- 浏览: 4398450 次
最新评论
第6.3节 曲线长度
6.3LENGTH OF A CRUVE
Asegmentof a curve in the plane (Figure 6.3.1) is described by
y=f(x), a≤ x≤ b.
Whatis its length? As usual, we shall give a definition and then justifyit. A curve y= f(x) is said to be smooth if its derivative f '(x) iscontinuous. Our definition will assign a length to a segment of asmooth curve.
DEFINITION
Assumethefunction y=f(x) has a continuous derivative for x in[a, b], that is , the curve
y=f(x), a≤x≤b
issmooth.The length of the curve is defined as
Because____________=______________,the equation is sometimes
writtenin the form _________________
withtheunderstanding that xisthe independent variable. The length sisalways greater than or equal to 0 because a < band
____________>0.
JUSTIFICATION Lets (u,w) bethe intuitive length of the curve between t = u andt = w.
Thefunctions(u,w) hasthe Addition Property; the length of the curve from utow equals
thelengthfrom u tov plusthe length from v tow.Figure 6.3.2 shows an infinitesimal
pieceofthe curve from x tox +Δx.Its length is Δs = s (x, x+Δx).
Theslope dy/ dx is a continuous function of x, and therefore changesonly by an infinitesimal amount between x and x+Δy.Hence
Δs≈________ ( compared to Δx).
Dividingby Δx,
Then_________________ (compared to Δx).
Usingthe Infinite Sum Theorem,
EXAMPLE1 Find the length of the curve
y=2x3/2, 0 ≤ x≤ 1
Shownin Figure 6.3.3. We have
dy/dx= 3x1/2,_________________
Putu=1+9x.Then
___________________
Figure6.3.3
Sometimesa curve in the (x,y)plane is given by parametric equations
x=f(t),y=g(t), c ≤ t≤ d.
Anatural example is the path of a moving particle where is time. Wegive a formula for the length of such a curve.
DEFINITION
Supposethefunctions
x= f(t), y = g(t)
Havecontinuous derivatives and the parametric curve does not retrace itspath for t in [a, b]. The length of the curve is defined by
JUSTIFICATIONThe infinitesimal piece ofthe curve (Figure 6.3.4) from t to t+ Δt
isalmost a straight line, so its lengthΔs is given by
__________________(comparedto Δt),
__________________(comparedto Δt),
Bythe Infinite Sum Theorem,
______________________
Thegeneral formula for the length of a parametric curve reduces to ourfirst formula when the curve is given by a simple equation x=g(y)or y= f(x).
Ify=f(x), a≤x≤b,we take x=tandget
____________________
Ifx=g(y), a≤y≤b,we take y=tandget
________________
EXAMPLE2 Findthe length of the path of a ball whose motion is given by
x=20t, y= 32t - 16t²
fromt=0until the ball hits the ground.(Ground level isy=0,see Figure 6.3.5). The ball is at
groundlevel when
32t-16t² =0,t=0 and t=2.
Wehave dx / dt = 20, dy / dt= 32-32t,
Wecannot evaluate this integral yet, so the answer is left in the aboveform. We can get an approximate answer by the Trapezoidal Rule. Whenx = ____ , the Trapezoidal Approximation is
s~53.5 error ≤0.4,
Figure6.3.5
Thefollowing example shows what happens when a parametric curve doesretrace its path.
EXAMPLE3 Let
x= 1- t², y=1,-1 ≤ t≤ 1.
Astgoesfrom -1 to 1, the point (x,y)moves from (0,1) to (1,1) and then back along the same line to (0, 1)again. The path is shown in Figure 6.3.6.
Thepath has length one. However, the point goes along the path twice fora total distance of two. The length formula gives the total distancethe point moves.
Wenext prove a theorem which shows the connection between the length ofan arc and the area of a sector of a circle. Given two points PandQona circle with center O,the arc PQisthe portion of the circle traced out by a point moving from PtoQina counterclockwise direction. The sector POQisthe region bounded by the arc PQandthe radii OPandOQasshown in Figure 6.3.7.
Figure6.3.7
THEOREM
LetPandQ betwo points on a circle with center O.The area Aofthe sector POQisequal to one half the radius rtimesthe length softhe arc PQ,
A=____rs.
DISCUSSIONThetheorem is intuitively plausible because if we consider an infinitelysmall arc Δsofthe circle as in Figure 6.3.8, then the corresponding sector isalmost a triangle of height randbase Δs,so it has area
ΔA≈____rs.( compared to Δs ).
DISCUSSIONThe theorem is intuitively plausiblebecause if we consider an infinitely small arc Δs of the circle asin Figure 6.3.8, then the corresponding sector is almost a triangleof height r and base Δs, so it has area
ΔA≈____rΔs.(compared to Δs).
Summingup, we expect that A = _____rs.
Wecan derive the formula C = 2πr for the circumference of acircle using the theorem. By definition, π is the area of a circleof radius one,
_____________________
Thena circle of radius r has area
______________________
Thereforethe circumference C is given by
____________________
PROOFOF THEOREM
Tosimplifynotation assume that the center O is at the origin, Pis the point
(0,r)on the x-axis, and Q is a point (x, y) whichvaries along the circle
(Figure6.3.9).We may take y as the independent variable and PROBLEMSFOR SECTION 6.3
Findthe lengths of the following curves.
1y= _____(x+2)3/2,0≤ x ≤ 3 2 ·y=(x²+_____)3/2,-2≤ x ≤ 5
3(3y - 1)2= x3, 0≤ x ≤ 24 y= (4/5)x5/4, 0≤ x ≤ 1
5y=(x-1)2/3,1 ≤ x ≤ 9 hint: Solve for x asa function of y.
6y= _____,1≤ x ≤ 37 x= _____ ,3≤ y ≤ 6
8y= _____,1≤ x ≤ 1009 y= _____,1≤ x ≤ 8
108x=2y4 + y-2, 1≤ y ≤ 2
11x2/3 + y2/3 =1,first quadrant
12y=_________dt, 0≤ x ≤10
13y=_________dt, 2≤ x ≤6
14y=_________dt, 1≤ x ≤3
15x=_________dt, 1≤ y ≤4
16y=_________dt, 0≤ x ≤1
17Find the distance travelled from t=0 to t=1 by anobject whose motion
isx=t3/2
18Find the distance moved from t=0 to t=1 by a particlewhose motion
isgivenby x= 4(1-t)3/2,y= 2t 3/2.
19Find the distance travelled from t=1 to t=4 by anobject whose motion
isgivenby x= t 3/2, y= 9t .
20Find the distance travelled from time t=0 to t=3 by aparticle whose motion
isgivenby the parametric equations x= 5t2, y= t 3.
21Find the distance moved from t=0 to t= 2π by an objectwhose motion
isx=cost, y= sint .
22Find the distance moved from t=0 to t= π by an objectwith motion
x=3cos2t,y= 3sin2t.
23Find the distance moved from t=0 to t= 2π by an objectwith motion
x=cos²t, y= sin²t .
24Find the distance moved by an object with motion
x=etcost, y= et sint . 0≤ t ≤ 1.
25Let A(t) and L(t) be the area under the curve y=x²from x=0 to x=t, and the
lengthofthe curve from x=0 to x=t, respectively. Findd(A(t))/d(L(t)).
InProblems 26-30, find definite integrals for the lengths of thecurves, but do not evaluate the integrals.
26y=x3, 0≤ x≤1
27y=2x2 - x + 1, 0≤ x ≤ 4
28x=1/t,y=t² , 0≤ t≤5
29x=2t+ 1, y=____, 1≤t ≤ 2
30The circumference of the ellipse x² + 4y² = 1
31Set up integral for the length of the curve y=____,1≤ x≤ 2 , and find the
TrapezoidalApproximationwhere Δx=___.
32Set up an integral for the length of the curve x= t² -t, y = ____t 3/2,
0≤t ≤ 1 , and find the Trapezoidal Approximation where Δt=___.
33Set up an integral for the length of the curve y= 1/x,1≤ x ≤ 5 , and find the
TrapezoidalApproximationwhere Δx=1
34Set up an integral for the length of the curve y= x²,-1≤ x ≤ 1 , and find
theTrapezoidalApproximation where Δx=_____
□35Suppose the same curve is given in two ways, by a simple equation
y=F(x),a≤x≤b and by parametric equations x= f(t),y=g(t), c≤ t H≤d.
Assumingallderivatives are continuous and the parametric curve does
notretraceits path, prove that the two formulas for curve length give the
samevalues.Hint: Use integration by change of variables.
Figure6.3.9
Usetheequation x= __________ for theright half of the circle. Then A
andsdepend on y. Our plan is to show that
__________________
First,we find dx/dy:
________________________
Usingthe definition of arc length,
________________________
Thetriangle OQR in the figure has area____xy, so the sector has area
_________________________
Then________________________________________
Thus_________________________________________
SoA and ____ differ and only by aconstant. But when y=0, A=___ rs = 0.
ThereforeA = ___ rs.
Toprove the formula A=___ rs for arcs which are notwithin a single quadrant we simply cut the arc into four pieces eachof which is within a single quadrant.
PROBLEMSFOR SECTION 6.3
Findthe lengths of the following curves.
1y= _____(x+2)3/2,0≤ x ≤ 3 2 ·y=(x²+_____)3/2,-2≤ x ≤ 5
3(3y - 1)2= x3, 0≤ x ≤ 24 y= (4/5)x5/4, 0≤ x ≤ 1
5y=(x-1)2/3,1 ≤ x ≤ 9 hint: Solve for x asa function of y.
6y= _____,1≤ x ≤ 37 x= _____ ,3≤ y ≤ 6
8y= _____,1≤ x ≤ 1009 y= _____,1≤ x ≤ 8
108x=2y4 + y-2, 1≤ y ≤ 2
11x2/3 + y2/3 =1,first quadrant
12y=_________dt, 0≤ x ≤10
13y=_________dt, 2≤ x ≤6
14y=_________dt, 1≤ x ≤3
15x=_________dt, 1≤ y ≤4
16y=_________dt, 0≤ x ≤1
17Find the distance travelled from t=0 to t=1 by anobject whose motion
isx=t3/2
18Find the distance moved from t=0 to t=1 by a particlewhose motion
isgivenby x= 4(1-t)3/2,y= 2t 3/2.
19Find the distance travelled from t=1 to t=4 by anobject whose motion
isgivenby x= t 3/2, y= 9t .
20Find the distance travelled from time t=0 to t=3 by aparticle whose motion
isgivenby the parametric equations x= 5t2, y= t 3.
21Find the distance moved from t=0 to t= 2π by an objectwhose motion
isx=cost, y= sint .
22Find the distance moved from t=0 to t= π by an objectwith motion
x=3cos2t,y= 3sin2t.
23Find the distance moved from t=0 to t= 2π by an objectwith motion
x=cos²t, y= sin²t .
24Find the distance moved by an object with motion
x=etcost, y= et sint . 0≤ t ≤ 1.
25Let A(t) and L(t) be the area under the curve y=x²from x=0 to x=t, and the
lengthofthe curve from x=0 to x=t, respectively. Findd(A(t))/d(L(t)).
InProblems 26-30, find definite integrals for the lengths of thecurves, but do not evaluate the integrals.
26y=x3, 0≤ x≤1
27y=2x2 - x + 1, 0≤ x ≤ 4
28x=1/t,y=t² , 0≤ t≤5
29x=2t+ 1, y=____, 1≤t ≤ 2
30The circumference of the ellipse x² + 4y² = 1
31Set up integral for the length of the curve y=____,1≤ x≤ 2 , and find the
TrapezoidalApproximationwhere Δx=___.
32Set up an integral for the length of the curve x= t² -t, y = ____t 3/2,
0≤t ≤ 1 , and find the Trapezoidal Approximation where Δt=___.
33Set up an integral for the length of the curve y= 1/x,1≤ x ≤ 5 , and find the
TrapezoidalApproximationwhere Δx=1
34Set up an integral for the length of the curve y= x²,-1≤ x ≤ 1 , and find
theTrapezoidalApproximation where Δx=_____
□35Suppose the same curve is given in two ways, by a simple equation
y=F(x),a≤x≤b and by parametric equations x= f(t),y=g(t), c≤ t H≤d.
Assumingallderivatives are continuous and the parametric curve does
notretraceits path, prove that the two formulas for curve length give the
samevalues.Hint: Use integration by change of variables.
相关推荐
本节内容主要涉及了圆锥曲线的综合问题,涵盖了直线与圆锥曲线的关系、圆与圆锥曲线的交互以及圆锥曲线与其他数学知识的结合。 1. **直线与圆锥曲线的相切与相交** - 直线与双曲线相切的情况意味着它们只有一个...
在VB6(Visual Basic 6)编程环境中,我们可以利用数学中的拉格朗日插值法来实现对图像上任意曲线长度的计算。拉格朗日插值法是一种经典的数值分析方法,它允许我们通过已知的一系列离散点数据来构建一个连续函数,...
- 提供了曲线设计所需的详细几何参数,如圆曲线半径R、缓和曲线长度Ls、切线长度T等,这些参数对于设计和分析道路曲线至关重要。 3. **方位角计算**: - 包含了交点前后直线方位角、圆曲线方位角以及缓和曲线方位...
这部分涉及了缓和曲线、圆曲线的综合要素计算,包括曲线长度、半径变化等关键参数。计算公式涵盖了从缓和曲线起点至终点的各种变化量,如曲率变化、转角值等,是设计复杂曲线路径的基础。 #### 四、竖曲线上高程...
7. **曲线分析**:掌握曲线的度量工具,如曲线长度、曲率分析等,这对于评估曲线的几何特性至关重要。 8. **应用实例**:通过实际案例,将所学的曲线创建技巧应用于产品设计中,如机械零件的轮廓线、流线型外形等。...
在这个2021年高考数学一轮复习的第6节中,主要探讨的是双曲线的基本性质、方程以及与几何图形(如焦点、渐近线)的关系。 1. 双曲线的离心率和焦点: - 离心率(e)是双曲线的一个关键属性,它表示了双曲线的形状,...
4. 性质4,即中值定理,保证了存在至少一点使得曲线积分的值等于函数在曲线上某点的值乘以曲线长度。 计算第一类曲线积分通常需要将曲线表示为参数方程,然后根据这些方程将积分化简。例如,如果曲线方程为x = f(t)...
- 参数化:B样条曲线是通过参数t进行插值的,t在0到1之间,可以方便地控制曲线的形状和长度。 - 平滑性:B样条曲线保证了至少G^2连续,即曲率连续。 7. **C# GDI+的曲线绘制技巧**: - 使用`GraphicsPath`对象...
3. 双曲线的几何性质:第三题中,右焦点到渐近线的距离以及焦点到原点的距离可以用来求解双曲线的参数,进一步计算离心率。 4. 双曲线的定义:双曲线定义了点P到两焦点的距离之差的绝对值等于常数2a。第四题中,...
本节内容主要涉及三种不同的坐标系统下计算曲线弧长的方法:直角坐标、参数方程和极坐标。 一、曲线弧长的观点 曲线的弧长可以理解为沿着曲线从一点滑动到另一点的最短路径长度。在微积分中,我们通过积分来求得...
【同济大学高等数学第六下册曲线积分】是高等数学中的一个重要章节,主要涉及第二型曲线积分和曲面积分的概念及计算方法。本课件详细介绍了这一领域的核心知识点。 1. **第二型曲线积分**: - **概念**:第二型...
双曲线是解析几何中的一个重要概念,它是一种标准的第二类圆锥曲线,具有两个焦点和一对渐近线。本讲主要介绍了双曲线的基本性质、方程以及与之相关的计算问题。 1. 双曲线的标准方程是 \( \frac{x^2}{a^2} - \frac...
圆曲线的计算与缓和曲线类似,但不涉及缓和曲线长度(l0): 1. 点距离ZH的长度(l) 2. 圆曲线的半径(R) 3. 转向角系数(K) 4. 过ZH点的切线方位角(α) 5. 点ZH的坐标(xZ,yZ) 圆曲线坐标同样通过泰勒级数...
* l1——第一缓和曲线长度 * l2——第二缓和曲线长度 * l0——对应的缓和曲线长度 * R——圆曲线半径 * R1——曲线起点处的半径 * R2——曲线终点处的半径 * P1——曲线起点处的曲率 * P2——曲线终点处的曲率 * α...
包括了曲线长度(l),缓和曲线长度(l1, l2, l0),圆曲线半径(R),起点和终点的半径(R1, R2),曲率(P1, P2)和曲线转角值(α)。这些要素用于精确描述曲线的几何特性。 4. **竖曲线上高程计算**: 在竖曲线中,需要...
2022届一轮复习苏教版第8章第6节的学案重点讲解了双曲线的基本属性和相关知识。 首先,双曲线的定义是基于两个固定点(焦点F1和F2)的,这些点之间的距离(2c)大于动点M与这两个点距离之差的绝对值(2a),其中2a...
6. 第六题利用双曲线的渐近线与圆相切,结合垂直条件求解双曲线的离心率。 7. 第七题涉及双曲线上的点P与焦点的垂直和比例关系,可以推出渐近线的方程。 8. 第八题中,双曲线渐近线与圆的相交条件可以用来求解离心...
本部分主要关注2021年高考数学复习中的第9章,第6讲内容,涉及到双曲线的相关习题及解析。 1. 双曲线的标准方程通常写作:,其中m代表实数参数,表示双曲线的形状。焦距(两焦点间的距离)可以通过c的平方计算得到...
缓和曲线的设计参数主要包括转向角α、圆曲线半径R、缓和曲线长度l0等。 #### 二、缓和曲线关键参数解析 **1. 转向角α** - 定义:圆曲线中心线与直线中心线之间的夹角。 - 单位:度分秒(°′″)。 - 示例:...
3. 双曲线的性质:在第四个问题中,提到双曲线的右顶点在以AB为直径的圆内,这涉及到双曲线的顶点坐标和焦距,以及圆的半径与双曲线的焦距的关系。 4. 双曲线的离心率:离心率 \( e \) 定义为 \( e = \frac{c}{a} \...