相关推荐
-
智能手机鼻祖黑莓帝国陨落:黑莓品牌或将消失
而近来所遭遇的专利赔偿、市值缩水、大幅裁员等一系列坏消息更是引来了业界的一致唱衰,福布斯甚至预测,黑莓品牌或将在2015年消失。 厄运接踵而至 近日来,有关黑莓和它的制造商RIM的坏消息就没有间断过。上...
-
黑莓十年
那是1999年,当时的美国总统还是克林顿;油价只有94美分/加仑;海蓝色的 iMac 席卷大学寝室。...3Com 的子公司 Palm 和它的重度授权公司 Handspring 在这个新生的 PDA 市场悟出了一些道道:人们喜欢简...
-
美国总统,国务卿给做“广告”,黑莓手机想不火都不行
黑莓手机的绝对魅力 奥巴马希拉里的真实诱惑最近奥巴马成为国内山寨机的形象代言人令全球瞩目。在两位博友的邮件要求下,和大家一起分享一下,奥巴马、希拉里、贝哥姐们共同的手机诱惑。特别声明一下,图文资讯有...
-
Windows8开发指南(10)Windows8王者归来,Windows8必胜,所有程序员都认真关注了。
Windows8将是苹果在移动终端战场的终结者。以下是几点原因Windows的品牌号召力目前,各种不同版本的Windows在全球数十亿台PC上运转着,在品牌号召力上,任何竞争对手恐怕都望尘莫及。事实上,目前包括三星、戴尔、...
-
乔布斯的10个与众不同:践行另类思考
乔布斯的10个与众不同:践行另类思考 ugmbbc发布于 2011-10-28 11:39:41| 5175 次阅读 字体:大 小 打印预览 他是世界上最后一位伟大的独裁者,他就像撒旦一样,让竞争对手暴躁、狂怒和绝望。...
-
Windows8开发指南(10)Windows8王者归来,Windows8必胜,所有程序员都认真关注了
Windows8开发指南(10)Windows8王者归来,Windows8必胜,所有程序员都认真关注了
-
Windows8开发指南(10)Windows8王者归来,Windows8必胜,所有程序员都认真关注了。...
业界有评论称Windows8来得太晚。 但是,微软此刻推出Windows8生逢其时。 9月14日,传说中的Windows8在...Windows8将是苹果在移动终端战场的终结者。以下是几点原因 Windows的品牌号召力 目前,各种不同版本的W...
-
Windows8王者归来,Windows8必胜,所有程序员都认真关注了。
Windows8将是苹果在移动终端战场的终结者。以下是几点原因 Windows的品牌号召力 目前,各种不同版本的Windows在全球数十亿台PC上运转着,在品牌号召力上,任何竞争对手恐怕都望尘莫及。 事实上,目前包括三
-
[转] ARS:Palm Pre,体验webOS(二)
By Jon Stokes [url=yangjianhua@gmail.com]猪油伴饭[/url]译,译文授权ifanr全文发布,转载请注明ifanr译文链接。此文同步发于译言... 在本次Palm Pre体验的第二部分(第一部分为黑莓...
-
HTC平板电脑会创造与iPad的不同价值
王雪红头上的光环也越来越多:台湾首富“全球100位最具影响力女性”、“科技界最强势女人”、《商业周刊》25位“亚洲之星”和《华尔街日报》“亚洲女主管10强”。当然,有一个光环也许是最重要的——“经营之神”...
-
Windows8王者归来,Windows8必胜,所有程序员都认真关注了
协议规定,三星将为售出的每部Android智能手机和平板电脑向微软支付授权费。 越来越多的Android设备厂商将和微软在移动终端领域展开合作。而这对Windows8意味着什么,傻瓜也看的出来吧! Windows桌面的丰富应用程序...
-
华为运营商模式渐现困局:开始围剿企业级用户 (转载)
华为2012 收入:35 billion,净利润:2.4billion Huawei announced a return to growth in profits for 2012, after a sharp fall... The Chinese equipment maker recorded over 10 percent growth in revenues and
-
spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1
-
房地产 -可视化管理课件.ppt
房地产 -可视化管理课件.ppt
-
tokenizers-0.18.0.jar中文-英文对照文档.zip
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
-
基于MATLAB的BP神经网络预测模型构建与应用
内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。
-
tokenizers-0.22.1.jar中文-英文对照文档.zip
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
-
基于蒙特卡洛算法的电动汽车对IEEE 33节点电网影响的研究及应用场景分析
内容概要:本文探讨了电动汽车(EV)对IEEE 33节点电网的影响,特别是汽车负荷预测与节点潮流网损、压损计算。通过蒙特卡洛算法模拟电动汽车负荷的时空特性,研究了四种不同场景下电动汽车接入电网的影响。具体包括:负荷接入前后的网损与电压计算、不同节点接入时的变化、不同时段充电的影响以及不同负荷大小对电网的影响。通过这些分析,揭示了电动汽车充电行为对电网的具体影响机制,为未来的电网规划和优化提供了重要参考。 适合人群:从事电力系统研究的专业人士、电网规划工程师、电动汽车行业从业者、能源政策制定者。 使用场景及目标:①评估电动汽车大规模接入对现有电网基础设施的压力;②优化电动汽车充电设施的布局和运营策略;③为相关政策和技术标准的制定提供科学依据。 其他说明:文中提供的Python代码片段用于辅助理解和验证理论分析,实际应用中需要更复杂的模型和详细的电网参数。
-
房地产 -【万科经典-第五园】第五园产品推介会.ppt
房地产 -【万科经典-第五园】第五园产品推介会.ppt
-
稳压器件.SchLib
稳压器件.SchLib