阅读更多
随着互联网和移动互联网的发展,时下我们正处在一个大数据的时代。在数据金山的诱惑下,各个机构纷纷开始探索从数据中提取洞见并指导实践的可能。而在这个需求的刺激下,在过去数年,大数据开源生态圈得到了长足的发展——在数据的整个生命周期中,从收集到处理,一直到数据可视化和储存,各种开源技术框架林立。

以这些开源技术为基石,业内涌现出一系列令人敬佩的大数据架构实践,而《程序员》电子刊9月B大数据实战与技术专题则摘录了电商、金融、游戏等行业的大数据应用,并覆盖了当下热门的大数据开源技术实践与技术细节,如Hadoop、Spark、Docker等,详情参阅《程序员》电子刊9月B。而在本文中,笔者将带大家一览这些精彩实践赖以成型的根本——繁华的开源大数据生态圈。

资源调度与管理

谈海量数据处理,机构首先面临的就是对系统进行扩展,其中又分为纵向扩展和横向扩展两种方式。首先看纵向扩展,对于大型IT机构来说,抛开成本不谈,用单机去应对海量数据显然已不切实际,因此各个机构不得不在横向扩展上寻找出路,也就是所谓的集群计算方式。聚焦集群计算,资源调度无疑构成了整个计算模式的基础。在这个领域,YARN无疑最为耀眼,被广泛部署于生产环境。然而,受限于资源粒度控制和隔离性等问题,Mesos同样备受瞩目,并在一些拥有深厚技术资本的公司得以使用,比如Apple、Twitter等。

分布式文件系统

在资源调度之外,大数据这一块最主要的基础无疑当属分布式文件系统,而历经数年发展,HDFS显然已独占鳌头,同时也是MapReduce、Spark和Flink等系统的默认文件系统。关于HDFS细节相信已无需详述。



出于业务对速度的追求,在内存速度远高于磁盘价格又逐渐降低的情况下,机构使用内存来缓存大量数据已愈来愈普遍。而基于当下内存计算框架存在的普遍挑战,内存文件系统Tachyon得到了显著地关注,并在大量场景中得以部署,就拿下文提到的Spark来说:可以用作不同计算框架的数据共享,以避免磁盘IO;用以缓存数据,从而避免了JVM崩溃时的数据丢失并缓解GC开销。此外,Tachyon还被用作远程数据缓存,服务于即席查询。在内存为王的时代,Tachyon前景不可小觑。

分布式计算类别

时至今日,随着业务的不断发展,分布式计算可大体分为3个方向——批处理、流计算和即席查询。而针对这3个不同领域,大数据生态圈内同样存在大量值得参考的框架。

1. 批处理

在开源大数据处理上,业内最早接触的无疑就是MapReduce,同时也是当下生产环境部署最多的计算框架。然而正如上文所述,缺乏对内存的有效利用,效率比较低的MapReduce同样面临着大量的竞争者,其中两个备受关注的就是Spark和Flink。

Spark出自伯克利AMPLab之手,基于Scala实现,从开源至今已吸引了越来越多企业的落地使用,仅国内比较知名的大规模部署就有百度、阿里、腾讯等。Spark最主要抽象概念是弹性分布式数据集(RDD),在内存中储存数据,只有在需要时才会访问磁盘,在迭代计算上具有明显优势。同时需要注意的是,Spark并不是一个完全基于内存的计算平台。

Flink于今年跻身Apache顶级开源项目,与HDFS完全兼容。Flink提供了基于Java和Scala的API,是一个高效、分布式的通用大数据分析引擎,其主要借鉴了MPP的思路。更主要的是,Flink支持增量迭代计算,从而系统可以快速地处理数据密集型和迭代任务;同时,即使内存被耗尽,通过内存管理组件、序列化框架和类型推理引擎,Flink也可以正常运行。

2.流计算

当下知名度比较高的开源流式计算框架有Storm/JStorm、Spark Streaming、Flink、S4、Samza。其中S4出现的比较早,但是基于该项目的活跃度,这里不再讨论。

Storm编程模型简单,显著地降低了进行实时处理的难度,也是当下最人气的流计算框架之一。同时,对比其他计算框架,Storm有一个更低的延时(毫秒级)。此外,历经数年发展,Storm也更加成熟,在容错性、扩展性、可靠性上都有不俗的表现。

Samza出自于LinkedIn,构建在Kafka之上的分布式流计算框架,于今年年初跻身于Apache顶级开源项目。与Storm的区别是,Samza可以直接利用YARN。

Spark Streaming。严格来讲,Spark Streaming该归属于批处理,其处理机制是将数据流分解成一系列小的RDD,通过时间窗来控制数据块的大小。 虽然Spark Streaming在实时性上略微逊色,但却拥有更大的吞吐,并且可以轻松的与Spark其它组件结合,发挥更强大的作用。

Flink支持delta-iterations,在迭代中可以显著减少计算。同时,在处理方式中,Flink是一行一行处理,从而能获得与Storm类似的性能。然而,对于SQL支持和社区活跃度上,Flink都稍逊Spark一筹。

3. 即席查询

即席查询当下比较受关注的有Hive、SparkSQL、Presto、Impala、Drill等,其中Hive借助于Hadoop的东风,已然在生产环境得到广泛使用。在Hive之外,关注度最高的无疑是Spark SQL。Impala出自知名大数据创业公司Cloudera,在沉寂了一段时间后,当下亦有了复苏的迹象。Presto来自Facebook,类似于Impala的一个即席查询工具,在该公司内部得到广泛使用,而国内也在一些知名公司得到部署,比如美团。Drill则是Google Dremel的开源实现,于今年5月发布了里程碑版本1.0,稍显年轻。

大数据开源生态繁花似锦

在大数据领域,除下上述几个分布式计算类别之外,在图处理和机器学习领域同样存在许多优秀的开源技术框架,比如:图计算开源技术Spark Graphx、PowerGraph、Giraph、Neo4j等;机器学习开源技术Spark MLlib、Mahout、PredictionIO等。同时,开源技术已经占领了数据从收集到可视化和存储的整个流程,比如:用于数据收集的Flume(NG)和Sqoop,分布式消息队列技术Kafka、RabbitMQ,用于数据可视化的HighCharts、D3.js、Kibana、Echarts等等。此外,加之Cassandra、HBase、MongoDB、Redis等NoSQL,Lucene、Solr、ElasticSearch等搜索技术,Docker等容器技术,ZooKeeper等分布式应用程序协调服务,整个大数据开源生态繁花似锦!
  • 大小: 50.5 KB
7
3
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 3.大数据生态圈.pdf

    3.大数据生态圈.pdf

  • 大数据生态圈简介

    大数据平台架构大致可分为五个层级。 顶层为应用层,提供数据服务与可视化,解决企业实际问题。 第二层是大数据处理核心,包括数据处理、交互式分析以及机器学习与数据挖掘。 第三层是资源调度,为了充分利用系统...

  • 大数据生态系统的主要开源技术和框架

    大数据生态系统的主要开源技术和框架

  • hadoop大数据生态圈组件

    hadoop大数据组件,包括hadoop,kafka,flume,hbase,hive,zookeeper,spark。可以满足基本使用需求。

  • 大数据Hadoop生态圈介绍

    大数据Hadoop生态圈-组件介绍 Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。 Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈...

  • 开源大数据生态圈

    开源大数据生态圈 zookeeper storm kafka hdfs hbase

  • 大数据平台生态圈体系建构路径研究.pdf

    大数据平台生态圈体系建构路径研究.pdf

  • 医疗大数据生态圈前景研究.pdf

    医疗大数据生态圈前景研究.pdf

  • cdh大数据生态圈

    此为cdh版本的大数据生态圈的链接,可以直接复制到迅雷,下载,很方便,东西太大,由于上传资源限制。故给大家一些链接,自己下就行了

  • 大数据产业生态圈研究

    摘要:大数据是一个具有重大战略意义,...文章以生态圈来刻画大数据产业,为各生态系统划分群落并总结概括其特征,对若干重要种群进行概括分析。此方法有助于理清产业构成和上下游关系,帮助政府引导和扶持大数据产业。

  • 3. 大数据生态圈包括哪些内容,分别有什么用途面试

    hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 用户可以在不了解分布式底层细节的情况下...下图是hadoop生态系统,集成spark生态圈。在未来一段时间内,hadoop将于spark共存,hadoop与s...

  • 一文看懂大数据生态圈完整知识体系【大数据技术及架构图解实战派】

    一文看懂大数据生态圈完整知识体系,包含Hadoop、Spark、Flink、Kafka、Elasticsearch、数据仓库等内容。

  • 大数据生态圈如何入门?

    大数据技术在企业项目开发中主要涉及数据采集、数据存储和数据计算三个方面:数据采集是利用采集技术将各种数据源、不同格式的数据快速采集到大数据平台。数据存储是将采集过来的数据,按照不同应用场景,使用不同...

  • Hadoop大数据生态圈介绍

    广义上指一个生态圈,泛指大数据技术相关的开源组件或产品,如hdfs、yarn、hbase、hive、spark、pig、zookeeper、kafka、flume、phoenix、sqoop、...,以后将进行详细说明 特点是开源(Apache协...

  • 农业生态小镇项目大数据云平台建设方案.pptx

    农业生态小镇项目大数据云平台建设方案

  • 大数据生态圈概要介绍

    1. hadoop 生态概况Hadoop是一个由Apache基金会所开发的分布式系统基础架构。...Hadoop的核心是YARN,HDFS和Mapreduce下图是hadoop生态系统,集成spark生态圈。在未来一段时间内,hadoop将于spark共存,hadoop与spark...

  • 网络安全中的系统信息收集与防护机制探讨

    内容概要:本文档深入介绍了网络安全领域中的系统信息收集方法以及常见的保护措施。主要分为三大板块:获取网络和服务信息的方法、克服CDN和WAF等障碍的技术手段。其中包括对服务厂商、网络架构的理解,对于协议应用、内部网络设备的认识,以及面对各种安全措施如CDN服务、负载均衡器、Web应用防火墙时,如何进行有效的信息搜集。同时推荐了多个相关工具如Masscan、Nmap、Wafw00f及Kali自带动态二进制翻译工具。 适合人群:适合从事网络安全工作的专业人士和技术爱好者,特别是对信息安全有浓厚兴趣的学习者。 使用场景及目标:帮助技术人员提升网络安全领域的实战技能,掌握高效的信息收集技巧,了解并能够对抗多种常见的网络防护技术。 其他说明:文中提供了详细的演示案例和实际操作指导,辅以丰富的外部资源链接支持进一步学习。

Global site tag (gtag.js) - Google Analytics