阅读更多

1顶
0踩

互联网

原创新闻 科研算法的敏捷应用

2016-01-06 09:40 by 副主编 mengyidan1988 评论(0) 有5641人浏览



我记得几个月前看到Deep Dream研究员们(Leon A. Gatys, Alexander S. Ecker and Matthias Bethge)发布的文章,想着有人能把这些技术开发成API或者网页应用,使得大家能把自己的照片处理成具有各种艺术家风格的照片。所以当看见Łukasz Kidzinski 和Michał Warchoł 的deepart.io上线时,我就打算试试这款产品,并和创始人们联系。他们亲切地回答了我关于deepart.io和他们职业生涯的问题。

deepart.io

Mike(M): deepart.io的灵感来自何处?

deepart.io是基于深度学习技术 —— 模仿人类大脑的多层神经网络。该项目使用一个预先训练得到的神经网络模型来检测图片里的几何形状。此算法从图像中提取几何形状,并从“风格”图片(通常是某位艺术家的作品)中提取纹理,将它们应用于用户上传的内容图片。

M: 将这些算法从学术成果转化为实际产品的主要步骤有哪些?

Gatys, Ecker和Berthge的论文发表之后就有许多相关应用上线了。由于和Google的Deep Dream项目相关,许多深度学习粉丝试图自己开发代码并在自己的机器上运行。问题在于这项技术尽管对普通用户有潜在吸引力,却仅用于技术社区内。我们想以云计算的方式来公开它。

主要障碍在于处理一张图片需要消耗大量的GPU时间,导致了需要很多服务器资源开销。然而一部分用户却愿意来承担这些开销,我们也试图构建部分免费、能收支相抵的网络应用。

M: 我喜欢你把数学和艺术结合的方式。我也能想象肯定有人觉得这很奇怪。你所了解到人们的反应有哪些呢?

大部分用户对结果都感到很惊讶。不像Deep Dream项目,在deepart产品中我们使用了一些用户熟悉的内容 —— 众所周知的梵高绘画作品。

M: 你对deepart.io的未来怎么看?

摆在我们面前的路有很多 —— 我们暂时采取的对策是以用户需求为导向。短期内,我们的主要任务是开发移动应用和高分辨率的deepart打印作品。之后,我们会投入精力继续开发算法,提高运算速度,也许会融合多种艺术风格。

学术研究的日常工作

M: 在我看来,这是你们的一个业余项目。和我们聊聊你们的主业吧?你们每天做些什么?

我们都是大学里的研究员 [Łukasz 来自于 École polytechnique fédérale de Lausanne ,Michał来自于Université catholique de Louvain] ,所以deepart也不算完全偏离主业。因为我们用技术性实验,没有占用太多的时间。一旦看到了更多的商业化应用,我们也许会在这个项目上投入更多的时间。

职业里程碑

M: 请分享一些你们在学术和商业生涯中的里程碑事件吧。
Łukasz: 我最近申请到了一个关于学习平台的项目,我们想根据用户的心理学特征为他们建议最好的活动项目。我们比较通过教育学研究选出的活动项目与机器学习方法推荐的选项。在商业方面,我是一个波兰高中生交流平台的发起人,他们在那里可以交易商品。

Michal:我接到了一个关于极端事件统计的研究项目。我专注于用统计方法对极端事件依赖的建模。另一个里程碑事件是我最近收到旅行奖的资助在哥伦比亚大学统计系做研究。访问期间我不仅提高了水平,还拓宽了交际网络与合作。

学术界的敏捷方法

M: 你们各自如何看待自己的研究对世界的影响呢?

Łukasz: 我在进行研究时信奉敏捷方法(Agile methodology)。借鉴现代软件开发的快速生成原型和快速迭代思想,学术研究的进度会更快。为此,我尝试着实现自己的研究成果并能为别人所用。举个例子,我基于博士期间的成果开发了一个R工具包freqdom。

M: 你在学术研究中坚持敏捷方法的理念是否得到同僚们的支持呢,还是说遇到不少阻力?

Łukasz: 在处于成长期的大学里,快速、冒险的科研方法实际上是受到鼓励和高度评价的。很有幸我所在的EPFL大学也是这样的(而且是这方面最出色的大学之一)。

M: 据你所见,敏捷方法在学术研究界的应用程度有多广泛?

Łukasz: 在我目前短暂的学术生涯中,我一直致力于两个方面:基础科学(数学统计)和应用科学(教育技术)。每个方面都有不同的方法,但是快速迭代更新仍是必不可少的成功条件。显然,创新成果越接近技术应用,项目的管理越重要。学术界和工业界的差别正逐渐消失,因此两方面的技术也变得互通了。

M: 那么这种敏捷方法如何应用于传统的学术期刊文章发表呢?

Łukasz: 发布创新成果的途径有很多种。比如说,有的人发表了论文,在学术圈里推销了这些想法,有人开发了软件,把研究成果在“真实世界”中推广。第二种方法不仅能立刻收到大家的反馈,而且更容易验证想法的细节。我相信,相比于同行审阅稿件的方式,github是更好的检验科学价值的方法。

M: Michał,你的研究成果是如何向外界传播并影响外界的?

Michał:我把我的研究论文转化为web应用,从而任何人都能立即使用和检验我所开发的方法。现在,我喜欢用RStudio的Shiny工具把我的R语言代码转为web应用。代码落地成为应用产品有诸多好处。从研究角度来看,你的合作者们可以更容易地在不同数据集上运行和测试新算法。而且,把新研发的方法向大众公布,可以第一时间收到反馈信息。这对我们来说是无价之宝,或许能在其它科研和产品领域产生新火花。最后,这类应用产品也有助于科研成果往学术圈之外推广。

工具

M: 你们现在使用的工具有哪些?

Łukasz: 根据不同的问题和应用,我选用R、Python和Matlab完成日常工作。

Michał:我主要用R语言。

M: 你们有人关注过Google新发布的TensorFlow吗?有没有什么看法?

有的,在deepart项目中我们尝试过TensorFlow,但显然在现阶段它并不优于单GPU的实现。然而,TensorFlow的可扩展性能给机器学习世界带来彻底的改变和史无前例的机会。

畅谈

M:如果你们有相当充裕的独立资源,你们会追求什么“疯狂”的想法?为什么?

Łukasz: 我会投资于强大的服务器,并让公众免费享用。我相信,没有比人类的好奇心更好的研究灵感了,发动群众的力量要比一己之力大得多。
Michał: 我会投入研究和实现运行在他服务器上的机器学习算法。:)

关于学习

M: 你们学习计划的下一项是什么?

Łukasz: 我想了解更多关于人类的知识 —— 更好地了解人类,也要更好地为现有问题提出更适合的解决方案。我在一个与社会科学技术有关的实验室工作,这激起了我对社会学和心理学方面的兴趣。

Michał: 我想学Spark。

M: 你们觉得自己反复阅读的一(多)本书是什么?

Łukasz: Daniel Kahneman的Thinking, Fast and Slow。它让我对自己的行为更清醒。

Michał: 我也喜欢那本书!另一本是Nassim Nicholas Taleb的Antifragile。它提醒了我人生的随机性和不确定性。

M: 非常感谢Łukasz和Michał分享他们的经历。

原文地址:Profile in Computational Imagination: Łukasz Kidziński & Michał Warchoł of deepart.io(译者/赵屹华 审校/刘翔宇 责编/仲浩)

译者简介:赵屹华,计算广告工程师@搜狗,前生物医学工程师,关注推荐算法、机器学习领域。
  • 大小: 164.8 KB
来自: CSDN
1
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 可复现、开放科研、跨学科合作:数据驱动下的科研趋势及应用方案

    信息技术的快速发展,催化了数据科学场景下科研组织提高科学研究的可复现性、实现开放科研、开展跨学科领域的交叉研究等协同诉求。本文剖析了此三类诉求的实现难点,并提供了系统化的解决方案。......

  • 人工智能在各个应用领域有很广拓展 促进科研范式和业态重塑

    “现在前沿科技将给人类生活带来巨大的收益和便利,但科技...但人工智能的发展不仅仅是这些应用,也意味着科研范式和业态的重塑,大大节约了人力物力,大大提高了科研和生产效率。  在生命科学领域,他指出,人类对生

  • 未来二十年的AI科研应当往何处发展?AAAI给出了一份答案

    随着 AI 技术的不断发展和应用,我们似乎开始陷入一种尴尬的局面:我们既相信 AI 还有很大的潜能、可以在社会的许多层面起到帮助,同时我们也在 AI 的安全性、隐私、与人共处、长期发展等问题上陷入纷争。...

  • 【车间调度】基于GA/PSO/SA/ACO/TS优化算法的车间调度比较(Matlab代码实现)

    柔性作业车间调度问题(Flexible Job shop Sched-uling Problem , FJSP)是在离散制造业和流程工业中应用广泛的一类问题,已被证明是典型的 NP-上hard问题。FJSP是作业车间调度问题(Job shop Scheduling Prob-lem,JSP)...

  • 云原生技术的落地与应用

    符合云原生架构的应用程序应该是:采用开源堆栈 (Kubernetes+Docker)进行容器化,基于微服务架构提高灵活性和可维护性,借助敏捷方法、 DevOps 支持持续迭代和运维自动化,利用云平台设施实现弹性伸缩、动态调度、...

  • 敏捷中国史

    内容亮点 敏捷发展亲历者与推动者、资深程序员熊节作品 ...在我看来,软件研发人员大概可以分为四类:知道自己正在变得敏捷的践行者、知道自己并不敏捷的鼓吹者、不知道自己其实已经很敏捷的草...

  • 用《人人都是产品经理》的思维做科研

    产品设计的最高境界是创造需求,就如同科研的最高境界—完全创新且具有实用价值,是发明而不是是迁移应用。但这个审稿人都知道,没必要过分追求,不然没办法灌水了(加狗头)。 如何筛选需求? 而需求筛选永远都是在...

  • 机器学习中的算法偏见

    在我们的世界里,算法无处不在,偏见也是一样。从社会媒体新闻的提供到流式媒体服务的推荐到线上购物,计算机算法,尤其是机器学习算法,已经渗透到我们日常生活的每一个角落。至于偏见,我们只需要参考 2016 年美国...

  • 走进英特尔中国研究院探索创新日:发布最新科研成果与创新策略

    英特尔中国研究院作为英特尔全球科研体系的重要一环,深度融入中国创新体系,搭建政产学研多方合作的新型研究网络,主攻人工智能、边缘计算、敏捷设计三大研发方向,研究成果覆盖视觉智能与视觉合成、自动驾驶与智能...

  • 【招聘推荐】启元世界招聘"深度强化学习"算法工程师

    深度强化学习实验室官网:http://www.neurondance.com/论坛:http://deeprl.neurondance.com/编辑、排版:DeepRL深度强化学习算法工程...

  • 物联网应用技术概述

    物联网技术不仅在智慧城市、智能家居、智慧医疗等领域得到广泛应用,也在制造业、交通运输、环境监测等领域发挥着重要作用。随着技术的不断发展,物联网应用的前景越来越广阔,也将带来更多的商业机会和社会福利。...

  • 子芽新书《DevSecOps敏捷安全》 如约而至

    悬镜安全、OpenSCA创始人子芽10年沉淀首次公开10位学术界和企业界权威安全技术专家联袂推荐内容简介这是一本体系化讲解DevSecOps敏捷安全的实战性著作,为企业应对软件开发方式敏态化与软件供应链开源化带来的安全...

  • 蚂蚁资深算法专家周俊:从原理到落地,支付宝如何打造保护隐私的共享智能?...

    同时,这两年共享智能受到中国计算机协会、世界人工智能大会等专业机构、权威学术团队和科研机构的认可,在国际标准和联盟标准,以及国家层面取得相关认证,让技术更好地在行业落地。 共享智能落地案例探讨 在过去几...

  • 人工智能技术与现代应用

    不同的科研人员可能选择不同的基础。 生理学派或连接主义 比如说连接主义,它可能需要观察神经,大脑是怎样运作的,靠现象来说话。这个学派的人可能认为大脑是怎么运作的,电脑就该怎么运作。这样才能生成...

  • 提升科研可复现性:和鲸聚焦 AI for Science 全生命周期管理

    随着科研范式的不断升级,传统基础设施已逐渐不能响应新兴数据驱动研究所需的软硬件支持。和鲸 ModelWhale 期待能为由人工智能驱动的科学研究提供助力。

  • 【物流选址】基于matlab麻雀搜索算法求解物流选址问题【含Matlab源码 H003期】

    麻雀搜索算法求解物流选址问题 完整代码,直接运行,适合小白!可提供运行操作视频!

  • 敏捷测试

    框架   一绪论 1 背景介绍   近年来,社会信息化程度不断提高,人们在生活和工作方方面面对软件的依赖成都越来越高,尤其是金融行业,各种金融产品和交易方式的革新,软件...在十多年间,敏捷开发方法逐步从概

  • 别人的面经(算法方向)

    总结了一些算法大神们的面经,希望对大家有用。以后还会继续添加整理。

  • 第11讲:深入理解指针(1).pdf

    第11讲:深入理解指针(1)

Global site tag (gtag.js) - Google Analytics