This topic provides some configuration tips for getting started with your Tomcat application server.
Keep in mind that complete documentation on configuring and using the Tomcat server is available at this URL for the server: http://localhost:8080/docs/
This topic provides some configuration tips that are specific to the Integrator ETL Server application.
Creating a setenv file
- You can set the minimum and maximum memory heap size with the JVM -Xms and -Xmx parameters. The best limits depend on many conditions, such as transformations that Integrator ETL should execute. For Information Discovery transformations, a maximum of 1 GB is recommended. For example, to set the minimum heap size to 128 MB and the maximum heap size to 1024 MB, use:
JAVA_OPTS="-Xms128m -Xmx1024m"
- You should set the maximum limit of the PermGen (Permanent Generation) memory space to a size larger than the default. The default of 64 MB is not enough for enterprise applications. A suitable memory limit depends on various criteria, but 256 MB would make a good choice in most cases. If the PermGen space maximum is too low, OutOfMemoryError: PermGen space errors may occur. You can set the PermGen maximum limit with the following JVM parameter:
-XX:MaxPermSize=256m
- For performance reasons, it is recommended that the application is run in Server mode. Apache Tomcat does not run in Server mode by default. You can set the Server mode by using the JVM -server parameter. You can set the JVM parameter in the JAVA_OPTS variable in the environment variable in the setenv file.
set "JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx1024m -XX:MaxPermSize=256m -server"
About database connections
By default, Integrator ETL Server uses an embedded Apache Derby database. This database is suitable for testing and evaluation environments. In these environments, no additional configuration is necessary.
In production environments, use of the embedded Derby database is not recommended. In these environments, you should use a robust, production-quality database, such as an Oracle or MySQL database. For details about configuring these databases, see the Integrator ETL Server Guide.
相关推荐
YouTube推荐系统Paper[2016]-Deep Neural Networks for YouTube Recommendations.pdf YouTube推荐系统Paper[2016]-Deep Neural Networks for YouTube Recommendations.pdf
《Python库:pocket_recommendations-0.1.1-py3-none-any.whl的深度解析》 在Python的世界里,库是开发者的重要工具,它们提供了丰富的功能,简化了编程工作。今天我们要聚焦的是名为“pocket_recommendations”的...
Programming in C++, Rules and Recommendations.htm
Oracle-10g-recommendations-v1_2 Oracle 10g Server on Red Hat Deployment Recommendations. 有关oracle 10g的部署建议
nt and server 9Scenario 2: Control only over the server 10Scenario 3: Limited control over neither client nor server 113 Configuration recommendations 12Protocol versions 12Ciphersuites 13Certificate ...
Configuration ... Through configuration examples and recommendations drawn from the author's considerable experience, this practical guide will help readers to better manage and deliver projects.
Deep Neural Networks for YouTube Recommendations -Paul Covington, Jay Adams, Emre Sargin Google Mountain View, CA {pcovington, jka, msargin}@google.com YouToBe推荐算法
在零售业中,复购是一种常见的现象,指顾客重复购买同一产品多次。随着越来越多的消费者开始在线购买消耗性产品(例如牙膏、尿布等),这个现象在电子商务中也变得越来越普遍。然而,在2014年1月,研究者发现,当...
VDA_Guideline_Rules_and_Recommendations_2017.xlsx
这份名为《ONVIF_Security_Recommendations_ver10》的白皮书详细介绍了ONVIF在安全方面的推荐实践,并着重强调了如何通过实施这些推荐来增强网络视频系统的整体安全性。 #### 二、ONVIF安全机制简介 ONVIF规格书中...
Automated Machine Learning for Recommendations:Fundamentals and Advances 机器学习和人工智能是当前最热门的技术领域之一,而自动机器学习(AutoML)则是其中的一个重要分支。自动机器学习致力于使用机器学习...
Budnitz-1997-Recommendations for Probabilistic Seismic Hazard Analysis:Guidance on Uncertainty and Use of Experts(Main Report)
标题《Improved Recurrent Neural Networks for Session-based Recommendations》指向了一项与基于会话推荐系统相关的研究工作,该工作通过改进递归神经网络(RNN)模型来提升性能。RNN是一种深度学习模型,特别适用...
YouTube推荐系统是目前全球规模最大的视频推荐系统之一,它运用深度学习技术为超过十亿用户个性化推荐视频内容。该系统的主要挑战包括数据规模巨大、更新速度快、以及处理用户行为数据和视频数据的非结构化噪音问题...
《PowerVR性能优化建议》是一份由Imagination Technologies公司发布的技术文档,主要针对希望从PowerVR SGX或Rogue系列图形处理器中获取最佳图形性能的开发者。这份文档包含了专有的信息,可能会随时间变化,且在...
This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales(site-specific, local, regional and national), as ...
recommendations_engines