相关推荐
-
数据仓库和olap
Data warehousing and on-line analytical processing (OLAP) are essential elements of decision support, which has increasingly become a focus of the database industry. Many commercial products and services are now available, and all of the principal database management system vendors now have offerings in these areas. Decision support places some rather different requirements on database technology compared to traditional on-line transaction processing applications. This paper provides an overview of data warehousing and OLAP technologies, with an emphasis on their new requirements. We describe back end tools for extracting, cleaning and loading data into a data warehouse; multidimensional data models typical of OLAP; front end client tools for querying and data analysis; server extensions for efficient query processing; and tools for metadata management and for managing the warehouse. In addition to surveying the state of the art, this paper also identifies some promising research issues, some of which are related to problems that the database research community has worked on for years, but others are only just beginning to be addressed. This overview is based on a tutorial that the authors presented at the VLDB Conference, 1996.
-
数据仓库与数据库(OLAP与OLTP)
数据仓库是一个面向主题的,集成的,时变的,非易失的数据集合,支持管理者的决策过程,决策支持系统(DSS)和联机分析应用数据源的结构化数据环境,数据仓库研究和解决从数据仓库中获得信息的问题。数据仓库存在的意义在于对企业的所有数据进行汇总,为企业各个部门提供统一的,规范的数据出口。 面向主题:数据仓库中的数据按照一定的主题进行组织,每一个主题对应一个宏观的分析领域,数据仓库排除对于决策无用的数据,提供特定主题的简明视图。 集成的:企业内不同业务部门数据的完整集成,对于企业内所有数据的集成要注意一致性。 稳
-
简述数据仓库、OLAP、数据挖掘之间的关系
(1)数据仓库是基础:无论是数据挖掘还是OLAP分析,他们成功的关键之一是能够访问正确的、完整的和集成的数据。这也是对数据仓库的要求。数据仓库不仅是集成数据的一种方式和一个焦点,而且所有的数据仓库的解决方案都源自和依赖于数据源部件的质量和效果(这种部件在数据仓库中称为抽取、变换和装载)。数据仓库的特点(集成的、随时间变化、稳定的、面向主题的)为OLAP分析、数据挖掘的成功提供了坚实的数据基础。(2...
-
数据仓库—什么是OLAP
从事数据仓库或者大数据的同学,应该经常会听到OLAP这个词。什么OLAP分析,OLAP引擎等等名词。今天就来聊聊什么是OLAP。 OLAP与OLTP 说起OLAP,就不得不提一下他的好兄弟OLTP,两者经常会被拿来比较。 首先,看一下两者的 定义: OLAP(On-Line Analytical Processing):联机分析处理,OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。 OLTP(on-line transaction processi
-
数据挖掘—— 数据仓库和数据挖掘的OLAP技术
数据仓库后端工具主要指的是用来装入和刷新数据的工具,包括: 数据提取:从多个外部的异构数据源收集数据 数据清理:检测数据中的错误并作可能的订正 数据变换:将数据由历史或主机的格式转换为数据仓库的格式 装载、排序、汇总、合并、计算视图,检查完整性。 并建立索引和分区 刷新 将数据源的更新传播到数据仓库中 数据仓库只需要两种数据访问: 数据的初始装载 数据访问 传统的异构数据库集成在多个异构数据库上建立包装程序和中介程序 度量可以根据其所用的聚集函数分为三类: 分布的:将函数用于n个聚集值得到的结果和将函数用于
-
数据仓库、OLAP和 数据挖掘、统计分析的关系和区别分析
一、什么是数据挖掘 数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。 二、数据挖掘相关的10个问题 NO.1 Data Mining 和统计分析有
-
BI(数据仓库、OLAP、数据挖掘)
数据仓库将来自于各种数据源的数据,根据不同的主题进行存储,并对原始数据进行抽取、转换和加载等一系列筛选和清理工作。OLAP则将数据通过多维视角和多种层次向用户进行多方式的呈现。数据挖掘则应用不同的算法,向用户揭示数据间的规律性,从而辅助商业决策。
-
数据仓库,olap与数据挖掘之间的关系
要说明他们的关系,不得不说说商务智能。从技术角度看,商务智能的过程是企业的决策人员以企业中的数据仓库为基础,经由联机分析处理工具、数据挖掘工具加上决策规划人员的专业知识,从数据中获得有用的信息和知识,帮助企业获取利润。 数据仓库是一个用以更好地支持企业或组织的决策分析处理的的数据集合,它有面向主题、集成、相对稳定、随时间不断变化四个特性,将数据仓库与传统的面向事务处理的数据库区分开来。数
-
OLAP 和 数据挖掘的区别
总结来说: 数据仓库提供了一个分析的数据源数据挖掘能分析出未知的信息,提出假设OLAP能通过分析,验证假设 从技术角度看,商务智能的过程是企业的决策人员以企业中的数据仓库为基础,经由数据挖掘工具、联机分析处理工具加上决策规划人员的专业知识,从数据中获得有用的信息和知识,帮助企业获取更多的利润。 数据仓库是一个用以更好地支持企业或组织的决策分析处理的的数据集合,
-
OLAP与数据挖掘的区别
大多数同事都曾做过OLAP相关的项目,他们常搞不清OLAP与数据挖掘有什么区别,现摘录一段文字来说明 所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP则用于查证假设
-
数据仓库与OLAP技术概述
总述:这部分主要介绍数据挖掘的实现问题,重点关注数据的组织形式、系统框架、相关的设计和名词介绍。不会涉及到非常具体的应用项目,可以当做基础知识科普。 什么是数据仓库 联机事务处理系统(OLTP)和联机分析处理系统(OLAP)的区别有哪些 多维数据模型的建立 如何设计和构造数据仓库 三层数据仓库结构的案例 数据仓库后端工具应该提供的能力要在什么范围内 元数据存储库是什么 OLA...
-
二、数据仓库和数据挖掘的OLAP技术
数据仓库和数据挖掘的OLAP技术引言一、什么是数据仓库二、数据仓库的关键特征2.1、面向主题2.2、数据集成2.3、随时间而变化2.4、数据不易丢失三、数据仓库的构建和使用四、数据仓库与操作数据库系统五、多维数据模型 引言 数据仓库中的数据清理和数据集成,是数据挖掘的重要数据预处理步骤 数据仓库提供OLAP工具,可用于不同粒度的数据分析 很多数据挖掘功能都可以和OLAP操作集成,以提供不同概念层上的知识发现 分类 预测 关联 聚集 一、什么是数据仓库 数据仓库的定义很多,但却很难有一种严格的定义:
-
联机分析处理(OLAP)与数据挖掘的关系
联机分析处理(OLAP)是用来分析数据仓库中海量数据的技术。它的核心概念是“维”,它支持数据分析人员和决策人员从不同的角度、不同的级别地对数据仓库中的数据进行复杂查询和多维分析处理,并且能以直观形象的形式将查询和分析结果展现给分析和决策人员。OLAP使用的逻辑数据模型为多维数据模型。它主要用于分析大量历史数据,提供汇总和聚集机制,访问大部分是只读操作。这不同于OLTP中频繁的更新修改数据。数据
-
关系型数据库横向扩展的三种方法
本文是 Oracle Coherence 3.5一书,第一章: Achieving Performance, Scalability, and Availability Objectives,第二节:Achieving scalability中,数据库横向扩展部分的读书笔记。传统的关系型数据库很难扩展,通常是纵向扩展,但到达一定程度时只能横向扩展。数据库的横向扩展支持三种方法,即主从复制,集群和分片
-
关系型数据库与分布式数据库
关系型数据库 当前主流的关系型数据库有Oracle、DB2、PostgreSQL、Microsoft SQL Server、Microsoft Access、MySQL 关系数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。 关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。 关系型数据库将数据存储在硬盘中 注: 数
-
数据仓库(OLAP OLTP)与数据挖掘
一、挖掘数据存在问题: 1、把来自各个数据源的数据汇集到一个中心仓库中,即数据仓库。数据仓库位于一个单独的节点上,使用同一的模式从多个数据源收集数据,给用户提供一个单独的、统一的数据接口,目的是能在不同的数据上高效执行查询。 数据仓库处理相关问题:脏数据处理(某些带有错误的数据)技术,对大量数据的高效存储和索引技术 2、分析收集到的数据发现可以成为商务决策基础的信息或知识。 数...
-
从“分析”的角度谈OLAP、数据挖掘、统计分析三者之间的区别和联系
近来一直在考虑基于OLAP的分析、数据挖掘里的挖掘分析、统计业务中的统计分析相互间的内在关系,因为乍看上去这三者是非常相似的,很容易混在一起。事实上,他们之间还是有很大的区别。 首先谈谈OLAP中的分析,由于OLAP的核心是对多维数据集的处理,构建数据立方体,对数据立方体进行切片、切块、上卷、下钻等操作,达到比对分析的目的,同时建立数据立方体的过程也是对数据进行聚合汇
-
OLAP、OLTP的介绍和比较
OLTP与OLAP的介绍 数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易