相关推荐
-
PHP四种基本排序算法示例
主要介绍了PHP四种基本排序算法示例,本文用一个实例讲解冒泡排序法、快速排序法、选择排序法、插入排序法的使用,需要的朋友可以参考下
-
PHP实现四种基础排序算法的运行时间比较(推荐)
下面通过本文给大家介绍PHP实现四种基础排序算法的运行时间比较,一起看下吧。 废话不多说了,直接给大家贴代码了。 具体代码如下所示: /** * php四种基础排序算法的运行时间比较 * @authors Jesse (jesse152@...
-
用php实现几种常见的排序算法共6页.pdf.zip
用php实现几种常见的排序算法共6页.pdf.zip
-
PHP实现常用排序算法(含示意动图)
本文将依次介绍一些常用的排序算法,以及PHP实现。 快速排序是由东尼·霍尔发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速...
-
PHP实现的多维数组排序算法分析
主要介绍了PHP实现的多维数组排序算法,结合实例形式对比分析了php针对多维数组及带有键名的多维数组进行排序相关操作技巧与注意事项,需要的朋友可以参考下
-
php实现的常见排序算法汇总
主要介绍了php实现的常见排序算法汇总,包括插入排序、选择排序、冒泡排序、快速排序、归并排序与堆排序,并附有对排序算法的详细说明,需要的朋友可以参考下
-
用PHP实现经典的5种排序算法
排序算法是一种将一组无序的数据元素按照某个规则(大小、字母序等)排列成有序的序列的算法。常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。1.冒泡排序:比较相邻元素的大小,如果前面比...
-
给大家介绍的PHP实现四种基础排序算法的运行时间比较
许多人都说算法是程序的核心,算法的好坏决定了程序的质量。作为一个初级phper,虽然很少接触到算法方面的东西。但是对于基本的排序算法...下面通过本文给大家介绍PHP实现四种基础排序算法的运行时间比较,一起看下吧。
-
PHP四种排序算法实现及效率分析【冒泡排序,插入排序,选择排序和快速排序】
本文实例讲述了PHP四种排序算法实现及效率分析。分享给大家供大家参考,具体如下: PHP的四种基本排序算法为:冒泡排序、插入排序、选择排序和快速排序。 下面是我整理出来的算法代码: 1. 冒泡排序: 思路:对数组...
-
八大排序算法(C语言实现)
文章目录插入排序插入排序希尔排序选择排序选择排序堆排序交换排序冒泡排序快速排序并归排序并归排序 插入排序 插入排序 希尔排序 选择排序 选择排序 堆排序 交换排序 冒泡排序 快速排序 并归排序 并归排序 ...
-
PHP中的几种排序算法
PHP中的几种排序算法 一、 开发环境 1、环境搭建:Windows 7+Apache 2.4.18+MySQL 5.7.11+PHP 7.1.0。...本案例主要使用PHP 7中的几种排序算法:快速排序、选择排序、插入排序、冒泡排序、归并排序来实现排序的功能。
-
PHP 各种排序算法实现代码
php // 功能: PHP实现各种排序算法 // Author: windlike // Datetime: 2007-06-09 // 冒泡排序 function BubbleSort($arr){ $num = count($arr); for($i=1;$i<$num;$i++){ for($j=$num-1;$j>=$i;$j–){ if($arr[$...
-
PHP两种快速排序算法实例
主要介绍了PHP两种快速排序算法实例,本文直接给出实现代码,分别使用递归法、迭代法实现,需要的朋友可以参考下
-
php实现希尔排序算法的方法分析
主要介绍了php实现希尔排序算法的方法,简单说明了希尔排序的原理,并结合实例形式分析了php实现希尔排序的具体操作技巧,需要的朋友可以参考下
-
spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1
-
房地产 -可视化管理课件.ppt
房地产 -可视化管理课件.ppt
-
tokenizers-0.18.0.jar中文-英文对照文档.zip
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
-
基于MATLAB的BP神经网络预测模型构建与应用
内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。
-
tokenizers-0.22.1.jar中文-英文对照文档.zip
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu