的每一个角落,它的影响无处不在,触手可得。许多人喜欢比较20世纪齐名的两大物理发现相对论和量子论究竟谁更“伟大”,从一个普遍的意义上来说这样的比较是毫无意义的,所谓“伟大”往往不具有可比性,正如人们无聊地争论李白还是杜甫,莫扎特还是贝多芬,汉朝还是罗马,贝利还是马拉多纳,Beatles还是滚石,阿甘还是肖申克……但仅仅从实用性的角度而言,我们可以毫不犹豫地下结论说:是的,量子论比相对论更加“有用”。

也许我们仍然不能从哲学意义上去真正理解量子论,但它的进步意义依旧无可限量。虽然我们有时候还会偶尔怀念经典时代,怀念那些因果关系一丝不苟,宇宙的本质简单易懂的日子,但这也已经更多地是一种怀旧情绪而已。正如电影《乱世佳人》的开头不无深情地说:“曾经有一片属于骑士和棉花园的土地叫做老南方。在这个美丽的世界里,绅士们最后一次风度翩翩地行礼,骑士们最后一次和漂亮的女伴们同行,人们最后一次见到主人和他们的奴隶。而如今这已经是一个只能从书本中去寻找的旧梦,一个随风飘逝的文明。”虽然有这样的伤感,但人们依然还是会歌颂北方扬基们最后的胜利,因为我们从他们那里得到更大的力量,更多的热情,还有对于未来更执着的信心。
0 请登录后投票
   发表时间:2004-06-10  
第十二章 新探险



但量子论的道路仍未走到尽头,虽然它已经负担了太多的光荣和疑惑,但命运仍然注定了它要继续影响物理学的将来。在经历了无数的风雨之后,这一次,它面对的是一个前所未有强大的对手,也是最后的终极挑战——广义相对论。

标准的薛定谔方程是非相对论化的,在它之中并没有考虑到光速的上限。而这一工作最终由狄拉克完成,最后完成的量子场论实际上是量子力学和狭义相对论的联合产物。当我们仅仅考虑电磁场的时候,我们得到的是量子电动力学,它可以处理电磁力的作用。大家在中学里都知道电磁力:同性相斥,异性相吸,量子电动力学认为,这个力的本质是两个粒子之间不停地交换光子的结果。两个电子互相靠近并最终因为电磁力而弹开,这其中发生了什么呢?原来两个电子不停地在交换光子。想象两个溜冰场上的人,他们不停地把一只皮球抛来抛去,从一个人的手中扔到另一个人那里,这样一来他们必定离得越来越远,似乎他们之间有一种斥力一样。在电磁作用力中,这个皮球就是光子!那么同性相吸是怎么回事呢?你可以想象成两个人背靠背站立,并不停地把球扔到对方面对的墙壁上再反弹到对方手里。这样就似乎有一种吸力使两人紧紧靠在一起。

但是,当处理到原子核内部的事务时,我们面对的就不再是电磁作用力了!比如说一个氦原子核,它由两个质子和两个中子组成。中子不带电,倒也没有什么,可两个质子却都带着正电!如果说同性相斥,那么它们应该互相弹开,而怎么可能保持在一起呢?这显然不是万有引力互相吸引的结果,在如此小的质子之间,引力微弱得基本可以忽略不计,必定有一种更为强大的核力,比电磁力更强大,才可以把它们拉在一起不致分开。这种力叫做强相互作用力。

聪明的各位也许已经猜到了,既然有“强”相互作用力,必定相对地还有一种“弱”相互作用力,事实正是如此。弱作用力就是造成许多不稳定的粒子衰变的原因。这样一来,我们的宇宙中就总共有着4种相互作用力:引力、电磁力、强相互作用力和弱相互作用力。它们各自为政,互不管辖,遵守着不同的理论规则。

但所有这些力的本质是什么呢?是不是也如同电磁力那样,是因为交换粒子而形成的?日本物理学家汤川秀树——他或许是日本最著名的科学家——预言如此。在强相互作用力中,汤川认为这是因为核子交换一种新粒子——介子(meson)而形成的。他所预言的介子不久就为安德森等人所发现,不过那却是一种不同的介子,现在称为μ子,它和汤川理论无关。汤川所预言的那种介子现在称为π子,它最终在1947年为英国人鲍威尔(Cecil Frank Powell)在研究宇宙射线时所发现。汤川获得了1949年的诺贝尔物理奖,而鲍威尔获得了1950年的。对于强相互作用力的研究仍在继续,人们把那些感受强相互作用力的核子称为“强子”,比如质子、中子等。1964年,我们的盖尔曼提出,所有的强子都可以进一步分割,这就是如今家喻户晓的“夸克”模型。每个质子或中子都由3个夸克组成,每种夸克既有不同的“味道”,更有不同的“颜色”,在此基础上人们发明了所谓的“量子色动力学”(QCD),来描述。夸克之间同样通过交换粒子来维持作用力,这种被交换的粒子称为“胶子”(gluon)。各位也许已经有些头晕脑胀,我们就不进一步描述了。再说详细描述基本粒子的模型需要太多的笔墨,引进太多的概念,但我们的史话所留下的篇幅已经不多,所以只能这样简单地一笔带过。如果想更好地了解有关知识,盖尔曼曾写过一本通俗的读物《夸克与美洲豹》,而伟大的阿西莫夫(Isaac Asimov)则有更多精彩的论述,虽然时代已经不同,但许多作品却仍然并不过时!

强相互作用是交换介子,那么弱相互作用呢?汤川秀树同样预言它必定也交换某种粒子,这种粒子被称为“中间玻色子”。与强作用力所不同的是,弱相互作用力的理论形式看上去同电磁作用力非常相似,这使得人们开始怀疑,这两种力实际上是不是就是同一种东西,只不过在不同的环境中表现得不尽相同而已?特别是当李政道与杨振宁提出了弱作用下宇称不守恒之后,这一怀疑愈加强烈。终于到了60年代,统一弱相互作用力和电磁力的工作由美国人格拉肖(Sheldon Glashow)、温伯格(Steven Weinberg)和巴基斯坦人萨拉姆(Aldus Salam)所完成,他们的成果被称为“弱电统一理论”,3人最终为此得到了1979年的诺贝尔奖。该理论所预言的3种中间玻色子(W+,W-和Z0)到了80年代被实验所全部发现,更加证实了它的正确性。

物理学家们现在开始大大地兴奋起来了:既然电磁力和弱作用力已经被证明是同一种东西,可以被一个相同的理论所描述,那么我们又有什么理由不去相信,所有的4种力其实都是同一种东西呢?所有的物理学家都相信,上帝——大自然的创造者——他老人家是爱好简单的,他不会把我们的世界搞得复杂不堪,让人摇头叹气,他必定按照某一种标准的模式创造了这个宇宙!而我们要做的工作,就是把上帝所依据的这个蓝图找出来。这蓝图必定只有一份,而所有的物理现象,物理力都被涵盖在这个设计之中!如果模仿《独立宣言》中那著名的句子,物理学家完全愿意宣称:

我们认为这是不言而喻的事实:每一种力都是被相同地创造的。
We hold the truth to be self-evident, that all forces are created equal.

是啊,要是真有那么一个理论,它可以描述所有的4种力,进而可以描述所有的物理现象,那该是怎样一幅壮观的场面啊!那样一来,整个自然,整个物理就又重新归于统一之中,就像史诗中所描写的那个传奇的黄金时代与伟大的经典帝国,任何人都无法抗拒这样一种诱人的景象,仿佛一个新的伟大时代就在眼前。戎马已备,戈矛已修,浩浩荡荡的大军终于就要出发,去追寻那个失落已久的统一之梦。

现在,弱作用力和电磁力已经被合并了,下一个目标是强相互作用力,正如我们已经介绍的那样,这块地域目前为止被量子色动力学所统治着。但幸运地是,虽然兵锋指处,形势紧张严峻,大战一触即发,但两国的君主却多少有点血缘关系,这给和平统一留下了余地:它们都是在量子场论的统一框架下完成的。1954年,杨振宁和米尔斯建立了规范场论,而吸取了对称性破缺的思想之后,这使得理论中的某些没有质量的粒子可以自发地获得质量。正因为如此,中间玻色子和光子才得以被格拉肖等人包含在同一个框架内。而反观量子色动力学,它本身就是模仿量子电动力学所建立的,连名字都模仿自后者!所不同的是光子不带电荷,但胶子却带着“颜色”荷,但如果充分地考虑自发对称破缺的规范场,将理论扩充为更大的单群,把胶子也拉进统一中来并非不可能。这样的理论被骄傲地称为“大统一理论”(Grand Unified Theory,GUT),它后来发展出了多个变种,但不管怎样,其目标是一致的,那就是统一弱相互作用力、强相互作用力和电磁力3种力,把它们合并在一起,包含到同一个理论中去。不同的大统一理论预言了一些不同的物理现象,比如质子可能会衰变,比如存在着磁单极子,或者奇异弦,但可惜的是,到目前为止这些现象都还没有得到确凿的证实。退一步来说,由于理论中一些关键的部分比如希格斯玻色子的假设到目前为止都尚未在实验中发现,甚至我们连粒子的标准模型也不能100%地肯定正确。但无论如何,大统一理论是非常有前途的理论,人们也有理由相信它终将达到它的目标。

可是,虽然号称“大统一”,这样的称号却依旧是名不副实的。就算大统一理论得到了证实,天下却仍未统一,四海仍未一靖。人们怎么可以遗漏了那块辽阔的沃土——引力呢?GUT即使登基,他的权力仍旧是不完整的,对于引力,他仍旧鞭长莫及。天无二日民无二君,雄心勃勃的物理学家们早就把眼光放到了引力身上,即使他们事实上连强作用力也仍未最终征服。正可谓尚未得陇,便已望蜀。

引力在宇宙中是一片独一无二的区域,它和其他3种力似乎有着本质的不同。电磁力有时候互相吸引,有时候互相排斥,但引力却总是吸引的!这使它可以在大尺度上累加起来。当我们考察原子的时候,引力可以忽略不计,但一旦我们的眼光放到恒星、星云、星系这样的尺度上,引力便取代别的力成了主导因素。想要把引力包含进统一的体系中来是格外困难的,如果说电磁力、强作用力和弱作用力还勉强算同文同种,引力则傲然不群,独来独往。何况,我们并没有资格在它面前咆哮说天兵已至,为何还不服王化云云,因为它的统治者有着同样高贵的血统和深厚的渊源:这里的国王是爱因斯坦伟大的广义相对论,其前身则是煌煌的牛顿力学!

物理学到了这个地步,只剩下了最后一个分歧,但也很可能是最难以调和和统一的分歧。量子场论虽然争取到了狭义相对论的合作,但它还是难以征服引力:广义相对论拒绝与它联手统治整个世界,它更乐于在引力这片保留地上独立地呼风唤雨。从深层次的角度上说,这里凸现了量子论和相对论的内在矛盾,这两个20世纪的伟大物理理论之间必定要经历一场艰难和痛苦的融合,才能孕育出最后那个众望所归的王者,完成“普天之下,莫非王土”的宏愿。

物理学家有一个梦想,一个深深植根于整个自然的梦想。他们梦想有一天,深壑弥合,高山夷平,荆棘变沃土,歧路变通衢。他们梦想造物主的光辉最终被揭示,而众生得以一起朝觐这一终极的奥秘。而要实现这个梦想,就需要把量子论和相对论真正地结合到一起,从而创造一个量子引力理论。它可以解释一切的力,进而阐释一切的物理现象。这样的理论是上帝造物的终极蓝图,它讲述了这个自然最深刻的秘密。只有这样的理论,才真正有资格称得上“大统一”,不过既然大统一的名字已经被GUT所占用了,人们给这种终极理论取了另外一个名字:万能理论(Theory of Everything,TOE)。

爱因斯坦在他的晚年就曾经试图去实现这个梦想,在普林斯顿的那些日子里,他的主要精力都放在如何去完成统一场论上(虽然他还并不清楚强力和弱力这两个王国的存在)。但是,爱因斯坦的战略思想却是从广义相对论出发去攻打电磁力,这样的进攻被证明是极为艰难而伤亡惨重的:不仅边界上崇山峻岭,有着无法克服的数学困难,而且对方居高临下,地形易守难攻,占尽了便宜。虽然爱因斯坦执着不懈地一再努力,但整整30年,直到他去世为止,仍然没能获得任何进展。今天看来,这个失败是不可避免的,广义相对论和量子论之间有一条深深的不可逾越的鸿沟,而爱因斯坦的旧式军队是绝无可能跨越这个障碍的。但在另一面,爱因斯坦所不喜欢的量子论迅猛地发展起来,正如我们描述的那样,它的力量很快就超出了人们所能想象的极限。这一次,以量子论为主导,统一是否能够被真正完成了呢?

历史上产生了不少量子引力理论,但我们只想极为简单地描述一个。它近来大红大紫,声名远扬,时髦无比,倘若谁不知道它简直就不好意思出来混。大家一定都明白我说的是超弦(Superstring)理论,许多读者迫使我相信,如果不在最后提一下它,那么我们的史话简直就是一肚子不合时宜。

*********
饭后闲话:霍金打赌

1999年,霍金在一次演讲中说,他愿意以1赔1,赌一个万能理论会在20年内出现。现在是不是真的有人和他打这个赌我暂时不得而知,不过霍金好打赌是出了名的,咱们今天就来闲话几句打赌的话题。

我们所知的霍金打的最早的一个赌或许是他和两个幼年时的伙伴所打的:他们赌今后他们之间是不是会有人出人头地。霍金出名后,还常常和当初的伙伴开玩笑说,因为他打赢了,所以对方欠他一块糖。

霍金33岁时,第一次就科学问题打赌,之后便一发不可收拾。今天我们所熟知的最有名的几个科学赌局,几乎都同他有关。或者也是因为霍金太出名,太容易被媒体炒作渲染的缘故吧。

1974年,黑洞的热潮在物理学界内方兴未艾。人们已经不太怀疑黑洞是一个物理真实,但在天文观测上仍没有找到一个确实的实体。不过已经有几个天体非常可疑,其中一个叫做天鹅座X-1,如果你小时候阅读过80年代的一些科普书籍,你会对这个名字耳熟能详。霍金对这个天体的身份表示怀疑,他和加州理工的物理学家索恩(Kip Thorne)立下字据,以1年的《阁楼》(Penthouse)杂志赌索恩4年的《私家侦探》(Private Eye)。大家也许会对霍金这样的大科学家竟然下这样的赌注而感到惊奇(Penthouse大家想必都知道,是和Playboy齐名的男性杂志,不过最近倒闭了),呵呵,不过饮食男女人之大欲,反正他就是这样赌的。今天大家都已经知道,宇宙中的黑洞多如牛毛,天鹅X-1的身份更是不用怀疑。1990年霍金到南加州大学演讲,当时索恩人在莫斯科,于是霍金大张旗鼓地闯入索恩的办公室,把当年的赌据翻出来印上拇指印表示认输。

霍金后来真的给索恩订了一年的《阁楼》,索恩家里的女性成员对此是有意见的。但那倒也不是对于《阁楼》有什么反感,在美国这种开放社会这不算什么。反对的原因来自女权主义:她们坚持索恩应该赌一份适合both男女阅读的杂志。当年索恩还曾赢了钱德拉塞卡的《花花公子》,出于同样的理由换成了《听众》。

霍金输了这个场子很是不甘,1年后便又找上索恩,同时还有索恩的同事,加州理工的另一位物理学家普雷斯基(John Preskill),赌宇宙中不可能存在裸奇点,负者为对方提供能够包裹“裸体”的衣服。这次霍金不到4个月就发现自己还是要输:黑洞在经过霍金蒸发后的确可能保留一个裸奇点!但霍金在文字上耍赖,声称由于量子过程而产生的裸奇点并不是赌约上描述的那个由于广义相对论而形成的裸奇点,而且那个证明也是不严格的,所以不算。

逃得了初一逃不过十五,1997年德州大学的科学家用超级计算机证明了,当黑洞坍缩时,在非常特别的条件下裸奇点在理论上是可以存在的!霍金终于认输,给他的对手各买了一件T恤衫。但他还是不服气的,他另立赌约,赌虽然在非常特别的条件下存在裸奇点,但在一般情况下它是被禁止的!而且霍金在T恤上写的字更是不依不饶:大自然讨厌裸露!

霍金在索恩那里吃了几次亏了,这次不知是否能翻盘。当然索恩也不是常赌不败的,他曾经和苏联人泽尔多维奇(Zel’dovich)在黑洞辐射的问题上打赌,结果输了一瓶上好的名牌威士忌。有时候霍金和索恩还会联手,比如在黑洞蒸发后是否吐出当初吃掉的信息这一问题上。霍金和索恩赌它不会,而普雷斯基赌它会,赌注是“信息”本身——胜利者将得到一本百科全书!这个问题迄无定论,不过从最近发展的势头来看,霍金又有输的危险。今年(2004年)初,俄亥俄州立大学的科学家用弦论更为明确地证明了,黑洞很可能将吐出信息!

2000年,霍金又和密歇根大学的凯恩(Gordon Kane)赌100美元,说在芝加哥附近的费米实验室里不可能发现所谓的“希格斯玻色子”(这是英国物理学家希格斯于1964年预言的一种有重要理论意义的粒子,但至今尚未证实)。后来他又和欧洲的一些粒子物理学家赌,说日内瓦的欧洲粒子物理实验室里也不可能发现希格斯子。这次霍金算是赢了,至今仍然没有找到希格斯子的踪迹。不过霍金对于这个假设的嘲笑态度使得许多粒子物理学家十分恼火,甚至上升为宇宙物理学家和粒子物理学家之间的一种矛盾。希格斯本人于2002年在报上发表了言词尖刻的评论,说霍金因为名气大,所以人们总是不加判断地相信他说的东西。这也引起了一场不大不小的风波。

在科学问题上打赌的风气由来已久,而根据2002年Nature杂志上的一篇文章(Nature 420, p354),目前在科学的各个领域内各种各样的赌局也是五花八门。这也算是科学另一面的趣味和魅力吧?不知将来是否会有人以此为题材,写出又一篇类似《80天环游地球》的精彩小说呢?
0 请登录后投票
   发表时间:2004-06-10  
第十二章 新探险



在统一广义相对论和量子论的漫漫征途中,物理学家一开始采用的是较为温和的办法。他们试图采用老的战术,也就是在征讨强、弱作用力和电磁力时用过的那些行之有效的手段,把它同样用在引力的身上。在相对论里,引力被描述为由于时空弯曲而造成的几何效应,而正如我们所看到的,量子场论把基本的力看成是交换粒子的作用,比如电磁力是交换光子,强相互作用力是交换胶子……等等。那么,引力莫非也是交换某种粒子的结果?在还没见到这个粒子之前,人们已经为它取好了名字,就叫“引力子”(graviton)。根据预测,它应该是一种自旋为2,没有质量的玻色子。

可是,要是把所谓引力子和光子等一视同仁地处理,人们马上就发现他们注定要遭到失败。在量子场论内部,无论我们如何耍弄小聪明,也没法叫引力子乖乖地听话:计算结果必定导致无穷的发散项,无穷大!我们还记得,在量子场论创建的早期,物理学家是怎样地被这个无穷大的幽灵所折磨的,而现在情况甚至更糟:就算运用重正化方法,我们也没法把它从理论中赶跑。在这场战争中我们初战告负,现在一切温和的统一之路都被切断,量子论和广义相对论互相怒目而视,作了最后的割席决裂,我们终于认识到,它们是互不相容的,没法叫它们正常地结合在一起!物理学的前途顿时又笼罩在一片阴影之中,相对论的支持者固然不忿气,拥护量子论的人们也有些踌躇不前:要是横下心强攻的话,结局说不定比当年的爱因斯坦更惨,但要是战略退却,物理学岂不是从此陷入分裂而不可自拔?

新希望出现在1968年,但却是由一个极为偶然的线索开始的:它本来根本和引力毫无关系。那一年,CERN的意大利物理学家维尼基亚诺(Gabriel Veneziano)随手翻阅一本数学书,在上面找到了一个叫做“欧拉β函数”的东西。维尼基亚诺顺手把它运用到所谓“雷吉轨迹”(Regge trajectory)的问题上面,作了一些计算,结果惊讶地发现,这个欧拉早于1771年就出于纯数学原因而研究过的函数,它竟然能够很好地描述核子中许多强相对作用力的效应!

维尼基亚诺没有预见到后来发生的变故,他也并不知道他打开的是怎样一扇大门,事实上,他很有可能无意中做了一件使我们超越了时代的事情。威顿(Edward Witten)后来常常说,超弦本来是属于21世纪的科学,我们得以在20世纪就发明并研究它,其实是历史上非常幸运的偶然。

维尼基亚诺模型不久后被3个人几乎同时注意到,他们是芝加哥大学的南部阳一郎,耶希华大学(Yeshiva Univ)的萨斯金(Leonard Susskind)和玻尔研究所的尼尔森(Holger Nielsen)。三人分别证明了,这个模型在描述粒子的时候,它等效于描述一根一维的“弦”!这可是非常稀奇的结果,在量子场论中,任何基本粒子向来被看成一个没有长度也没有宽度的小点,怎么会变成了一根弦呢?

虽然这个结果出人意料,但加州理工的施瓦茨(John Schwarz)仍然与当时正在那里访问的法国物理学家谢尔克(Joel Scherk)合作,研究了这个理论的一些性质。他们把这种弦当作束缚夸克的纽带,也就是说,夸克是绑在弦的两端的,这使得它们永远也不能单独从核中被分割出来。这听上去不错,但是他们计算到最后发现了一些古怪的东西。比如说,理论要求一个自旋为2的零质量粒子,但这个粒子却在核子家谱中找不到位置(你可以想象一下,如果某位化学家找到了一种无法安插进周期表里的元素,他将会如何抓狂?)。还有,理论还预言了一种比光速还要快的粒子,也即所谓的“快子”(tachyon)。大家可能会首先想到这违反相对论,但严格地说,在相对论中快子可以存在,只要它的速度永远不降到光速以下!真正的麻烦在于,如果这种快子被引入量子场论,那么真空就不再是场的最低能量态了,也就是说,连真空也会变得不稳定,它必将衰变成别的东西!这显然是胡说八道。

更令人无法理解的是,如果弦论想要自圆其说,它就必须要求我们的时空是26维的!平常的时空我们都容易理解:它有3维空间,外加1维时间,那多出来的22维又是干什么的?这种引入多维空间的理论以前也曾经出现过,如果大家还记得在我们的史话中曾经小小地出过一次场的,玻尔在哥本哈根的助手克莱恩(Oskar Klein),也许会想起他曾经把“第五维”的思想引入薛定谔方程。克莱恩从量子的角度出发,而在他之前,爱因斯坦的忠实追随者,德国数学家卡鲁扎(Theodor Kaluza)从相对论的角度也作出了同样的尝试。后来人们把这种理论统称为卡鲁扎-克莱恩理论(Kaluza-Klein Theory,或KK理论)。但这些理论最终都胎死腹中。的确很难想象,如何才能让大众相信,我们其实生活在一个超过4维的空间中呢?

最后,量子色动力学(QCD)的兴起使得弦论失去了最后一点吸引力。正如我们在前面所述,QCD成功地攻占了强相互作用力,并占山为王,得到了大多数物理学家的认同。在这样的内外交困中,最初的弦论很快就众叛亲离,被冷落到了角落中去。

在弦论最惨淡的日子里,只有施瓦茨和谢尔克两个人坚持不懈地沿着这条道路前进。1971年,施瓦茨和雷蒙(Pierre Ramond)等人合作,把原来需要26维的弦论简化为只需要10维。这里面初步引入了所谓“超对称”的思想,每个玻色子都对应于一个相应的费米子(玻色子是自旋为整数的粒子,如光子。而费米子的自旋则为半整数,如电子。粗略地说,费米子是构成“物质”的粒子,而玻色子则是承载“作用力”的粒子)。与超对称的联盟使得弦论获得了前所未有的力量,使它可以同时处理费米子,更重要的是,这使得理论中的一些难题(如快子)消失了,它在引力方面的光明前景也逐渐显现出来。可惜的是,在弦论刚看到一线曙光的时候,谢尔克出师未捷身先死,他患有严重的糖尿病,于1980年不幸去世。施瓦茨不得不转向伦敦玛丽皇后学院的迈克尔•格林(Michael Green),两人最终完成了超对称和弦论的结合。他们惊讶地发现,这个理论一下子犹如脱胎换骨,完成了一次强大的升级。现在,老的“弦论”已经死去了,新生的是威力无比的“超弦”理论,这个“超”的新头衔,是“超对称”册封给它的无上荣耀。

当把他们的模型用于引力的时候,施瓦茨和格林狂喜得能听见自己的心跳声。老的弦论所预言的那个自旋2质量0的粒子虽然在强子中找不到位置,但它却符合相对论!事实上,它就是传说中的“引力子”!在与超对称同盟后,新生的超弦活生生地吞并了另一支很有前途的军队,即所谓的“超引力理论”。现在,谢天谢地,在计算引力的时候,无穷大不再出现了!计算结果有限而且有意义!引力的国防军整天警惕地防卫粒子的进攻,但当我们不再把粒子当作一个点,而是看成一条弦的时候,我们就得以瞒天过海,暗渡陈仓,绕过那条苦心布置的无穷大防线,从而第一次深入到引力王国的纵深地带。超弦的本意是处理强作用力,但现在它的注意力完全转向了引力:天哪,要是能征服引力,别的还在话下吗?

关于引力的计算完成于1982年前后,到了1984年,施瓦茨和格林打了一场关键的胜仗,使得超弦惊动整个物理界:他们解决了所谓的“反常”问题。本来在超弦中有无穷多种的对称性可供选择,但施瓦茨和格林经过仔细检查后发现,只有在极其有限的对称形态中,理论才得以消除这些反常而得以自洽。这样就使得我们能够认真地考察那几种特定的超弦理论,而不必同时对付无穷多的可能性。更妙的是,筛选下来的那些群正好可以包容现有的规范场理论,还有粒子的标准模型!伟大的胜利!

“第一次超弦革命”由此爆发了,前不久还对超弦不屑一顾,极其冷落的物理界忽然像着了魔似的,倾注出罕见的热情和关注。成百上千的人们争先恐后,前仆后继地投身于这一领域,以致于后来格劳斯(David Gross)说:“在我的经历中,还从未见过对一个理论有过如此的狂热。”短短3年内,超弦完成了一次极为漂亮的帝国反击战,将当年遭受的压抑之愤一吐为快。在这期间,像爱德华•威顿,还有以格劳斯为首的“普林斯顿超弦四重奏”小组都作出了极其重要的贡献,不过我们没法详细描述了。网上关于超弦的资料繁多,如果有兴趣的读者可以参考这个详细的资料索引:

http://arxiv.org/abs/hep-th/0311044

第一次革命过后,我们得到了这样一个图像:任何粒子其实都不是传统意义上的点,而是开放或者闭合(头尾相接而成环)的弦。当它们以不同的方式振动时,就分别对应于自然界中的不同粒子(电子、光子……包括引力子!)。我们仍然生活在一个10维的空间里,但是有6个维度是紧紧蜷缩起来的,所以我们平时觉察不到它。想象一根水管,如果你从很远的地方看它,它细得就像一条线,只有1维的结构。但当真把它放大来看,你会发现它是有横截面的!这第2个维度被卷曲了起来,以致于粗看之下分辨不出。在超弦的图像里,我们的世界也是如此,有6个维度出于某种原因收缩得非常紧,以致粗看上去宇宙仅仅是4维的(3维空间加1维时间)。但如果把时空放大到所谓“普朗克空间”的尺度上(大约10^-33厘米),这时候我们会发现,原本当作是时空中一个“点”的东西,其实竟然是一个6维的“小球”!这6个卷曲的维度不停地扰动,从而造成了全部的量子不确定性!

这次革命使得超弦声名大振,隐然成为众望所归的万能理论候选人。当然,也有少数物理学家仍然对此抱有怀疑态度,比如格拉肖,费因曼。霍金对此也不怎么热情。大家或许还记得我们在前面描述过,在阿斯派克特实验后,BBC的布朗和纽卡斯尔大学的戴维斯对几位量子论的专家做了专门访谈。现在,当超弦热在物理界方兴未艾之际,这两位仁兄也没有闲着,他们再次出马,邀请了9位在弦论和量子场论方面最杰出的专家到BBC做了访谈节目。这些记录后来同样被集合在一起,于1988年以《超弦:万能理论?》为名,由剑桥出版社出版。阅读这些记录可以发现,专家们虽然吵得不像量子论那样厉害,但其中的分歧仍是明显的。费因曼甚至以一种饱经沧桑的态度说,他年轻时注意到许多老人迂腐地抵制新思想(比如爱因斯坦抵制量子论),但当他自己也成为一个老人时,他竟然也身不由己地做起同样的事情,因为一些新思想确实古怪——比如弦论就是!

人们自然而然地问,为什么有6个维度是蜷缩起来的?这6个维度有何不同之处?为什么不是5个或者8个维度蜷缩?这种蜷缩的拓扑性质是怎样的?有没有办法证明它?因为弦的尺度是如此之小(普朗克空间),所以人们缺乏必要的技术手段用实验去直接认识它,而且弦论的计算是如此繁难,不用说解方程,就连方程本身我们都无法确定,而只有采用近似法!更糟糕的是,当第一次革命过去后,人们虽然大浪淘沙,筛除掉了大量的可能的对称,却仍有5种超弦理论被保留了下来,每一种理论都采用10维时空,也都能自圆其说。这5种理论究竟哪一种才是正确的?人们一鼓作气冲到这里,却发现自己被困住了。弦论的热潮很快消退,许多人又回到自己的本职领域中去,第一次革命尘埃落定。

一直要到90年代中期,超弦才再次从沉睡中苏醒过来,完成一次绝地反攻。这次唤醒它的是爱德华•威顿。在1995年南加州大学召开的超弦年会上,威顿让所有的人都吃惊不小,他证明了,不同耦合常数的弦论在本质上其实是相同的!我们只能用微扰法处理弱耦合的理论,也就是说,耦合常数很小,在这样的情况下5种弦论看起来相当不同。但是,假如我们逐渐放大耦合常数,它们应当是一个大理论的5个不同的变种!特别是,当耦合常数被放大时,出现了一个新的维度——第11维!这就像一张纸只有2维,但你把许多纸叠在一起,就出现了一个新的维度——高度!

换句话说,存在着一个更为基本的理论,现有的5种超弦理论都是它在不同情况的极限,它们是互相包容的!这就像那个著名的寓言——盲人摸象。有人摸到鼻子,有人摸到耳朵,有人摸到尾巴,虽然这些人的感觉非常不同,但他们摸到的却是同一头象——只不过每个人都摸到了一部分而已!格林(Brian Greene)在1999年的《优雅的宇宙》中举了一个相当搞笑的例子,我们把它发挥一下:想象一个热带雨林中的土著喜欢水,却从未见过冰,与此相反,一个爱斯基摩人喜欢冰,但因为他生活的地方太寒冷,从未见过液态的水的样子(无疑现实中的爱斯基摩人见过水,但我们可以进一步想象他生活在土星的光环上,那就不错了),两人某天在沙漠中见面,为各自的爱好吵得不可开交。但奇妙的事情发生了:在沙漠炎热的白天,爱斯基摩人的冰融化成了水!而在寒冷的夜晚,水又重新冻结成了冰!两人终于意识到,原来他们喜欢的其实是同一样东西,只不过在不同的条件下形态不同罢了。

这样一来,5种超弦就都被包容在一个统一的图像中,物理学家们终于可以松一口气。这个统一的理论被称为“M理论”。就像没人知道为啥007电影中的那个博士发明家叫做“Q”(扮演他的老演员于1999年车祸去世了,在此纪念一下),也没人知道这个“M”确切代表什么意思,或许发明者的本意是指“母亲”(Mother),说明它是5种超弦的母理论,但也有人认为是“神秘”(Mystery),或者“矩阵”(Matrix),或者“膜”(Membrane)。有些中国人喜欢称其为“摸论”,意指“盲人摸象”!

在M理论中,时空变成了11维,由此可以衍生出所有5种10维的超弦论来。事实上,由于多了一维,我们另有一个超引力的变种,因此一共是6个衍生品!这时候我们再考察时空的基本结构,会发现它并非只能是1维的弦,而同样可能是0维的点,2维的膜,或者3维的泡泡,或者4维的……我想不出4维的名头。实际上,这个基本结构可能是任意维数的——从0维一直到9维都有可能!M理论的古怪,比起超弦还要有过之而无不及。

不管超弦还是M理论,它们都刚刚起步,还有更长的路要走。虽然异常复杂,但是超弦/M理论仍然取得了一定的成功,甚至它得以解释黑洞熵的问题——1996年,施特罗明格(Strominger)和瓦法(Vafa)的论文为此开辟了道路。在那之前不久的一次讲演中,霍金还挖苦说:“弦理论迄今为止的表现相当悲惨:它甚至不能描述太阳结构,更不用说黑洞了。”不过他最终还是改变了看法而加入弦论的潮流中来。M理论是“第二次超弦革命”的一部分,如今这次革命的硝烟也已经散尽,超弦又进入一个蛰伏期。PBS后来在格林的书的基础上做了有关超弦的电视节目,在公众中引起了相当的热潮。或许不久就会有第三次第四次超弦革命,从而最终完成物理学的统一,我们谁也无法预见。

值得注意的是,自弦论以来,我们开始注意到,似乎量子论的结构才是更为基本的。以往人们喜欢先用经典手段确定理论的大框架,然后在细节上做量子论的修正,这可以称为“自大而小”的方法。但在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构!人们开始认识到,也许“自小而大”才是根本的解释宇宙的方法。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正。而广义相对论的路子却很可能是错误的,虽然它的几何结构极为美妙,但只能委屈它退到推论的地位——而不是基本的基础假设!许多人相信,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。我们的量子虽然是那样的古怪,但神赋予它无与伦比的力量,将整个宇宙都控制在它的光辉之下。
0 请登录后投票
   发表时间:2004-06-10  
尾声

我们的史话终于到了尽头。量子论在奇妙的气氛中诞生,在乱世中艰难地成长起来,与一些伟大的对手展开过激烈的交战。它建筑起经天纬地的巨构,却也曾在其中迷失方向而茫然徘徊不已。它至今使我们深深困扰,却又担负着我们最虔诚和最宝贵的愿望和梦想。它最终的归宿是什么?超弦?M理论?我们仍不清楚,但我们深信会出现一个量子引力理论,把整个物理学最终统一起来,把宇宙最终极的奥秘骄傲地谱写在人类的历史之中。

在新世纪的开始,物理学终于又一次走到了决定命运的关头。我们似乎又站在一个大时代的前沿,光辉的前景令我们怦然心动,激动又慌乱,几乎不敢去想象那是怎样一个伟大的景象。最终的统一似乎已经触手可及,甚至已经听得到它的脉搏和心跳。历史似乎在冥冥中峰回路转,兜了一个大圈后又回到100多年前,回到经典物理一统天下时那似曾相识的场景。但这次的意义甚至更伟大:当年的牛顿力学和麦克斯韦电磁论虽然彼此相容,但它们毕竟是两个不同形式的理论!从这个意义上说,庞大的经典帝国最多是一个结合得比较紧密的邦联。但这次不同了,那个传说中的万能理论,它能够用同一个方程去描述宇宙间所有的现象,在所有的领域中,它都实现了直接而有效的统治。这是有史以来第一次,我们有可能完成真正意义上的彻底统一,把所有的大权都集于一身,从而开创一个真正磅礴的帝国时代。

人们似乎已经看到了天空中,金色的光辉再一次闪耀起来,神圣的诗篇再一次被吟诵,回响在宇宙的每一个角落。当这个日子到来的时候,物理学将再一次到达它的巅峰,登上宇宙的极顶。极目眺望,众山皆小,一切都在脚下。虽然很清楚历史上这样的神话最终归于破灭,霍金仍然忍不住在《时间简史》里说:“在谨慎乐观的基础上,我仍然相信,我们可能已经接近于探索自然的终极定律的终点。”

但是,统一以后呢?是不是一切都大功告成了?物理学是不是又走到了它的尽头,再没有更多的发现可以作出了?我们的后代是不是将再一次陷入无事可做的境地,除了修正几个常数在小数点后若干位的值而已?或者,在未来的某一天,地平线上又会出现小小的乌云,带来又一场迅猛的狂风暴雨,把我们的知识体系再一次砸烂,并引发新的革命?历史是不是这样一种永无止境的轮回,大自然是不是永远也不肯向我们展现它最终的秘密,而我们的探索,是不是永远也没有终点?

这一切都没有答案,我们只能义无反顾地沿着这条道路继续前进。或许历史终究是一场轮回,但在每一次的轮回中,我们毕竟都获得了更为伟大的发现。科学在不停地检讨自己,但这种谦卑的审视和自我否定不但没有削弱它的光荣,反而使它获得了永恒的力量,也不断地增强着我们对于它的信心。人类居住在太阳系中的一颗小小行星上,他们的文明不过万年的历史,现代科学创立不过300年,但他们的智慧贯穿整个时空,从最小的量子到最大的宇宙尺度,从大爆炸的那一刻到时间的终点,从最近的白矮星到最远的宇宙视界,没有什么可以阻挡我们探寻的步伐。这一切,都来自于我们对于成功的信念,对于科学的依赖,以及对于神奇的自然那永无休止的好奇。

我衷心地希望各位在这次的量子旅程中获得了一些非凡的体验,也许它带来困惑,但它毕竟指向希望。我必须在这里和各位告别,但量子论的路仍然没有走完,它仍然处在迷宫之中,前途漫漫,还有无数未知的秘密有待发掘,我们仍然必须努力去上下求索。这剩下的旅程,必须由各位独立去完成,因为前面尚没有路,它要靠我们亲手去开辟出来。

也许有一天,你的名字也会成为量子历史的一部分,被镌刻在路边的纪念碑上,再一次召唤后来的过路人对于一段伟大时光的深切怀念。谁又知道呢?

(全文完)
0 请登录后投票
论坛首页 海阔天空版

跳转论坛:
Global site tag (gtag.js) - Google Analytics