Task 源码
org.apache.spark.executor.Executor.TaskRunner.run()
task反序列化
updateDependencies : 通过网络拉取依赖的文件、jar包,使用loader 加载获取的jar
执行 org.apache.spark.scheduler.Task 的 run( ) 构建TaskContext
执行 Task子类的 runTask(context)方法
.
ShuffleMapTask:
执行 rdd.iterator()-- 对分区执行我们定义的算子 :
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
ShuffleWriter 将结果经过 hashparttion分区之后 写入对应分区的 bucket
runTask 执行完返回 MapStatus ,
MapStatus: 记录task处理后的数据存储在哪里 其实就是BlockManager相关信息
ResultTask:
反序列化
执行我们定义的算子
task执行 统计信息 --- 这些信息会反映到 sparkUI 的 4040
taskScheduler 更新task状态---CoarseGrainedClusterMessages.StatusUpdate
调用 org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate 根据状态更新
相关推荐
在标题"spark-hive-2.11和spark-sql-以及spark-hadoop包另付下载地址"中,我们关注的是Spark与Hive的特定版本(2.11)的集成,以及Spark SQL和Spark对Hadoop的支持。这里的2.11可能指的是Scala的版本,因为Spark是用...
spark-hive_2.11-2.3.0 spark-hive-thriftserver_2.11-2.3.0.jar log4j-2.15.0.jar slf4j-api-1.7.7.jar slf4j-log4j12-1.7.25.jar curator-client-2.4.0.jar curator-framework-2.4.0.jar curator-recipes-2.4.0....
Spark-3.1.2.tgz和Spark-3.1.2-bin-hadoop2.7.tgz是两个不同格式的Spark发行版,分别以tar.gz和rar压缩格式提供。 1. Spark核心概念: - RDD(弹性分布式数据集):Spark的基础数据结构,是不可变、分区的数据集合...
在解压`spark-2.4.7-bin-hadoop2.6.tgz`后,您会得到一个名为`spark-2.4.7-bin-hadoop2.6`的目录,其中包括以下组件: - `bin/`:包含可执行文件,如`spark-submit`,`pyspark`,`spark-shell`等,用于启动和管理...
Spark是Apache软件基金会下的一个开源...通过对Spark-2.4.0源码的阅读和研究,开发者可以了解到分布式系统设计、内存管理、任务调度、数据并行处理等多方面的知识,这对于提升大数据处理技术的专业水平有着极大的帮助。
这个"spark-3.1.3-bin-without-hadoop.tgz"压缩包是Spark的3.1.3版本,不含Hadoop依赖的二进制发行版。这意味着在部署时,你需要自行配置Hadoop环境,或者在不依赖Hadoop的环境中运行Spark。 Spark的核心特性包括...
Spark-assembly-1.5.2-hadoop2.6.0.jar中的优化包括RDD(弹性分布式数据集)的缓存策略、Task调度优化、内存管理优化等,以确保在大数据处理中实现高效的性能。 7. 开发和调试: 开发者在本地开发时,可以直接...
Spark-1.6.0-bin-hadoop2.6.tgz 是针对Linux系统的Spark安装包,包含了Spark 1.6.0版本以及与Hadoop 2.6版本兼容的构建。这个安装包为在Linux环境中搭建Spark集群提供了必要的组件和库。 **1. Spark基础知识** ...
Spark是Apache软件基金会下的一个开源大数据处理框架,以其高效、灵活和易用的特性而闻名。Spark-2.4.5是该框架的一个稳定...通过学习源码,可以提升对大数据处理技术的理解,为实际项目中的应用和优化提供坚实基础。
安装和配置Spark 2.4.8时,你需要根据你的环境调整配置文件,如`spark-env.sh`或`spark-defaults.conf`,以适应你的Hadoop集群或本地环境。在使用Spark时,你可以通过`spark-submit`命令提交应用程序,或者直接在...
本资源是spark-2.0.0-bin-hadoop2.6.tgz百度网盘资源下载,本资源是spark-2.0.0-bin-hadoop2.6.tgz百度网盘资源下载
Spark Doris Connector(apache-doris-spark-connector-2.3_2.11-1.0.1-incubating-src.tar.gz) Spark Doris Connector Version:1.0.1 Spark Version:2.x Scala Version:2.11 Apache Doris是一个现代MPP分析...
综上所述,“spark-3.2.4-bin-hadoop3.2-scala2.13”安装包是构建和运行Spark应用程序的基础,涵盖了大数据处理、流处理、机器学习等多个领域,为开发者提供了高效、灵活的数据处理平台。通过深入理解和熟练运用,...
本压缩包“spark--bin-hadoop3-without-hive.tgz”提供了Spark二进制版本,针对Hadoop 3.1.3进行了编译和打包,这意味着它已经与Hadoop 3.x兼容,但不包含Hive组件。在CentOS 8操作系统上,这个版本的Spark已经被...
5. **交互式Shell**:Spark提供了一个名为`spark-shell`的交互式环境,方便开发人员测试和调试代码。 **Spark与Hadoop 3.2的兼容性** Hadoop 3.2引入了许多新特性,如: 1. **多命名空间**:支持多个HDFS命名空间...
在这个特定的压缩包"spark-3.1.3-bin-hadoop3.2.tgz"中,我们得到了Spark的3.1.3版本,它已经预编译为与Hadoop 3.2兼容。这个版本的Spark不仅提供了源码,还包含了预编译的二进制文件,使得在Linux环境下快速部署和...
- `bin`:包含Spark的可执行脚本,如`spark-shell`(Scala交互式环境)、`pyspark`(Python交互式环境)和`spark-submit`(提交Spark应用)等。 - `conf`:配置文件目录,其中`spark-defaults.conf`是默认配置,可以...
1. `bin`:存放可执行脚本,如`spark-submit`用于提交Spark应用,`spark-shell`提供交互式Shell环境。 2. `conf`:配置文件夹,存放默认配置模板,如`spark-defaults.conf`,用户可以根据需求自定义配置。 3. `jars`...
内容概要:由于cdh6.3.2的spark版本为2.4.0,并且spark-sql被阉割,现基于cdh6.3.2,scala2.12.0,java1.8,maven3.6.3,,对spark-3.2.2源码进行编译 应用:该资源可用于cdh6.3.2集群配置spark客户端,用于spark-sql
总结一下,"spark-3.2.1-bin-hadoop2.7.tgz"是一个专为Linux设计的Spark版本,与Hadoop 2.7兼容,提供了高效的大数据处理能力,涵盖了核心计算、SQL查询、流处理、机器学习和图计算等多个方面。在实际应用中,开发者...