- 浏览: 4398364 次
最新评论
第6.7节 反常积分
6.7IMPROPER INTEGRALS
Whatis the area of the region under the curve y=1/______fromx=0 to x=1(Figure 6.7.1(a)) ? The function 1/_____isnot continuous at x=0, and in fact 1/_____isinfinite for infinitesimal ε>0.Thus our notion of a definite integral does not apply. Neverthelesswe shall be able to assign an area to the region using improperintegrals. We see from the figure that the region extends infinitelyfar up in the vertical direction. However, it becomes so thin thatthe area of the region turns out to be finite.
Theregion of Figure 6.7.1(b)under the curve y=x -3fromx=1to x=∞
Figure6.7.1
extendsinfinitely far in the horizontal direction. We shall see that thisregion, too, has a finite area which is given by an improperintegral.
Improperintegrals are defined as follows.
DEFINITION
Supposefis continuous on the half - open interval [a, b]. The improperintegral of f from a to b is defined by the limit
|
Ifthe limit exists the improper integral is said to converge. Otherwisethe improper integral is said to diverge.
Theimproper integral can also be described in terms of definiteintegrals with hyperreal endpoints. We first recall that the definiteintegral
|
isa real function of two variables uandv.If u andv varyover the hyperreal numbers instead of the real numbers, the definiteintegral ____f(x)dx standsfor the natural extension of Devaluatedat (u,v),
|
Hereis description of the improper integral using definite integrals withhyperreal endpoints.
Letf becontinuous on (a, b].
(1)___f(x)dx=S ifand only if __ f(x) dx ≈ S for all positive infinite ε.
(2)______f(x) dx = ∝ (or -∝ ) if andonly if ___ f(x) d(x) is positive infinite (or negative infinite) forall
positiveinfiniteε.
EXAMPLE1 Find ________.Foru >0,
Thereforetheregion under the curve y=1/____from 0 to 1 shown in Figure 6.7.1(a) has area 2,
andtheimproper integral converges.
EXAMPLE2Find________dx.For u >0,
Thistime
Theimproper integral diverges. Since the limit goes to infinity we maywrite
______x-2dx =∞
Theregion under the curve in Figure 6.7.2 is said to have infinitearea.
Warning:we remind the reader once again that the symbols ∞and-∞arenot real or even hyperreal numbers. We use them only to indicate thebehavior of a limit, or to indicate an interval without an upper orlower endpoint.
6.7.2
EXAMPLE3 Find the length of the curve y=x2/3,0 ≤ x ≤8.From Figure 6.7.3 the curve must have finite length. However, thederivative
____________________
isundefined at x=0.Thus the length formula gives an improper integral,
Figure6.7.3
Letu=9x2/3+4, du = 6x-1/3dx.The indefinite integral is
Therefore
Noticethat we use the same symbol for both the definite and the improperintegral. The theorem below justifies this practice.
THEOREM1
Iff is continuous on the closed interval [a,b] then the improperintegral of f from a to b converges an equals the definite integralof f from a to b.
PROOFWe have shown in Section 4.2 on the Fundamental Theorem that thefunction
F(u)= ____ f(x)dx
iscontinuous on [a, b].Therefore
where___f(x)dxdenotesthe definite integral.
Wenow define a second kind of improper integral where the interval isinfinite.
DEFINITION
Letf be continuous on the half-open interval[a,∝). The improperintegral of f from a to ∝ is defined by the limit
Theimproperintegral is said to converge if the limit exists and to divergeotherwise.
Hereis description of this kind of improper integral using definiteintegrals with hyperreal endpoints.
Letfbe continuous on [a,∝).
(1)___f(x)dx =S ifand only if ___f(x) dx ≈ Sfor all positive infinite H.
(2)___f(x)dx =∞(or- ∞)if and only if___f(x) dx is positive infinite (ornegative infinite ) for all positive
infiniteH.
EXAMPLE4 Findthe area under the curve y= x-3from1 to ∝.The area is given by the improper integral
For
Thus
Sothe improper integral converges and the region has area___.The region is shown in Figure 6.7.1(b)and extends infinitely far to the right.
EXAMPLE5 Findthe area under the curve y=x-2/3,1≤ x≤∝.
Theregion is shown in Figure 6.7.4 and has infinite area.
Figure6.7.4
EXAMPLE6
Theregionin Example 5 is rotated about the x-axis.Find the volume of the solid of revolution.
Weusethe disc method because the rotation is about the axis of theindependent variable. The volume
formulagivesus an improper integral.
Sothesolid shown in Figure 6.7.5 has finite volume V=3π.
Figure6.7.5
Thelast two examples give an unexpected result. A region with infinitearea is rotated about the x-axisand generates a solid with finite volume! In terms of hyperrealnumbers, the area of the region under the curve y=x-2/3from1 to an infinite hyperreal number Hisequal to 3( H1/3-1),which is positive infinite. But the volume of the solid of revolutionfrom 1 to Hisequal to
3π(1- H-1/3),
Whichis finite and has standard part 3π.
Wecan give a simpler example of this phenomenon. Let Hbea positive infinite hyperinteger, and form a cylinder of radius 1/Handlength H²(Figure6.7.6). Then the cylinder is formed by rotating a rectangle of lengthH², width 1/H,and infinite area H²/H=H.But the volume of the cylinder is equal to π,
V=π r²h = π(1/H)²(H)²=π.
Imaginea cylinder made out of modelling clay, with initial length and radiusone. The volume is π. The clay is carefully stretched so that thecylinder gets longer and thinner. The volume stays the same, but thearea of the cross section keeps getting bigger. When the lengthbecomes infinite, the cylinder of clay still has finite volume V=π,but the area of the cross section has become infinite.
Thereare other types of improper integrals. If f is continuous onthe half - open interval [a,b] then we define
_______f(x)dx =________f(x)dx.
Iff is continuous on (-∝,b] we define
_______f(x)dx =________f(x)dx.
Wehave introduced four types of improper integrals corresponding to thefour types of half - open intervals
[a,b),[a,∞), (a,b], ( - ∞,b].
Bypiecing together improper integrals of these four types we can assignan improper integral to most functions which arise in calculus.
DEFINITION
Afunction f is said to be piecewise continuous onan interval I if f is defined and continuous at all but perhapsfinitely many points of I. In particular, every continuous functionis piecewise continuous.
Wecan introduce the improper integral ____f(x)dx whenever f is piecewise continuous on I anda,b are either the endpoints of I or the appropriateinfinity symbol. A few examples will show how this can be done.
Letf be continuous at every point of the closed interval[a,b]except at one point c where a<c<b. We define
_______f(x)dx= _____f(x)dx+ ____ f(x)dx.
EXAMPLE7
Findtheimproper integral ____ x -1/3 dx.x -1/3 is discontinuous at x=0. The indefinite integral is
∫ x-1/3dx = ___ x2/3+ C.
Then
|
Similarly,
|
So
|
andthe improper integral converges. Thus, the region shown inFigure6.7.7 has finite area.
Figure6.7.7
Iff is continuous on the open interval (a, b), theimproper integral is defined as the sum
wherec is any point in the interval (a,b). The endpoints aand b may be finite or infinite. It does not matter whichpoint c is chosen, because if e is any other point in(a,b), then
EXAMPLE8 Find
Thefunction 2/______ +1/____is continuous on the open interval (0, 2)but discontinuous at bothendpoints (Figure 6.7.8). Thus
|
Figure6.7.8
Firstwe find the indefinite integral.
|
Then
|
Also
|
Therefore
|
EXAMPLE9 Find
|
Thefunction 1/x² + 1/(x-1)² is continuous on the openinterval (0,1) but discontinuous at both endpoints. The indefiniteintegral is
|
Wehave
|
Similarlywe find that
|
Inthis situation we may write
|
andwe say that the region under the curve in Figure 6.7.9 has infinitearea.
Figure6.7.9
RemarkIn Example 9
Weare faced with a sum of two infinite limits. Using the rules foradding infinite hyperreal
numbersas a guide we can give rules for sums of infinite limits.
IfH and K are positive infinite hyperreal numbers and cis finite, then
H+ K is positive infinite,
H+ c is positive infinite,
-H- K is negative infinite,
-H+ c is negative infinite,
H-Kcan be either finite, positive infinite, or negative infinite.
Byanalogy, we use the following rules for sums of two infinite limitsor of a finite and an infinite limit. These rules tell us when such asum can be considered to be positive or negative infinite. We use theinfinity symbols as a convenient shorthand, keeping in mind that theyare not even hyperreal numbers.
EXAMPLE10 Find _____ xdx. We see that
and______xdx = ∞.
Thus____xdx diverges and has the form ∞-∞. We do not assign it anyvalue or either of the symbols ∞ or -∞. The region under thecurve f(x)=x is shown in Figure 6.7.10.
Figure6.7.10
Itis tempting to argue that the positive area to the right of theorigin and the negative area to the left exactly cancel each otherout so that the improper integral is zero. But this leads to aparadox.
Wrong:_____ xdx =0. Let v= x+2,dv= dx. Then
Subtracting
But______ 2dx=∞
Sowe do not give the integral_____ xdx the value 0, and insteadleave it undefined.
PROBLEMSFOR SECTION 6.7
InProblems 1-36, test the improper integral for convergence andevaluate when possible.
1_________x-2dx2________x-0.9dx
3________x
-1/2dx
4______(2x-1)-3dx
5______(2x-1)-3dx6_______x
-1/3dx
7______x2+2x-1dx8_________x-2- x -3dx
9__________x(1+x2)-2dx 10_______x -1/2+x-2dx
11________x-1/2+x-2dx ??12_________x-2dx
13_______(x-1)-2/3dx14________x-2dx
15_____x-2/3dx16______dx
17____2x(x2-1)-1/3 dx18____2x3dx
19_____(2x-1)-2/3dx20_____(3x-1)-5dx
21______x²dx22______(2x-1)3 dx
23_________dx24_______x-1/3dx
25________ x3dx26_______x-3/2dx
27________dx28______ |x| (x+ 1)-3dx
29_________dx30_______(x-1)-2 + (x-3)-2dx
31____(x-1)-1/2+ (3-x) -1/2 dx32______dx
33__________34____________
35_________f(x)dxwhere f(x)= ______
36_________f(x)dx where f(x)= ______
37Show that if r is a rational number, the improper integral____ x-r dx converges whenr <1
anddivergeswhen r >1.
38Show that if r is a rational, the improper integral ____x-r dx converges when r >1
anddivergeswhen r <1.
39Find the area of the region under the curve y=4x-2from x=1 to x=∝.
40Find the area of the region under the curve y=1/_______from x=_____ to x=1.
41Find the area of the region between the curves y=x-1/4and y=x-1/2from x=0 to x=1.
42Find the area of the region between the curves y=-x-3and y=x -2,1 ≤ x<∝.
43Find the volume of the solid generated by rotating the curve y=1/x,1 ≤ x<∝,
about(a)the x-axis,(b)the y-axis.
44Find the volume of the solid generated by rotating the curve y=x-1/3,0 ≤ x<1,
about(a)the x-axis, (b) the y-axis.
45Find the volume of the solid generated by rotating the curve y=x-3/2,0 ≤ x<4,
about(a)the x-axis, (b) the y-axis.
46Find the volume generated by rotating the curve y=4x-3,-∝ ≤ x< -2, about (a) the x-axis,
(b)they-axis.
47Find the length of the curve y=_____from x=0 to x=1.
48Find the length of the curve y=_____from x=0 to x=1.
49Find the surface area generated when the curve y=___________,0 ≤x ≤1, is rotated about
(a)thex-axis, (b) the y-axis.
50Do the same for the curve y=______, 0 ≤ x ≤1
51(a) Find the surface area generated by rotating the curve y=____ , 0 ≤x ≤1, about thex-axis.
(b)Setupan integral for the area generated about the y-axis.
52Find the surface area generated by rotating the curve y=x2/3,0 ≤x ≤ 8, about the x-axis.
53Find the surface area generated by rotating the curve y=_______,0 ≤x ≤ a, about (a) the
x-axis,(b) the y-axis (0< a ≤ r).
54The force of gravity between particles of mass m1 and m2is F= gm1 m2 /s² where s is the
distancebetweenthem. If m1 is held fixed at the origin, find the work done inmoving m2
fromthepoint (1,0) all the way out the x-axis.
55Show that the Rectangle and Addition Properties hold for improperintegrals.
EXTRAPROBLEMS FOR CHAPTER 6
1The skin is peeled off a spherical apple in four pieces in such a waythat each horizontal cross section is a
squarewhosecorners are on the original surface of the apple. If the originalapple had radius r, find the
volumeofthe peeled apple.
2Find the volume of a tetrahedron of height h and base a righttriangle with legs of length a and b.
3Find the volume of the wedge formed by cutting a right circularcylinder of radius r with two planes, meeting
onaline crossing the axis, one plane perpendicular to the axis and theother at a 45°angle.
4Find the volume of a solid whose base is the region between thex-axis and the curve y=1-x²,and which
intersectseachplane perpendicular to the x-axis in a square.
InProblems 5-8, the region bounded by the given curves is rotated about(a) the x-axis, (b) the y-axis. Find thevolumes of the two solids of revolution.
5y=0,y=________, 0≤ x ≤ 1
6y=0,y=x3/2,0≤ x ≤ 1
7y= x, y= 4-x,0≤ x ≤ 2
8y=xp, y=xq, 0≤ x ≤ 1,where 0< q < p
9The region under the curve y=______,0 ≤ x ≤ 1,where 0< p, isrotated about the x-axis.Find the volume of
thesolidof revolution.
10The region under the curve y=(x²+4)1/3, 0 ≤ x ≤ 2,is rotated about the y-axis.Find the volume of the solid of
Revolution.
11Find the length of the curve y=(2x +1)3/2,0 ≤ x ≤2.
12Find the length of the curve y=3x -2,0 ≤ x ≤4.
13Find the length of the curve x=3t+1,y=2-4t,0 ≤ t ≤1.
14Find the length of the curve x=f(t),y=f(t)+c,a ≤ t ≤b.
15Findthe length of the line x=At+B,y=Ct + D,a ≤ t ≤b.
16Find the area of the surface generated by rotating the curve y=3x²-2,0 ≤ x ≤1,about the y-axis.
17Find the area of the surface generated by rotating the curvex=At²+Bt,y=2At +B,0≤ t ≤ 1,about the x-axis.
A>0,B>0.
18Find the average value of f(x)=x/_______ , 0≤ x ≤4.
19Findthe average value of f(x)=xp,1≤ x ≤b.p≠ -1.
20Find the average distance from the origin of a point on the parabolay=x²,0≤ x ≤ 4.
Withrespect to x.
21Given that f(x) = xp,0≤ x ≤ 1,p apositive constant, find a point cbetween0 and 1 such that f(c)equalsthe average value of f(x)
22Find the center of mass of a wire on the x-axis,0≤ x ≤ 2,whose density at a point xisequal to the square of the distance from (x,0)to (0,1).
23Find the center of mass of a length of wire with constant densitybent into three line segments covering the top, left, and right edgesof the square with vertices (0,0), (0,1), (1,1), (1,0).
24Find the center of mass of a plane object bounded by the linesy=0,y=x,x=1,with density p(x)=1/x.
25Findthe center of mass of a plane object bounded by the curves x=y²,x=1,with density p(x)=y².
26Find the centroid of the triangle bounded by the x-andy-axesand the line ax+by = c,where a, b,and c are
positiveconstants.
27A spring exerts a force of 10x1bswhen stretched a distance x beyondits natural length of 2ft. Find the work required to stretch thespring from a length of 3 ft to 4ft.
InProblems 28-36, test the improper integral for convergence andevaluate if it converges.
28_________x-3dx29____(x+2)-1/4 dx
30____x -4dx31____x -1/5dx
32 ____x 1/5dx33__________dx
34________dx35________dx
36 _____sinx dx
37 Awire has the shape of a curve y=f(x),a ≤x ≤b,and has density p(x)atvalue x.
Justifytheformulas below for the mass and moments of the wire.
38Find the mass, moments, and center of mass of a wire bent in theshape of a parabola
y=x²,-1 ≤ x≤1,with density p(x)=________.
39Find the mass, moments, and center of mass of a wire of constantdensity pbentin the
shapeof the semicircle y=________,-1 ≤x≤1.
□40An object fills the solid generated by rotating the region under thecurve y=f(x),a ≤x ≤b,about the x-axis.
Itsdensity per unit volume is p(x).Justify the following formula for the mass of the object.
m=_____ p(x) π (f(x))²dx.
□41A container filled with water has the shape of a solid of revolutionformed by rotating the curve x=g(y),
a≤y ≤b,about the (vertical) y-axis.Waterhas constant density pperunit volume.
Justifytheformula below for the amount of work needed to pump all the water tothe top of the container.
W=______pπ (g(y))² (b-y) dy.
42Findthe work needed to pump all the water to the top of a water-filledcontainer in the shape of a cylinder
withheighth andcircular base of radius r.
43Do Problem 46 if the container is in the shape of a hemisphericalbowl of radius r.
44Do Problem 46 if the container is in the shape of a cone with itsvertex at the bottom,
heighth,and circular top of radius r.
□45Thepressure,or force per unit area, exerted by water on the walls of a containeris equal to
p=p(b-y)wherep isthe density of water and b-ythewater depth. Find the total force on a dam in the
shapeofa vertical rectangle of height bandwidth w,assumingthe water comes to the top of the dam.
□46Awater-filled container has the shape of a solid formed by rotatingthe curve x=g(y), a ≤y ≤babout
the(vertical)y-axis.Justify the formula below for the total force on the walls of thecontainer.
相关推荐
7. 反常积分的一般化问题:文档中可能涉及了对更一般化的反常积分问题的探讨。例如,考虑了包含多个反常点或区间的情况,或讨论了不同类型的反常积分的组合。 以上是对文档内容中可能讨论的反常积分相关知识点的...
6. 无界函数反常积分:对于无界函数,Cauchy收敛原则和Cauchy判敛法同样适用,但需要对奇点进行特殊处理。这些定理提供了一种框架,使得即使函数在某些点无界,我们仍然可以讨论其积分的收敛性。 总结来说,这份PPT...
《二无界函数反常积分学习教案》是一个关于数学,特别是微积分领域的专业资料,主要讲解了两种类型的无界函数的反常积分:无穷限的反常积分和无界函数的反常积分。 1. 无穷限的反常积分: 在微积分中,当积分的上...
【高数课件ZJD62无界函数的反常积分.ppt】主要讲述了高等数学中关于无界函数的反常积分的相关知识。反常积分是处理那些在积分区间上有无穷大或无穷小的函数积分问题的方法。无界函数的反常积分分为两类:第一类反常...
例如,例子4中的解法错误是因为忽略了瑕点a的存在,而例子5和6则展示了如何根据函数的性质判断反常积分的收敛性。 总的来说,二无界函数的反常积分是微积分的一个高级主题,它不仅要求理解传统的积分理论,还需要...
无界函数的反常积分是微积分中的一个重要概念,它涉及到对那些在某点或某些点上函数值无限大的积分的处理。在这种情况下,传统的定积分定义不再适用,需要采用广义积分,即极限形式的积分来求解。在本讲义中,我们...
一、资源特点 直观性:数学思维导图通过节点、线条和颜色等视觉元素,将复杂的数学知识点以直观的方式呈现出来,有助于学生快速把握知识的整体框架和内在联系。 系统性:数学思维导图能够系统地梳理数学知识体系,...
第7.5节讨论了反常积分,也称为广义积分或无界区间的积分。这类积分处理的是函数在某些点发散或者函数在积分区间内无定义的情况。例如,通过对无穷大或无穷小的处理,我们可以对这些“异常”情况进行积分。 第7.6节...
7. **反常积分**: - 反常积分处理的是无穷限或不连续函数的积分问题,判定其敛散性并求值,通常涉及Cauchy主值等概念。 8. **多元函数微积分学**: - 第七章引入了多元函数的概念,预备知识包括坐标系统、向量、...
5. **反常积分**(广义积分):当被积函数在某些点上不连续或发散时,需要用到反常积分,如无穷区间上的积分和瑕积分。反常积分的计算通常需要利用特殊的技巧和公式。 6. **定积分的应用**:定积分在实际应用中非常...
第7.5节提到了反常积分,即广义积分或无穷限积分。这些积分可能涉及到函数在某些点上的不连续或发散,需要特殊的处理方式来确定其值。 至于第7.6节,定积分的应用广泛,包括物理中的面积、体积、质心、动量、能量...
7. 反常积分: - 题目8和14提到了反常积分,这是广义积分的一种,通常涉及到奇点或无穷大。对于反常积分的收敛性,需要用到特殊的收敛测试,如Cauchy主值或其他解析方法。 这些习题覆盖了广义积分理论的核心概念,...
7. **反常积分**: - **无穷区间上的反常积分**:处理无限区间上的积分,需要考虑函数的边界行为。 - **无界函数的反常积分**:对于无界函数,可能需要通过极限来定义其积分。 - **常义积分的极限**:如果一个...
本资源摘要信息涵盖了定积分的基本概念、性质、计算方法和反常积分等方面的知识点,旨在为学习者提供一个系统的定积分知识框架。 一、定积分的概念与性质 * 定积分的定义:定积分定义的四要素:分割;近似;求和;...
反常积分有两种类型:无穷限的反常积分和无界函数的反常积分。 四、微分方程 微分方程是微积分中的一种重要概念,表示为dy/dx=f(x,y),其中f(x,y)是微分方程的右侧函数。微分方程的基本概念、可分离变量的微分方程...
12. **复合函数与换元法**:第6、7题中可能涉及到复合函数的求导或积分计算,换元法是处理这类问题的常用方法。 13. **微分方程**:最后一题要求求解微分方程的通解,这是微分方程理论的一部分,通常需要用到分离...
6. **反常积分的收敛性**: - 反常积分的收敛性判断是积分理论的重点,题目列举了几个反常积分的例子,如`∫∞0xdx`,需要判断它们是否收敛。 7. **原函数与不定积分**: - 原函数与不定积分的关系体现在题目`( )...
4.反常积分 5.高斯求积法 6.三重积分 第4章特殊函数 1.г函数、贝塔函数、阶乘及二项式系数 2.不完全г函数、误差函数 3.不完全贝塔函数 4.零阶、一阶和任意整数阶的第一、二类贝赛函数 5.零阶、一阶和任意整数阶的...
6. **反常积分**: 反常积分(或称瑕积分)是处理无穷区间的积分,特别是涉及到无穷大或者无穷小的情况。例如,当积分的下限趋近于无穷时,我们可以通过极限来定义这种积分,判断其是否收敛。 这些知识点构成了高等...
6. **曲线的切线与曲率**:第六题讨论了曲线相切及曲率相等的条件。如果函数的二阶导数在某点连续,且极限满足特定关系,这仅仅是曲线相切的充分条件,但不是必要条件,因为曲率相等的条件更复杂,涉及到三阶导数的...