浏览 2388 次
锁定老帖子 主题:Hadoop的SemiJoin
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2014-04-25
散仙,在前两篇博客里,写了关于Hadoop的Map侧join
和Reduce的join,今天我们就来在看另外一种比较中立的Join。 SemiJoin,一般称为半链接,其原理是在Map侧过滤掉了一些不需要join的数据,从而大大减少了reduce的shffule时间,因为我们知道,如果仅仅使用Reduce侧连接,那么如果一份数据中,存在大量的无效数据,而这些数据,在join中,并不需要,但是因为没有做过预处理,所以这些数据,直到真正的执行reduce函数时,才被定义为无效数据,而这时候,前面已经执行过shuffle和merge和sort,所以这部分无效的数据,就浪费了大量的网络IO和磁盘IO,所以在整体来讲,这是一种降低性能的表现,如果存在的无效数据越多,那么这种趋势,就越明显。 之所以会出现半连接,这其实也是reduce侧连接的一个变种,只不过我们在Map侧,过滤掉了一些无效的数据,所以减少了reduce过程的shuffle时间,所以能获取一个性能的提升。 具体的原理也是利用DistributedCache将小表的的分发到各个节点上,在Map过程的setup函数里,读取缓存里面的文件,只将小表的链接键存储在hashset里,在map函数执行时,对每一条数据,进行判断,如果这条数据的链接键为空或者在hashset里面不存在,那么则认为这条数据,是无效的数据,所以这条数据,并不会被partition分区后写入磁盘,参与reduce阶段的shuffle和sort,所以在一定程序上,提升了join性能。需要注意的是如果 小表的key依然非常巨大,可能会导致我们的程序出现OOM的情况,那么这时候我们就需要考虑其他的链接方式了。 测试数据如下: 模拟小表数据: 1,三劫散仙,13575468248 2,凤舞九天,18965235874 3,忙忙碌碌,15986854789 4,少林寺方丈,15698745862 模拟大表数据: 3,A,99,2013-03-05 1,B,89,2013-02-05 2,C,69,2013-03-09 3,D,56,2013-06-07 5,E,100,2013-09-09 6,H,200,2014-01-10 代码如下: <pre name="code" class="java">package com.semijoin; import java.io.BufferedReader; import java.io.DataInput; import java.io.DataOutput; import java.io.FileReader; import java.io.IOException; import java.net.URI; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /*** * * Hadoop1.2的版本 * * hadoop的半链接 * * SemiJoin实现 * * @author qindongliang * * 大数据交流群:376932160 * 搜索技术交流群:324714439 * * * * **/ public class Semjoin { /** * * * 自定义一个输出实体 * * **/ private static class CombineEntity implements WritableComparable&lt;CombineEntity&gt;{ private Text joinKey;//连接key private Text flag;//文件来源标志 private Text secondPart;//除了键外的其他部分的数据 public CombineEntity() { // TODO Auto-generated constructor stub this.joinKey=new Text(); this.flag=new Text(); this.secondPart=new Text(); } public Text getJoinKey() { return joinKey; } public void setJoinKey(Text joinKey) { this.joinKey = joinKey; } public Text getFlag() { return flag; } public void setFlag(Text flag) { this.flag = flag; } public Text getSecondPart() { return secondPart; } public void setSecondPart(Text secondPart) { this.secondPart = secondPart; } @Override public void readFields(DataInput in) throws IOException { this.joinKey.readFields(in); this.flag.readFields(in); this.secondPart.readFields(in); } @Override public void write(DataOutput out) throws IOException { this.joinKey.write(out); this.flag.write(out); this.secondPart.write(out); } @Override public int compareTo(CombineEntity o) { // TODO Auto-generated method stub return this.joinKey.compareTo(o.joinKey); } } private static class JMapper extends Mapper&lt;LongWritable, Text, Text, CombineEntity&gt;{ private CombineEntity combine=new CombineEntity(); private Text flag=new Text(); private Text joinKey=new Text(); private Text secondPart=new Text(); /** * 存储小表的key * * * */ private HashSet&lt;String&gt; joinKeySet=new HashSet&lt;String&gt;(); @Override protected void setup(Context context)throws IOException, InterruptedException { //读取文件流 BufferedReader br=null; String temp; // 获取DistributedCached里面 的共享文件 Path path[]=DistributedCache.getLocalCacheFiles(context.getConfiguration()); for(Path p:path){ if(p.getName().endsWith("a.txt")){ br=new BufferedReader(new FileReader(p.toString())); //List&lt;String&gt; list=Files.readAllLines(Paths.get(p.getName()), Charset.forName("UTF-8")); while((temp=br.readLine())!=null){ String ss[]=temp.split(","); //map.put(ss[0], ss[1]+"\t"+ss[2]);//放入hash表中 joinKeySet.add(ss[0]);//加入小表的key } } } } @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { //获得文件输入路径 String pathName = ((FileSplit) context.getInputSplit()).getPath().toString(); if(pathName.endsWith("a.txt")){ String valueItems[]=value.toString().split(","); /** * 在这里过滤必须要的连接字符 * * */ if(joinKeySet.contains(valueItems[0])){ //设置标志位 flag.set("0"); //设置链接键 joinKey.set(valueItems[0]); //设置第二部分 secondPart.set(valueItems[1]+"\t"+valueItems[2]); //封装实体 combine.setFlag(flag);//标志位 combine.setJoinKey(joinKey);//链接键 combine.setSecondPart(secondPart);//其他部分 //写出 context.write(combine.getJoinKey(), combine); }else{ System.out.println("a.txt里"); System.out.println("在小表中无此记录,执行过滤掉!"); for(String v:valueItems){ System.out.print(v+" "); } return ; } }else if(pathName.endsWith("b.txt")){ String valueItems[]=value.toString().split(","); /** * * 判断是否在集合中 * * */ if(joinKeySet.contains(valueItems[0])){ //设置标志位 flag.set("1"); //设置链接键 joinKey.set(valueItems[0]); //设置第二部分注意不同的文件的列数不一样 secondPart.set(valueItems[1]+"\t"+valueItems[2]+"\t"+valueItems[3]); //封装实体 combine.setFlag(flag);//标志位 combine.setJoinKey(joinKey);//链接键 combine.setSecondPart(secondPart);//其他部分 //写出 context.write(combine.getJoinKey(), combine); }else{ //执行过滤 ...... System.out.println("b.txt里"); System.out.println("在小表中无此记录,执行过滤掉!"); for(String v:valueItems){ System.out.print(v+" "); } return ; } } } } private static class JReduce extends Reducer&lt;Text, CombineEntity, Text, Text&gt;{ //存储一个分组中左表信息 private List&lt;Text&gt; leftTable=new ArrayList&lt;Text&gt;(); //存储一个分组中右表信息 private List&lt;Text&gt; rightTable=new ArrayList&lt;Text&gt;(); private Text secondPart=null; private Text output=new Text(); //一个分组调用一次 @Override protected void reduce(Text key, Iterable&lt;CombineEntity&gt; values,Context context) throws IOException, InterruptedException { leftTable.clear();//清空分组数据 rightTable.clear();//清空分组数据 /** * 将不同文件的数据,分别放在不同的集合 * 中,注意数据量过大时,会出现 * OOM的异常 * * **/ for(CombineEntity ce:values){ this.secondPart=new Text(ce.getSecondPart().toString()); //左表 if(ce.getFlag().toString().trim().equals("0")){ leftTable.add(secondPart); }else if(ce.getFlag().toString().trim().equals("1")){ rightTable.add(secondPart); } } //===================== for(Text left:leftTable){ for(Text right:rightTable){ output.set(left+"\t"+right);//连接左右数据 context.write(key, output);//输出 } } } } public static void main(String[] args)throws Exception { //Job job=new Job(conf,"myjoin"); JobConf conf=new JobConf(Semjoin.class); conf.set("mapred.job.tracker","192.168.75.130:9001"); conf.setJar("tt.jar"); //小表共享 String bpath="hdfs://192.168.75.130:9000/root/dist/a.txt"; //添加到共享cache里 DistributedCache.addCacheFile(new URI(bpath), conf); Job job=new Job(conf, "aaaaa"); job.setJarByClass(Semjoin.class); System.out.println("模式: "+conf.get("mapred.job.tracker"));; //设置Map和Reduce自定义类 job.setMapperClass(JMapper.class); job.setReducerClass(JReduce.class); //设置Map端输出 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(CombineEntity.class); //设置Reduce端的输出 job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileSystem fs=FileSystem.get(conf); Path op=new Path("hdfs://192.168.75.130:9000/root/outputjoindbnew4"); if(fs.exists(op)){ fs.delete(op, true); System.out.println("存在此输出路径,已删除!!!"); } FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.75.130:9000/root/inputjoindb")); FileOutputFormat.setOutputPath(job, op); System.exit(job.waitForCompletion(true)?0:1); } } </pre> 运行日志如下: <pre name="code" class="java">模式: 192.168.75.130:9001 存在此输出路径,已删除!!! WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. INFO - FileInputFormat.listStatus(237) | Total input paths to process : 2 WARN - NativeCodeLoader.&lt;clinit&gt;(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable WARN - LoadSnappy.&lt;clinit&gt;(46) | Snappy native library not loaded INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201404260312_0002 INFO - JobClient.monitorAndPrintJob(1393) | map 0% reduce 0% INFO - JobClient.monitorAndPrintJob(1393) | map 50% reduce 0% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 0% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 33% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 100% INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201404260312_0002 INFO - Counters.log(585) | Counters: 29 INFO - Counters.log(587) | Job Counters INFO - Counters.log(589) | Launched reduce tasks=1 INFO - Counters.log(589) | SLOTS_MILLIS_MAPS=12445 INFO - Counters.log(589) | Total time spent by all reduces waiting after reserving slots (ms)=0 INFO - Counters.log(589) | Total time spent by all maps waiting after reserving slots (ms)=0 INFO - Counters.log(589) | Launched map tasks=2 INFO - Counters.log(589) | Data-local map tasks=2 INFO - Counters.log(589) | SLOTS_MILLIS_REDUCES=9801 INFO - Counters.log(587) | File Output Format Counters INFO - Counters.log(589) | Bytes Written=172 INFO - Counters.log(587) | FileSystemCounters INFO - Counters.log(589) | FILE_BYTES_READ=237 INFO - Counters.log(589) | HDFS_BYTES_READ=455 INFO - Counters.log(589) | FILE_BYTES_WRITTEN=169503 INFO - Counters.log(589) | HDFS_BYTES_WRITTEN=172 INFO - Counters.log(587) | File Input Format Counters INFO - Counters.log(589) | Bytes Read=227 INFO - Counters.log(587) | Map-Reduce Framework INFO - Counters.log(589) | Map output materialized bytes=243 INFO - Counters.log(589) | Map input records=10 INFO - Counters.log(589) | Reduce shuffle bytes=243 INFO - Counters.log(589) | Spilled Records=16 INFO - Counters.log(589) | Map output bytes=215 INFO - Counters.log(589) | Total committed heap usage (bytes)=336338944 INFO - Counters.log(589) | CPU time spent (ms)=1770 INFO - Counters.log(589) | Combine input records=0 INFO - Counters.log(589) | SPLIT_RAW_BYTES=228 INFO - Counters.log(589) | Reduce input records=8 INFO - Counters.log(589) | Reduce input groups=4 INFO - Counters.log(589) | Combine output records=0 INFO - Counters.log(589) | Physical memory (bytes) snapshot=442564608 INFO - Counters.log(589) | Reduce output records=4 INFO - Counters.log(589) | Virtual memory (bytes) snapshot=2184306688 INFO - Counters.log(589) | Map output records=8 </pre> 在map侧过滤的数据,在50030中查看的截图如下: 运行结果如下所示: <pre name="code" class="java">1 三劫散仙 13575468248 B 89 2013-02-05 2 凤舞九天 18965235874 C 69 2013-03-09 3 忙忙碌碌 15986854789 A 99 2013-03-05 3 忙忙碌碌 15986854789 D 56 2013-06-07 </pre> 至此,这个半链接就完成了,结果正确,在hadoop的几种join方式里,只有在Map侧的链接比较高效,但也需要根据具体的实际情况,进行选择。 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |