阅读更多

0顶
0踩

研发管理

原文A Guide to Performance Testing and Optimization With Python and Django
作者:IULIAN GULEA
翻译:雁惊寒

 

摘要:本文通过一个简单的实例一步一步引导读者对其进行全方位的性能优化。以下是译文。

 

唐纳德·克努特(Donald Knuth)曾经说过:“不成熟的优化方案是万恶之源。”然而,任何一个承受高负载的成熟项目都不可避免地需要进行优化。在本文中,我想谈谈优化Web项目代码的五种常用方法。虽然本文是以Django为例,但其他框架和语言的优化原则也是类似的。通过使用这些优化方法,文中例程的查询响应时间从原来的77秒减少到了3.7秒。


Guide to Performance Optimization and Performance Testing With Python and Django

 

本文用到的例程是从一个我曾经使用过的真实项目改编而来的,是性能优化技巧的典范。如果你想自己尝试着进行优化,可以在GitHub上获取优化前的初始代码,并跟着下文做相应的修改。我使用的是Python 2,因为一些第三方软件包还不支持Python 3。

 

示例代码介绍

 

这个Web项目只是简单地跟踪每个地区的房产价格。因此,只有两种模型:

# houses/models.py
from utils.hash import Hasher


class HashableModel(models.Model):
    """Provide a hash property for models."""
    class Meta:
        abstract = True

    @property
    def hash(self):
        return Hasher.from_model(self)


class Country(HashableModel):
    """Represent a country in which the house is positioned."""
    name = models.CharField(max_length=30)

    def __unicode__(self):
        return self.name


class House(HashableModel):
    """Represent a house with its characteristics."""
    # Relations
    country = models.ForeignKey(Country, related_name='houses')

    # Attributes
    address = models.CharField(max_length=255)
    sq_meters = models.PositiveIntegerField()
    kitchen_sq_meters = models.PositiveSmallIntegerField()
    nr_bedrooms = models.PositiveSmallIntegerField()
    nr_bathrooms = models.PositiveSmallIntegerField()
    nr_floors = models.PositiveSmallIntegerField(default=1)
    year_built = models.PositiveIntegerField(null=True, blank=True)
    house_color_outside = models.CharField(max_length=20)
    distance_to_nearest_kindergarten = models.PositiveIntegerField(null=True, blank=True)
    distance_to_nearest_school = models.PositiveIntegerField(null=True, blank=True)
    distance_to_nearest_hospital = models.PositiveIntegerField(null=True, blank=True)
    has_cellar = models.BooleanField(default=False)
    has_pool = models.BooleanField(default=False)
    has_garage = models.BooleanField(default=False)
    price = models.PositiveIntegerField()

    def __unicode__(self):
        return '{} {}'.format(self.country, self.address)

 

抽象类HashableModel提供了一个继承自模型并包含hash属性的模型,这个属性包含了实例的主键和模型的内容类型。 这能够隐藏像实例ID这样的敏感数据,而用散列进行代替。如果项目中有多个模型,而且需要在一个集中的地方对模型进行解码并要对不同类的不同模型实例进行处理时,这可能会非常有用。 请注意,对于本文的这个小项目,即使不用散列也照样可以处理,但使用散列有助于展示一些优化技巧。

 

这是Hasher类:

# utils/hash.py
import basehash


class Hasher(object):
    @classmethod
    def from_model(cls, obj, klass=None):
        if obj.pk is None:
            return None
        return cls.make_hash(obj.pk, klass if klass is not None else obj)

    @classmethod
    def make_hash(cls, object_pk, klass):
        base36 = basehash.base36()
        content_type = ContentType.objects.get_for_model(klass, for_concrete_model=False)
        return base36.hash('%(contenttype_pk)03d%(object_pk)06d' % {
            'contenttype_pk': content_type.pk,
            'object_pk': object_pk
        })

    @classmethod
    def parse_hash(cls, obj_hash):
        base36 = basehash.base36()
        unhashed = '%09d' % base36.unhash(obj_hash)
        contenttype_pk = int(unhashed[:-6])
        object_pk = int(unhashed[-6:])
        return contenttype_pk, object_pk

    @classmethod
    def to_object_pk(cls, obj_hash):    
        return cls.parse_hash(obj_hash)[1]

 

由于我们想通过API来提供这些数据,所以我们安装了Django REST框架并定义以下序列化器和视图:

# houses/serializers.py
class HouseSerializer(serializers.ModelSerializer):
    """Serialize a `houses.House` instance."""

    id = serializers.ReadOnlyField(source="hash")
    country = serializers.ReadOnlyField(source="country.hash")

    class Meta:
        model = House
        fields = (
            'id',
            'address',
            'country',
            'sq_meters',
            'price'
        )

 

# houses/views.py
class HouseListAPIView(ListAPIView):
    model = House
    serializer_class = HouseSerializer
    country = None

    def get_queryset(self):
        country = get_object_or_404(Country, pk=self.country)
        queryset = self.model.objects.filter(country=country)
        return queryset

    def list(self, request, *args, **kwargs):
        # Skipping validation code for brevity
        country = self.request.GET.get("country")
        self.country = Hasher.to_object_pk(country)
        queryset = self.get_queryset()

        serializer = self.serializer_class(queryset, many=True)

        return Response(serializer.data)

 

现在,我们将用一些数据来填充数据库(使用factory-boy生成10万个房屋的实例:一个地区5万个,另一个4万个,第三个1万个),并准备测试应用程序的性能。

 

性能优化其实就是测量

 

在一个项目中我们需要测量下面这几个方面:

 

  • 执行时间
  • 代码的行数
  • 函数调用次数
  • 分配的内存
  • 其他

但是,并不是所有这些都要用来度量项目的执行情况。一般来说,有两个指标比较重要:执行多长时间、需要多少内存。

 

在Web项目中,响应时间(服务器接收由某个用户的操作产生的请求,处理该请求并返回结果所需的总的时间)通常是最重要的指标,因为过长的响应时间会让用户厌倦等待,并切换到浏览器中的另一个选项卡页面。

 

在编程中,分析项目的性能被称为profiling。为了分析API的性能,我们将使用Silk包。在安装完这个包,并调用/api/v1/houses/?country=5T22RI后,可以得到如下的结果:

200 GET 
/api/v1/houses/

77292ms overall
15854ms on queries
50004 queries

 

 整体响应时间为77秒,其中16秒用于查询数据库,总共有5万次查询。这几个数字很大,提升空间也有很大,所以,我们开始吧。

 

1. 优化数据库查询

 

性能优化最常见的技巧之一是对数据库查询进行优化,本案例也不例外。同时,还可以对查询做多次优化来减小响应时间。

 

1.1 一次提供所有数据

 

仔细看一下这5万次查询查的是什么:都是对houses_country表的查询:

200 GET 
/api/v1/houses/

77292ms overall
15854ms on queries
50004 queries

 

时间戳 表名 联合 执行时间(毫秒)
+0:01 :15.874374 “houses_country” 0 0.176
+0:01 :15.873304 “houses_country” 0 0.218
+0:01 :15.872225 “houses_country” 0 0.218
+0:01 :15.871155 “houses_country” 0 0.198
+0:01 :15.870099 “houses_country” 0 0.173
+0:01 :15.869050 “houses_country” 0 0.197
+0:01 :15.867877 “houses_country” 0 0.221
+0:01 :15.866807 “houses_country” 0 0.203
+0:01 :15.865646 “houses_country” 0 0.211
+0:01 :15.864562 “houses_country” 0 0.209
+0:01 :15.863511 “houses_country” 0 0.181
+0:01 :15.862435 “houses_country” 0 0.228
+0:01 :15.861413 “houses_country” 0 0.174

 

这个问题的根源是,Django中的查询是惰性的。这意味着在你真正需要获取数据之前它不会访问数据库。同时,它只获取你指定的数据,如果需要其他附加数据,则要另外发出请求。

 

这正是本例程所遇到的情况。当通过House.objects.filter(country=country)来获得查询集时,Django将获取特定地区的所有房屋。但是,在序列化一个house实例时,HouseSerializer需要房子的country实例来计算序列化器的country字段。由于地区数据不在查询集中,所以django需要提出额外的请求来获取这些数据。对于查询集中的每一个房子都是如此,因此,总共是五万次。

 

当然,解决方案非常简单。为了提取所有需要的序列化数据,你可以在查询集上使用select_related()。因此,get_queryset函数将如下所示:

def get_queryset(self):
    country = get_object_or_404(Country, pk=self.country)
    queryset = self.model.objects.filter(country=country).select_related('country')
    return queryset

 

我们来看看这对性能有何影响:

200 GET
/api/v1/houses/

35979ms overall
102ms on queries
4 queries

 

总体响应时间降至36秒,在数据库中花费的时间约为100ms,只有4个查询!这是个好消息,但我们可以做得更多。

 

1.2 仅提供相关的数据

 

默认情况下,Django会从数据库中提取所有字段。但是,当表有很多列很多行的时候,告诉Django提取哪些特定的字段就非常有意义了,这样就不会花时间去获取根本用不到的信息。在本案例中,我们只需要5个字段来进行序列化,虽然表中有17个字段。明确指定从数据库中提取哪些字段是很有意义的,可以进一步缩短响应时间。

 

Django可以使用defer()only()这两个查询方法来实现这一点。第一个用于指定哪些字段不要加载,第二个用于指定只加载哪些字段。

def get_queryset(self):
    country = get_object_or_404(Country, pk=self.country)
    queryset = self.model.objects.filter(country=country)\
        .select_related('country')\
        .only('id', 'address', 'country', 'sq_meters', 'price')
    return queryset

 

这减少了一半的查询时间,非常不错。总体时间也略有下降,但还有更多提升空间。

200 GET
/api/v1/houses/

33111ms overall
52ms on queries
4 queries

 

2. 代码优化

 

你不能无限制地优化数据库查询,并且上面的结果也证明了这一点。即使把查询时间减少到0,我们仍然会面对需要等待半分钟才能得到应答这个现实。现在是时候转移到另一个优化级别上来了,那就是:业务逻辑

 

2.1 简化代码

 

有时,第三方软件包对于简单的任务来说有着太大的开销。本文例程中返回的序列化的房子实例正说明了这一点。

 

Django REST框架非常棒,包含了很多有用的功能。但是,现在的主要目标是缩短响应时间,所以该框架是优化的候选对象,尤其是我们要使用的序列化对象这个功能非常的简单。

 

为此,我们来编写一个自定义的序列化器。为了方便起见,我们将用一个静态方法来完成这项工作。

# houses/serializers.py
class HousePlainSerializer(object):
    """
    Serializes a House queryset consisting of dicts with
    the following keys: 'id', 'address', 'country',
    'sq_meters', 'price'.
    """

    @staticmethod
    def serialize_data(queryset):
        """
        Return a list of hashed objects from the given queryset.
        """
        return [
            {
                'id': Hasher.from_pk_and_class(entry['id'], House),
                'address': entry['address'],
                'country': Hasher.from_pk_and_class(entry['country'], Country),
                'sq_meters': entry['sq_meters'],
                'price': entry['price']
            } for entry in queryset
        ]


# houses/views.py
class HouseListAPIView(ListAPIView):
    model = House
    serializer_class = HouseSerializer
    plain_serializer_class = HousePlainSerializer  # <-- added custom serializer
    country = None

    def get_queryset(self):
        country = get_object_or_404(Country, pk=self.country)
        queryset = self.model.objects.filter(country=country)
        return queryset

    def list(self, request, *args, **kwargs):
        # Skipping validation code for brevity
        country = self.request.GET.get("country")
        self.country = Hasher.to_object_pk(country)
        queryset = self.get_queryset()

        data = self.plain_serializer_class.serialize_data(queryset)  # <-- serialize

        return Response(data)

 

200 GET
/api/v1/houses/

17312ms overall
38ms on queries
4 queries

 

现在看起来好多了,由于没有使用DRF序列化代码,所以响应时间几乎减少了一半。

 

另外还有一个结果:在请求/响应周期内完成的总的函数调用次数从15,859,427次(上面1.2节的请求次数)减少到了9,257,469次。这意味着大约有三分之一的函数调用都是由Django REST Framework产生的。

 

2.2 更新或替代第三方软件包

 

上述几个优化技巧是最常见的,无需深入地分析和思考就可以做到。然而,17秒的响应时间仍然感觉很长。要减少这个时间,需要更深入地了解代码,分析底层发生了什么。换句话说,需要分析一下代码。

 

你可以自己使用Python内置的分析器来进行分析,也可以使用一些第三方软件包。由于我们已经使用了silk,它可以分析代码并生成一个二进制的分析文件,因此,我们可以做进一步的可视化分析。有好几个可视化软件包可以将二进制文件转换为一些友好的可视化视图。本文将使用snakeviz

 

这是上文一个请求的二进制分析文件的可视化图表:


Image of the view's dispatch method

从上到下是调用堆栈,显示了文件名、函数名及其行号,以及该方法花费的时间。可以很容易地看出,时间大部分都用在计算散列上(紫罗兰色的__init__.pyprimes.py矩形)。

 

目前,这是代码的主要性能瓶颈,但同时,这不是我们自己写的代码,而是用的第三方包。

 

在这种情况下,我们可以做的事情将非常有限:

 

  • 检查包的最新版本(希望能有更好的性能)。
  • 寻找另一个能够满足我们需求的软件包。
  • 我们自己写代码,并且性能优于目前使用的软件包。

幸运的是,我们找到了一个更新版本的basehash包。原代码使用的是v.2.1.0,而新的是v.3.0.4。

 

当查看v.3的发行说明时,这一句话看起来令人充满希望:

“使用素数算法进行大规模的优化。”

 让我们来看一下!

pip install -U basehash gmpy2

 

200 GET
/api/v1/houses/

7738ms overall
59ms on queries
4 queries

 

 响应时间从17秒缩短到了8秒以内。太棒了!但还有一件事我们应该来看看。

 

2.3 重构代码

 

到目前为止,我们已经改进了查询、用自己特定的函数取代了第三方复杂而又泛型的代码、更新了第三方包,但是我们还是保留了原有的代码。但有时,对现有代码进行小规模的重构可能会带来意想不到的结果。但是,为此我们需要再次分析运行结果。


Image of profiling results

 仔细看一下,你可以看到散列仍然是一个问题(毫不奇怪,这是我们对数据做的唯一的事情),虽然我们确实朝这个方向改进了,但这个绿色的矩形表示__init__.py花了2.14秒的时间,同时伴随着灰色的__init__.py:54(hash)。这意味着初始化工作需要很长的时间。

 

我们来看看basehash包的源代码。

# basehash/__init__.py

# Initialization of `base36` class initializes the parent, `base` class.
class base36(base):
    def __init__(self, length=HASH_LENGTH, generator=GENERATOR):
        super(base36, self).__init__(BASE36, length, generator)


class base(object):
    def __init__(self, alphabet, length=HASH_LENGTH, generator=GENERATOR):
        if len(set(alphabet)) != len(alphabet):
            raise ValueError('Supplied alphabet cannot contain duplicates.')

        self.alphabet = tuple(alphabet)
        self.base = len(alphabet)
        self.length = length
        self.generator = generator
        self.maximum = self.base ** self.length - 1
        self.prime = next_prime(int((self.maximum + 1) * self.generator))  # `next_prime` call on each initialized instance

 

 正如你所看到的,一个base实例的初始化需要调用next_prime函数,这是太重了,我们可以在上面的可视化图表中看到左下角的矩形。

 

我们再来看看Hash类:

class Hasher(object):
    @classmethod
    def from_model(cls, obj, klass=None):
        if obj.pk is None:
            return None
        return cls.make_hash(obj.pk, klass if klass is not None else obj)

    @classmethod
    def make_hash(cls, object_pk, klass):
        base36 = basehash.base36()  # <-- initializing on each method call
        content_type = ContentType.objects.get_for_model(klass, for_concrete_model=False)
        return base36.hash('%(contenttype_pk)03d%(object_pk)06d' % {
            'contenttype_pk': content_type.pk,
            'object_pk': object_pk
        })

    @classmethod
    def parse_hash(cls, obj_hash):
        base36 = basehash.base36()  # <-- initializing on each method call
        unhashed = '%09d' % base36.unhash(obj_hash)
        contenttype_pk = int(unhashed[:-6])
        object_pk = int(unhashed[-6:])
        return contenttype_pk, object_pk

    @classmethod
    def to_object_pk(cls, obj_hash):    
        return cls.parse_hash(obj_hash)[1]

 

 正如你所看到的,我已经标记了这两个方法初始化base36实例的方法,这并不是真正需要的。

由于散列是一个确定性的过程,这意味着对于一个给定的输入值,它必须始终生成相同的散列值,因此,我们可以把它作为类的一个属性。让我们来看看它将如何执行:

class Hasher(object):
    base36 = basehash.base36()  # <-- initialize hasher only once

    @classmethod
    def from_model(cls, obj, klass=None):
        if obj.pk is None:
            return None
        return cls.make_hash(obj.pk, klass if klass is not None else obj)

    @classmethod
    def make_hash(cls, object_pk, klass):
        content_type = ContentType.objects.get_for_model(klass, for_concrete_model=False)
        return cls.base36.hash('%(contenttype_pk)03d%(object_pk)06d' % {
            'contenttype_pk': content_type.pk,
            'object_pk': object_pk
        })

    @classmethod
    def parse_hash(cls, obj_hash):
        unhashed = '%09d' % cls.base36.unhash(obj_hash)
        contenttype_pk = int(unhashed[:-6])
        object_pk = int(unhashed[-6:])
        return contenttype_pk, object_pk

    @classmethod
    def to_object_pk(cls, obj_hash):    
        return cls.parse_hash(obj_hash)[1]

 

**200 GET**

  /api/v1/houses/

3766ms overall
38ms on queries
4 queries

 

 最后的结果是在4秒钟之内,比我们一开始的时间要小得多。对响应时间的进一步优化可以通过使用缓存来实现,但是我不会在这篇文章中介绍这个。

 

结论

 

性能优化是一个分析和发现的过程。 没有哪个硬性规定能适用于所有情况,因为每个项目都有自己的流程和瓶颈。 然而,你应该做的第一件事是分析代码。 如果在这样一个简短的例子中,我可以将响应时间从77秒缩短到3.7秒,那么对于一个庞大的项目来说,就会有更大的优化潜力。

0
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • python性能优化全面指南

    文章目录python、c++与文言文、白话文鱼和熊掌兼而得之创建一门新的语言,这门语言能够写起来像python,跑起来像c++JuliaNim拼命提升高级语言Python的运行效率将python转化成c、c++代码进行优化cythonnuitkapythran...

  • 覆盖一系列高级主题,包括复杂的语法和特性、Python的高级编程技巧、常见的设计模式、并发编程、性能优化等

    性能优化: 提供关于Python代码性能优化的实践指南,包括算法优化、内存管理和代码优化技巧。 网络编程和Web开发: 涉及Python网络编程的高级主题,以及Web开发中的相关技术,如使用框架(例如Django或Flask)构建...

  • python django性能_Python Django性能测试与优化指南

    虽然本文是以Django为例,但其他框架和语言的优化原则也是类似的。通过使用这些优化方法,文中例程的查询响应时间从原来的77秒减少到了3.7秒。?本文用到的例程是从一个我曾经使用过的真实项目改编而来的,是...

  • Python Django 性能测试与优化指南

    唐纳德·克努特(Donald Knuth)曾经说过:“不成熟的优化方案是万恶之源。”然而,任何一个承受高负载的成熟项目都不可避免地需要进行优化。在本文中,我想谈谈优化Web项目代码的五种常用方法。虽然本文是以D

  • 【Python django】零基础也能轻松掌握的学习路线与参考资料

    Django官方文档:https://docs.djangoproject.com/en/3.2/Django官方文档:https://docs.djangoproject.com/en/3.2/Django官方文档:https://docs.djangoproject.com/en/3.2/Django中文文档:https://www.django.cn/

  • Django安全性、缓存框架、性能与优化

    跨站点脚本(XSS)保护 XSS攻击使用户可以将客户端脚本注入其他用户的浏览器中...使用Django模板可以保护您免受大多数XSS攻击。但是,重要的是要了解其提供的保护及其限制。 Django模板会转义特定字符,这对于HTML来.

  • python django开发实战pdf_Django企业开发实战高效Python Web框架指南pdf免费版完整版...

    开发工程师the5fire教你学会如何使用流行的Python,Web框架Django介绍Python Web框架Django在企业中的应用的书籍,从零开发到部署完整案例,Django企业开发实战高效Python Web框架指南电子版是开发工程师the5fire...

  • pythonweb框架django_Django企业开发实战 高效Python Web框架指南

    autocomplete-light优化性能222 10.2.1创造1万个分类223 10.2.2django-autocomplete-light介绍224 10.2.3引入插件224 10.2.4总结226 10.2.5参考资料226 10.3使用django-ckeditor开发富文本编辑器226 10.3.1基础配置...

  • Django 企业级接口自动化测试平台实战(一)

    Python的WEB框架有Django、Tornado、Flask 等多种,Django是重量级选手中最有代表性的一位,它的优势为:大而全,框架本身集成了ORM、模型绑定、模板引擎、缓存、Session等诸多功能。许多成功的网站和APP都基于...

  • 【Python百宝箱】掌握Python Web开发三剑客:Flask、Django、FastAPI一网打尽

    本文全面介绍了Flask、Django和FastAPI这三个主流的Python Web框架,以及与之相关的数据库、ORM库、安全性与认证、前端框架与交互、测试与调试工具。每个部分都包含详细的介绍和实例代码,帮助读者理解框架的核心...

  • 人力资源经理绩效考核表.xls

    人力资源经理绩效考核表

  • 智慧环卫管理平台建设方案Word(211页).docx

    一、智慧环卫管理平台的建设背景与目标 智慧环卫管理平台的建设源于对环卫管理全面升级的需求。当前,城管局已拥有139辆配备车载GPS系统、摄像头和油耗传感器的环卫车辆,但环卫人员尚未配备智能移动终端,公厕也缺乏信息化系统和智能终端设备。为了提升环卫作业效率、实现精细化管理并节省开支,智慧环卫管理平台应运而生。该平台旨在通过信息化技术和软硬件设备,如车载智能终端和环卫手机App,实时了解环卫人员、车辆的工作状态、信息和历史记录,使环卫作业管理透明化、精细化。同时,平台还期望通过数据模型搭建和数据研读,实现更合理的环卫动态资源配置,为环卫工作的科学、健康、持续发展提供决策支持。 二、智慧环卫管理平台的建设内容与功能 智慧环卫管理平台的建设内容包括运行机制体制建设、业务流程设计、智慧公厕系统建设、网络建设、主机和储存平台需求、平台运维管理体系、硬件标准规范体系以及考核评价体系等多个方面。其中,智慧公厕系统建设尤为关键,它能实时监控公厕运行状态,保障公厕的清洁和正常运行。平台建设还充分利用了现有的电子政务网络资源,并考虑了有线和无线网络的需求。在功能上,平台通过普查、整合等手段全面收集环卫车辆、企业、人员、设施、设备等数据,建立智慧环卫基础数据库。利用智能传感、卫星定位等技术实现环卫作业的在线监管和远程监控,实现对道路、公共场所等的作业状况和卫生状况的全面监管。此外,平台还建立了环卫作业网格化管理责任机制,实现从作业过程到结果的全面监管,科学评价区域、部门、单位和人员的作业效果。 三、智慧环卫管理平台的效益与风险规避 智慧环卫管理平台的建设将带来显著的环境、经济和管理效益。环境方面,它将有力推进环境卫生监管服务工作,改善环境卫生状况,为人民群众创造更加清洁、卫生的工作和生活环境。经济方面,通过智慧化监管,大大降低了传统管理手段的成本,提高了监管的准确性和效率。管理方面,平台能够追踪溯源市民反映的问题,如公厕异味、渣土车辆抛洒等,并找到相应的责任单位进行处置,防止类似事件再次发生。同时,平台还拥有强大的预警机制功能,能够在很多环卫问题尚未出现前进行处置。然而,平台建设也面临一定的风险,如部门协调、配合问题,建设单位选择风险以及不可预测的自然灾害等。为了规避这些风险,需要加强领导、统一思想,选择优秀的系统集成商承接项目建设,并做好计算机和应用系统的培训工作。同时,也要注意标准制定工作和相关法律法规的制定工作,以保证系统建设完成后能够真正为环卫管理工作带来便利。

  • apache-parent-10-14.el7.x64-86.rpm.tar.gz

    1、文件内容:apache-parent-10-14.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/apache-parent-10-14.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装

  • 用于卫星通信的CTS天线

    用于卫星通信的圆极化CTS天线研究

  • 人事档案登记及查询系统.xlsx

    人事档案登记及查询系统

  • 12 -防损部经理绩效考核表1.xlsx

    12 -防损部经理绩效考核表1

  • 泰尔指数模型stata全流程代码+数据+文献(数据权威)

    ## 一、泰尔指数模型stata全流程代码+数据+文献 参考C刊《农业经济问题》朱红根(2023)老师的做法,用泰尔指数是衡量个人或地区之间收入差距的重要指标,本文利用泰尔指数分析中国区域内和区域间数字乡村发展水平的差异,测算了全国总体差异、区域内差异、区域间差异以及相关贡献率。此资料包括stata全流程代码、案例数据、参考文献,用excel计算有标注有过程 ,并且参照文献讲的。 ## 二、2005-2021年城乡收入差距与泰尔指数:原始数据+测算结果 泰尔熵标准(Theil’s entropy measure)或者泰尔指数(Theil index)是衡量个人之间或者地区间收入差距(或者称不平等度)的指标。又称泰尔系数或锡尔指数,但我还是习惯叫泰尔指数。Theil指数用来表示区域经济差异状况,数值越大则差异程度越大。 数据名称:城乡收入差距与泰尔指数(原始数据+测算) 数据年份:2005-2021年 指标变量:泰尔指数、城镇收入占农村收入之比、城镇居民人均可支配收入、农村居民人均可支配收入、乡村人口、全体居民人均可支配收入、城镇人口、年末常住人口 测算公式:

  • 34 -配送部经理绩效考核表1.xlsx

    34 -配送部经理绩效考核表1

  • [2024最新更新]全国城投公司数据大全(数据权威)

    1.资料名称:2021-1998年城投公司数据大全 2.数据指标:序号、公司名称、区域、城投评分、省内排名、最新主体评级、行政等级、 股东背景、股权关系、平台重要性、城投口径、实控人、 总资产(亿元)、 货币资金(亿元)、土地资产(亿元)、受限资产(亿元)、应收账款(亿元) 应收类款项政府占比(%)、营业收入(亿元)、公益性&准公益性主营占比(%)、归母净利润(亿元)、政府补助(亿元)、总资产报酬率(%)、有息债务(亿元)、 短期债务(亿元)、借款(亿元)、债券余额(亿元)、私募债占比(%)、 非标融资(亿元)、资产负债率(%)、债务资本化比率(%) 对外担保比例(%)、EBITDA/利息(倍)、EBITDA全部债务比(%)、授信余额(亿元)、 最新报告期 、申万行业 城投公司是城市建设投资公司的简称,是全国各大城市政府投资融资平台,起源于1991年,承担相应的政府职能,是特殊市场经营体。 此类城投公司大多是不具备盈利能力的,属于事业单位或者国有独资公司性质,他们是通过政府补贴的方式实现盈利,属于带有政府性质的特殊市场经营体。

Global site tag (gtag.js) - Google Analytics