阅读更多
引用
原文:MIT’s New AI Can (Sort of) Fool Humans With Sound Effects
译者:刘翔宇 审校:刘帝伟
责编:周建丁(zhoujd@csdn.net)




神经网络已经在玩游戏方面超过了我们,并且也应用于智能手机照片的管理以及邮件回复方面。此外,它们还能在好莱坞谋得一职。

MIT的计算机科学和人工智能实验室(CSAIL),一个由6位研究人员组成的小组创建了一套机器学习系统,它可以将声音效果与视频剪辑匹配。别高兴得太早,CSAIL的算法还不能在任何旧的视频上工作,而且它产生的声音效果也是有限的。对于该项目,CSAIL的博士生Andrew Owens和研究生Phillip Isola将他们用鼓槌重击一堆东西录制成视频,包括树桩、桌子、椅子、水坑、楼梯扶手、枯叶,还有肮脏的地面。

该小组将最初的1000个批量视频输入到它的AI算法中。通过分析视频中物体的物理外观,鼓槌的每次运动轨迹,还有最终的声音,计算机能够学习到物理物体和它被击中所发声音之间的联系。然后,通过“观看”物体被鼓槌重击,轻敲和刮蹭时的不同视频,这个系统可以计算出伴随每个剪辑相应的音调、音量以及的声音听觉特性。

视频:https://youtu.be/0FW99AQmMc8

该算法本身不产生声音——它只是从成千上万的音频剪辑数据库中获取数据。此外,声音效果也不是基于视觉匹配来选择;你可以在上面视频中1:20处看到,该算法有自己的创意。它随着沙沙作响的塑料袋来选择声音效果,在灌木从彻底被鼓槌敲击时直接给出声音效果。

Owens说,研究小组使用 卷积神经网络来分析视频帧,递归神经网络来选择对应的音频。



它们的学习过程主要来自于Caffe深度学习框架,该项目也由美国国家科学基金会(National Science Foundation and Shell)资助。小组的一名成员在谷歌研究院工作,Owens则是微软研究奖学金计划的一员。

Owens说,“我们几乎已经把现有的深度学习技术运用到了新领域,我们的目标不是开发新的深度学习方法。”

听音辨物
为视频匹配逼真声音是音效师的主要工作领域——后期制作音频向导,他们记录你在一部好莱坞电影中看到(和听到)的脚步声、门的嘎吱声、腾空横踢。

一位出色的音效师可以将声音精确匹配给视频,让观众误以为这声音是实际捕捉到的。

MIT的机器人还没有这么娴熟。该研究小组进行了一项在线调查,为4000名参与者展示了同一视频配上原始音频和算法生成的声音版本,然后让他们选择哪个视频里的声音是真实的。有22%的人选择了假音频——还远不完美,但效果仍是之前版本算法的两倍。

根据Owens所述,那些测试结果是一个好兆头,预示着计算机视觉算法可以检测物体的组成,以及轻敲、重击、刮蹭物体时产生的不同物理效果。不过,还是有些物体系统不能正确处理。有些时候,系统会认为鼓槌在撞击某一物体,但实际上并没有,比起对更坚实物体产生的声音效果,更多的人更容易被对落叶和灰尘产生的声音效果愚弄。

这个项目不仅仅是为了产生有趣的声音效果,它背后还有更深层的原因。Owens认为,如果该系统已经非常完善,那么计算机视觉技术就可以帮助机器人通过分析物体发出的声音来识别它的材质和物理属性。Owens说,“我们希望这些算法通过观察这些物理相互作用以及响应来学习,你可以把它想象成婴儿那样通过敲打、跺脚和玩耍来学习世界。”
  • 大小: 44.6 KB
  • 大小: 116.8 KB
0
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 深度学习算法知识

    一、神经网络+卷积神经网络(一)神经网络(Neural ...利用单一算法学习各种决策边界,调节中间层数量以及层的深度,神经网络可学习更复杂的边界特征,而得出更加准确的结果⚠️可以用于回归,但主要应用于分类问题。

  • 人工智能趋势与深度学习算法

    人工智能趋势与深度学习算法 1 前沿技术 1.1 Transformer模型: 1.2 BERT模型:基于Transformer Encoder构建的预测模型 1.3 自监督学习(Self-supervised Learning) 1.4 类脑计算(Brain-Inspired Computing) 1.5 AI大...

  • 基于深度学习的配准框架

    M和F的意义: 点击,仅适用于初学者理解 本文重点关注基于深度学习的图像配准框架,根据深度学习的类型分类监督学习和无监督学习。 基于监督学习的配准框架 上面是二维的例子:将两幅图像对应坐标点进行分块,将...

  • 基于深度学习的图像分割综述

    综述:基于深度学习的图像分割传统的图像分割算法基于深度学习的图像分割算法全卷积神经网络(FCN)基于图模型的卷积模型编码-解码模型基于多尺度和金字塔的网络模型基于R-CNN的模型扩展卷积模型和DeepLab族基于循环...

  • 论文总结:基于深度学习的图像风格迁移研究

    目录基于深度学习的图像风格迁移研究深度学习图像风格迁移合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片 基于深度学习的图像风格迁移研究 深度学习 图像风格迁移 合理...

  • 基于深度学习的超分辨率重建

    超分辨率技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在...基于深度学习的SR,主要是基于单张低分辨率的重建方法,即Single Image Super-Resolution (SISR)。 SISR是一个逆问...

  • 深度学习下的图像分割

    深度学习下的图像分割技术汇总

  • 华南理工深度学习与神经网络期末考试_深度学习算法地图

    其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接书的勘误,优化,源代码资源PDF全文链接:深度学习算法地图自...

  • 基于深度学习的GAN应用风格迁移

    我们可以这样定义:“对抗生成网络(GAN)是一种深度学习模型,模型通过框架中至少两个框架:生成模型和判别模型的互相博弈以学习产生好的输出。” 当然这么说略显抽象,我们不如来看一个有趣的例子: 当爱德华·蒙克...

  • 2021年,我们还需要入门深度学习吗?

    火热到显卡一度卖脱销(不是因为挖矿),研究生导师集体推荐学生转深度学习方向、毕业论文不带“深度学习”四个字都毕不了业、大街上随便拉个学生问都认识吴恩达。 就这个火的程度,我那会也毅然决然地踏入了深度学习...

  • 《深度学习入门:基于Python的理论与实现》读书笔记:第8章 深度学习

    8.2 深度学习的小历史 8.2.1 ImageNet ​8.2.2 VGG 8.2.3 GoogleNet 8.2.4 ResNet 8.3 深度学习的高速化 8.3.1 需要努力解决的问题 8.3.2 基于GPU的高速化 8.3.3 分布式学习 8.3.4 运算精度的位数缩减 8.4...

  • 【项目实战全解】基于深度学习与自然语言处理的AI文本生成(自动写作)

    文章目录一、项目演示:1:诗歌创作2:律诗与绝句3:小说篇4:自己的...技术改变生活,从高中就听闻自动写文章技术,没曾想,竟然已经做到以假乱真的地步! 今天来详解一下我接触过的文本,文本生成,机器问答,阅读理

  • CSDN博客之星:技术交流与个人品牌共筑的分享盛会

    文案: “CSDN博客之星”是技术人的闪耀舞台,汇聚创新与分享的力量!通过参与评选,你不仅能提升个人品牌,还能链接行业精英,拓展技术视野。活动见证无数博主的成长,助力优质内容传播。无论你是技术爱好者还是资深从业者,这里都能让你展现才华,加速成长。原创干货、粉丝互动、持续输出——掌握这些秘诀,让你的博客脱颖而出,成为下一个“博客之星”!

  • mpls-ospf全all

    mpls-ospf全all

  • 三菱FX3U PLC基于ST结构化文本与梯形图的四仓位配方控制系统解析

    内容概要:本文详细介绍了基于三菱FX3U PLC的四仓位配方控制系统,重点讲解了如何利用ST结构化文本和梯形图两种编程方式实现工业级配方管理。主要内容包括配方存储采用结构体数组的方式,使配方参数管理更加高效;配方执行过程中使用ST语言实现复杂的三段速控制逻辑,确保精确配料;通信方面通过FX3U-485ADP模块进行Modbus通信,保障数据传输的实时性和稳定性;报警系统采用状态码机制,便于快速定位和解决问题;此外,还涉及了分期付款功能以及暂停续料功能的具体实现方法。整个系统经过实际项目的验证,能够稳定应对每日200+批次的生产任务。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程有一定了解并希望深入掌握ST结构化文本和梯形图混合编程技巧的人群。 使用场景及目标:适用于需要高精度、高效率配方管理的工业生产线,如食品加工等行业。主要目标是提高生产效率,减少人为错误,增强系统的可靠性和易维护性。 其他说明:文中提供了大量具体的代码片段和实际案例,有助于读者更好地理解和应用所介绍的技术。同时强调了全中文变量命名的优势,使得新入职员工也能迅速上手。

  • 嵌入式系统开发-蓝桥杯STM32实战解析-第十四届模拟题代码与考点精讲

    内容概要:本资源包含2023年第十四届蓝桥杯嵌入式组省赛第一套模拟题的完整实现代码,涵盖STM32CubeMX工程配置、HAL库开发、传感器数据采集、LCD显示控制、按键中断处理等核心模块。配套代码注释详细,包含模块化工程结构设计思路及竞赛评分要点解析。 适用人群:电子类专业本科/高职学生、蓝桥杯嵌入式组参赛选手、STM32开发初学者、嵌入式系统设计爱好者。 使用场景及目标:适用于蓝桥杯赛前专项训练、嵌入式系统开发实战演练、STM32HAL库应用学习。通过本资源可掌握竞赛级项目开发规范,提升外设驱动开发能力,理解实时数据采集与界面交互的实现逻辑。 其他说明:代码基于STM32G4系列开发板实现,包含多任务调度框架设计,涉及ADC/DAC、TIM定时器、GPIO中断等关键外设操作。建议配合官方开发板使用,资源包含硬件连接示意图及调试排错指南,注意部分外设配置需根据实际硬件调整。

Global site tag (gtag.js) - Google Analytics