<style type="text/css">
<!--
td p
{margin-bottom:0cm}
p
{margin-bottom:0.21cm}
-->
</style>
6.4AREA OF A SURFACE OF REVOLUTION
Whena curve in the plane is rotated about the
x-or y-axisit forms a surface of
revolution,as in Figure 6.4.1.
Thesimplest surfaces of revolution are the right circular cylinders andcones. We can find their areas without calculus.
Figure6.4.2 shows a right circular cylinder with height
h and baseof radius r. When the lateral surface is slit vertically andopened up it forms a rectangle with height
h and base 2πr.Therefore its area is
lateralarea of cylinder = 2πhr.
Figure6.4.3 shows a right circular cone with slant height
l and baseof radius r.
Whenthe cone is slit vertically and opened up, it forms a circular sectorwith radius l and arc length s=2πr. Using the formula
A= __sl for the area of a sector, we see that the lateralsurface of the cone has area
lateralareaof cone =πrl
Figure6.4.4
Figure6.4.4 shows the frustum of a cone with smaller radiusr1,larger
radius r2,and slant height
l .The formula for the area of the lateral surface of a frustum of acone is
lateralarea of frustum =π (r1 +r2 ) l.
Thisformula is justified as follows. The frustum is formed by removing acone of radius r1 and slant height l1 from a cone ofradius
r2 and slant height l2.
Thefrustum therefore has lateral area
A=πr2 l2 - πr1 l1.
Theslant heights are proportional to the radii,
____________________
Theslant height
lofthe frustum is
l= l2
-l1.
Usingthe last two equations,
π(r1 + r2 ) l = π(r2 + r1) ( l2 - l1 )
=π(r2 l2 + r1l2 - r2 l1 - r1 l1)
=πr2 l2 - π r1 l1 =A.
ASurface of revolution can be sliced into frustums in the same waythat a solid of revolution can be sliced into
discs or cylindricalshells. Consider a smooth curve segment
y= f(x), a≤
x ≤ b
inthe first quadrant. When this curve segment is rotated about
they-axisit forms a surface of revolution ( Figure 6.4.5).
Hereis the formula for the area.
AREAOF SURFACE OF REVLUTION
__________________(rotatingabout
y-axis).
Tojustify this formula we begin by dividing the interval [a,b]into
infinitesimal subintervals of length Δx.This divides the curves into pieces of infinitesimal
Figure6.4.5
mallength Δs. When a piece Δs of the curve is rotatedabout the
x-axis it sweeps out a piece of the surface,ΔA(Figure 6.4.6). Since Δs is almost a line segment,ΔA is almost a cone frustum of slant height Δs, andbases of radius
x and x + Δx. Thus compared toΔx,
______________________
___________________________
___________________________
Thenby the Infinite Sum Theorem,
_____________________
EXAMPLE1 The line segment
y=3x,from
x=1 to x=4 , is rotated about the y-axis(Figure 6.4.7). Find the area of the surface of revolution.
FIRSTSOLUTION We use the integration formula.
dy/dx =3, so
SECONDSOLUTION This surface of revolution is a frustum of a cone, sothe formula for the lateral area of a frustum can be used directly.From
the diagram we see that the radii and slant height are:
r1= 1, r2 = 4,
l= distance from (1, 3) to (4, 12)
=________________________________________
ThenA
= π(r1+ r2 ) l = π(1 + 4 )____=
_____.
EXAMPLE2 The curve
y= ___ x², 0≤x ≤1,is rotated about the y-axis (Figure 6.4.8). Find the area ofthe surface of revolution.
Infinding a formula for surface area, why did we divide the surfaceinto frustums of cones instead of into cylinders (as we did forvolumes)
? The reason is that to use the Infinite Sum Theorem we needsomething which is infinitely close to a small piece ΔA ofarea compared to Δx. The small frustum has area
(2x+ Δx) πΔs
Whichis infinitely close to ΔA compared to Δx because italmost has the same shape as ΔA
(Figure 6.4.9). The smallcylinder has area 2xπ Δy. While this area isinfinitesimal, it is not infinitely close to ΔA compared toΔx, because on dividing by Δx
we get
Approximatingthe surface by small cylinders would give us the different
andincorrect value____
forthe surface area.
Whena curve is given by parametric equations we get a formula for surfacearea of revolution analogous to the
formula for lengths of parametriccurves in Section 6.3
Letx=f(t),
y= g(t),a ≤ t ≤ b
bea parametric curve in the first quadrant such that the derivativesare continuous and the curve does not retrace
its path (Figure6.4.10).
AREAOF SURFACE OF REVOLUTION
______________________________
(rotating about y-axis).
Tojustify this new formula we observe that an infinitesimal piece ofthe surface is almost a cone frustum
of radii x,x+Δxand
slant height Δs.Thus compared to Δt,
Δs≈___________________
Δt,
ΔA≈π(x+
(x+Δx))Δs
≈2πxπΔs,
ΔA≈2πx
_______________ Δt.
TheInfinite Sum Theorem gives the desired formula for area.
Thisnew formula reduces to our first formula when the curve has thesimple form
y=f(x).If
y=f(x), a≤
x≤
b, takex=t
andget
____________________________(about
y-axis).
Similarly,ifx=g(y), a≤
y≤
b,we take
y=t andget the formula
________________________(about
y-axis).
EXAMPLE3 The curve
x=2t²,
y=t3,0 ≤
t≤ 1 is rotated about the
y-axis.
Findthearea of the surface of revolution (Figure 6.4.11).
Wefirstfind
dx/dt anddy/dtand then apply the formula for area.
Figure6.4.11
Letu=16+ 9t²,du=18tdt,dt=____du,
t ²=______.Then
u=16at
t=0and
u=25at
t=1,so
EXAMPLE4
Derivetheformula
A=4πr²for the area of the surface of a sphere of radius
r.
Whenthe
portion of the circle x²+ y²=r²inthe
first quadrant is rotated about the y-axisit will form a hemisphere of radius
r(Figure6.4.12). The surface
of the sphere has twice the area of thishemisphere.
Figure6.4.12
Itis simpler to take
yas the independent variable, so the curve has the equation
x=
_____________________,
0≤ y≤
r.
Then______________________
Thisderivative is undefined at
y=0.To get around this difficulty we let 0<
a< r anddivide the surface into the two parts shown in Figure 6.4.13, thesurface
Bgeneratedby the curve
from y=0to
y=aand the surface
Cgeneratedby the curve
from y=atoy=r.
Thearea of
Cis
Wecould find the area of
Bbytaking
xasthe independent variable. However,
Figure6.4.13
Itis simpler to let
a be an infinitesimal ε. Then B isan infinitely thin ring-shaped surface, so its area is infinitesimal.Therefore the hemisphere has area
___________________________
so__________________________
andthe sphere has area
A = 4πr².
Ifa curve is rotated about the
x-axisinstead of the
y-axis(Figure 6.4.14), we interchange
xandy
inthe formulas for surface area,
_________________________(aboutx-axis),
_________________________(aboutx-axis),
_________________________(aboutx-axis),
Figure6.4.14
Mostof the time the formula for surface area will give an integral whichcannot be evaluated exactly but can
only be approximated, for exampleby the Trapezoidal Rule.
EXAMPLE5 Let
Cbethe curve
y=x4,0
≤ x≤
1.(see Figure 6.4.15)
Setup an integral for the surface area generated by rotating the
curve Cabout(a) the
y-axis,(b) the
x-axis(see Figure 6.4.16).
(a)dy/dx =
4x3
A=____________
dx
=_____________dx
Wecannot evaluate this integral, so we leave it in the above form.
TheTrapezoidal Rule can be used to get approximate values. When Δx=____theTrapezoidal
Approximation is
A~6.42,
error ≤0.26.
(b)________________dx
=________________dx.
TheTrapezoidal Approximation when Δx=___
is
A~3.582,
error ≤0.9.
PROBLEMSFOR SECTION 6.4
InProblem 1-12, find the area of the surface generated by rotating
thegiven curve about the y-axis.
1y=x²,0≤
x≤ 22
y=cx + d,a
≤ x≤
b
3y=2x3/
²,0≤
x≤ 14
y=_____(x²+2)3/2,1
≤ x≤
2
5y=_________,1≤
x≤ 4
6y=_________,1≤
x≤ 2
7y=_________,1≤
x≤ 8
8x=2t+1,
y=4-t,0≤
t≤ 4
9x=t+1,
y=________,0≤
t≤ 2
10x=t²,y=
__________,0≤
t≤ 3
11x=t3,y=3t+1,0≤
t≤ 1
12x2/3+y2/3
=1 , firstquadrant
InProblems 13-20, find the area of the surface generated by rotatingthe
given curve about the x-axis.
13y=________x3,0≤
x≤ 1
14y=_________,1
≤ x≤
2
15y=_________,1≤
x≤ 2
16y=_________,1≤
x≤ 2
17y=_________,3≤
x≤ 4
18y=_________,8≤
x≤ 27
19x=2t+
1,y=
4-t,0≤t
≤ 4
20x=t² + t, y=
2t+ 1,0≤t
≤ 1
21The part of the circle
x²+y²=r²betweenx=0and
x=a
inthe first quadrant is rotated
aboutthex-axis.Find
the area of the resulting zone of the sphere (0< a< r)
22Solve the above problem when the rotation is about the
y-axis.
InProblems 23-26 set up integrals for the areas generated by rotatingthe
given curve about (a) the y-axis,(b) the
x-axis.
23y= x5,0
≤ x≤
1
24y= y +
___,2
≤ y≤
3
25x= t ² +t
,y = t
²-1, 1 ≤
t≤ 10
26x= t4,y=t3,2
≤ t≤
4
27Set up an integral for the area generated by rotating the curvey=_____x²,0
≤ x≤
1
aboutthex-axisand
find the Trapezoidal Approximation with Δx=0.2
28Set up an integral for the area generated by rotating the curvey=_____x3,0
≤ x≤
1
aboutthey-axisand
find the Trapezoidal Approximation with Δx=0.2
□29show that the surface
area of the torus generated by rotating thecircle of radius randcenter (c,0)
about the y-axis(
r < c )is
A = 4π²rc.Hint:
Takey
asthe independent variable and use the formula
___r dy/____forthe
length of the arc of the circle from y=atoy=b.
分享到:
相关推荐
第6题,长方体的对角线等于外接球的直径,由此计算球的表面积。 6. **组合体的表面积和体积**:第7题,几何体由圆柱和圆锥组成,分别计算两部分的表面积和体积,相加得到答案。 7. **圆柱的表面积**:第8题,圆柱...
4. **旋转体的表面积**:问题6是直角三角形绕斜边旋转一周形成的组合体的表面积,需要理解旋转后形成的是两个底对底的圆锥。 5. **圆锥的参数关系**:问题7、8涉及到圆锥的母线长、高和侧面积之间的关系,根据公式...
在本节【第1章立体几何初步第18课时空间几何体的表面积同步练习(必修2)】的学习中,我们主要关注空间几何体的表面积计算,特别是涉及圆柱、圆锥、圆台等几何体。下面将详细阐述相关知识点。 1. 圆柱的侧面最短...
这些题目涉及的是小学六年级数学中的圆柱与圆锥的相关知识,主要涵盖了圆柱的表面积和体积计算、圆锥的体积计算以及实际问题的应用。下面是对这些知识点的详细解释: 1. **圆柱的体积**:圆柱体积公式是 V = πr²h...
6. 三棱锥的表面积:如果棱长都是3的三棱锥,四个面全等为正三角形,每个面面积S_{面}=3\sqrt{3}/4,所以表面积S=4*S_{面}=9\sqrt{3}。 7. 圆锥侧面积与体积:如果圆锥的侧面展开图是一个半径为2的半圆,母线长l=2...
在本资料中,主要涉及的是空间几何体的表面积与体积相关的知识点,这些题目和解析可以帮助我们理解如何计算不同几何体的表面积和体积。以下是根据题目内容提炼的知识点: 1. 圆锥的表面积与体积计算: 圆锥的表...
4. **表面积和体积的计算**: - 对于柱体(棱柱和圆柱)、锥体(棱锥和圆锥)、台体(棱台和圆台)和球,都有各自的表面积和体积公式。 - 柱体的表面积包括侧面积和底面积,体积为底面积乘以高。 - 锥体的表面积...
- 一个图形绕直线旋转一周形成旋转体,其表面积包括底面积和侧面积的总和。 9. 圆锥内切球体积 - 圆锥内切球的半径r与圆锥高h、底面半径R的关系为r=(R²+h²)^(1/2) - h。 10. 体积相等的几何体表面积比较 - 当...
球的表面积 `4π(R²)` 和体积 `4/3πR³` 分别为 `4π((√3 * a)² / 4)` 和 `4/3π((√3 * a)³ / 8)`。 **作业布置**: A组的学生需要完成P28页的第2、3、4题。这些题目涉及应用上述几何体的表面积和体积公式来...
这篇文档涉及的是六年级数学下册关于圆柱与圆锥的表面积和体积的复习题。下面是根据题目内容整理的相关知识点: 1. **圆柱的表面积**:圆柱的表面积由两个底面和一个侧面组成。底面是两个相同的圆形,侧面是一个...
在小学六年级数学下册的第三单元中,学生们会学习到关于圆柱和圆锥的表面积和体积的相关知识。这些知识是几何学的基础,对于理解三维空间的概念至关重要。以下是对这些知识点的详细阐述: 1. 圆柱的侧面沿高剪开后...
- 平行四边形绕一边旋转一周形成旋转体,表面积包括圆柱侧面积和两个底面面积。 7. **正三棱锥的性质** - 正三棱锥的侧面积是底面积的2倍时,可以利用底面边长和侧高关系求解表面积。 8. **几何体体积的比较和...
4. **旋转对称图形**:一个图形能够通过旋转一定角度与自身重合,这样的图形称为旋转对称图形。题目中提到了正三角形、正方形、正六边形等都是旋转对称图形。 5. **旋转性质**:在旋转中,图形的对应点到旋转中心的...
1. **球的表面积计算**:球的表面积公式是\( S = 4\pi r^2 \)。当球的半径扩大到原来的2倍时,表面积会扩大到原来的4倍。例如题目中提到,如果一个球的半径扩大2倍,那么表面积会从\( 4\pi r^2 \)变为\( 16\pi r^2 \...
在高中数学的学习中,立体几何初步是至关重要的一个章节,其中第18课时主要探讨的是空间几何体的表面积。这一课时的同步练习旨在帮助学生深入理解各种几何体的表面积计算方法,并通过练习来提升解题能力。下面我们将...
5. **坐标变换与旋转**:第4题和第6题涉及坐标平面上图形的旋转。菱形和直角三角形在旋转后,可以通过计算新的顶点坐标来确定其位置,这需要用到旋转公式。 6. **旋转的性质**:旋转保持图形间的相对位置关系,例如...
这部分内容集中在空间几何体的结构、表面积和体积的计算,包括正六棱柱、圆柱、圆锥、球以及不规则几何体的体积和表面积的求解方法。 1. 正六棱柱的全面积计算:正六棱柱的全面积由底面积和侧面积组成。底面积是一...
第6题是挖去角上的小正方体后剩余立体图形的表面积;第7题是正方体锯成多块后所有小块的表面积之和;第8题是21个小正方体组合的立体图形的表面积;第9题是不同大小正方体粘合后的涂漆面积;第10题是切割长方体后所有...
4. **旋转角度的计算**:例如第6题,根据旋转的定义,∠BDE等于原∠BAC减去旋转角度,即40° - 90° = -50°,但由于角不能为负,实际是180° - 50° = 130°,但选项中没有130°,所以需要继续分析其他条件,最终...
本资料主要涵盖了高中数学学考复习中的几何体结构特征、表面积与体积的相关知识点,适合新人教A版必修2的学生进行复习。以下是对各知识点的详细解释: 1. 多面体:由多个平面多边形围成的几何体,如面、棱和顶点是...