In the OLAP world, there are mainly two different types: Multidimensional OLAP (MOLAP) and Relational OLAP (ROLAP). Hybrid OLAP (HOLAP) refers to technologies that combine MOLAP and ROLAP.
MOLAP
This is the more traditional way of OLAP analysis. In MOLAP, data is stored in a multidimensional cube. The storage is not in the relational database, but in proprietary formats.
Advantages :
- Excellent performance: MOLAP cubes are built for fast data retrieval, and is optimal for slicing and dicing operations.
- Can perform complex calculations: All calculations have been pre-generated when the cube is created. Hence, complex calculations are not only doable, but they return quickly.
Disadvantages :
- Limited in the amount of data it can handle: Because all calculations are performed when the cube is built, it is not possible to include a large amount of data in the cube itself. This is not to say that the data in the cube cannot be derived from a large amount of data. Indeed, this is possible. But in this case, only summary-level information will be included in the cube itself.
- Requires additional investment: Cube technology are often proprietary and do not already exist in the organization. Therefore, to adopt MOLAP technology, chances are additional investments in human and capital resources are needed.
ROLAP
This methodology relies on manipulating the data stored in the relational database to give the appearance of traditional OLAP's slicing and dicing functionality. In essence, each action of slicing and dicing is equivalent to adding a "WHERE" clause in the SQL statement.
Advantages :
- Can handle large amounts of data: The data size limitation of ROLAP technology is the limitation on data size of the underlying relational database. In other words, ROLAP itself places no limitation on data amount.
- Can leverage functionalities inherent in the relational database: Often, relational database already comes with a host of functionalities. ROLAP technologies, since they sit on top of the relational database, can therefore leverage these functionalities.
Disadvantages :
- Performance can be slow: Because each ROLAP report is essentially a SQL query (or multiple SQL queries) in the relational database, the query time can be long if the underlying data size is large.
- Limited by SQL functionalities: Because ROLAP technology mainly relies on generating SQL statements to query the relational database, and SQL statements do not fit all needs (for example, it is difficult to perform complex calculations using SQL), ROLAP technologies are therefore traditionally limited by what SQL can do. ROLAP vendors have mitigated this risk by building into the tool out-of-the-box complex functions as well as the ability to allow users to define their own functions.
HOLAP
HOLAP technologies attempt to combine the advantages of MOLAP and ROLAP. For summary-type information, HOLAP leverages cube technology for faster performance. When detail information is needed, HOLAP can "drill through" from the cube into the underlying relational data.
相关推荐
数据仓库建模,olap(rolap、molap、holap)建模分析;数据仓库建模,olap(rolap、molap、holap)建模分析;数据仓库建模,olap(rolap、molap、holap)建模分析;
相比其他OLAP实现,如MOLAP(多维OLAP)和HOLAP(混合OLAP),ROLAP具有更强的灵活性和可扩展性,因为它可以直接操作关系数据库,无需进行额外的数据转换和存储。这使得ROLAP更适合处理大规模、不断变化的数据集,如...
【SQLSERVER数据仓库构建与分析】是针对计算机等级考试中数据库知识的重要部分,涉及的关键概念和技术包括: ...同时,性能优化是关键,如通过预计算的聚合和合适的存储策略(MOLAP、ROLAP或HOLAP)来提升查询速度。
OLAP系统分为MOLAP、ROLAP和HOLAP三类: 1. MOLAP(多维OLAP)采用预计算的立方体结构存储数据,查询速度快,但数据建模固定,难以适应用户即时修改。 2. ROLAP(关系型OLAP)基于关系数据库,提供灵活的数据查询和...
HOLAP结合了MOLAP和ROLAP的优点,将部分数据存储在多维立方体中,其余数据存储在关系数据库中。这种方式在提供快速查询性能的同时,也能处理大量数据和复杂的查询。 在实际应用中,选择合适的OLAP聚集算法取决于...
OLAP的数据模型有多种实现方式,包括MOLAP、ROLAP和HOLAP。MOLAP(多维OLAP)基于多维数据库,数据组织成类似超立方体的结构,如表3.1所示,存储效率高但更新较慢。ROLAP(关系OLAP)则依赖于关系数据库,数据和计算...
首先,OLAP系统根据数据存储方式分为MOLAP、ROLAP和HOLAP。MOLAP是其中的一种,它以多维数组的形式预先计算并存储数据,形成所谓的立方体(cube)。这种预计算的方式牺牲了存储空间,以换取更快的查询速度。例如,在...
HOLAP(混合OLAP)试图结合MOLAP和ROLAP的优势,但目前尚无成熟的开源解决方案。 在现实世界的应用中,企业往往需要根据自身的业务需求,在OLTP和OLAP之间做出选择。OLTP适合于需要高速响应、支持大量用户并发操作...
根据数据的存储和处理方式不同,OLAP又可以进一步细分为MOLAP、ROLAP和HOLAP三种类型: - **MOLAP(Multidimensional OLAP)**:采用多维数据组织方式,通常以多维数组的形式存储数据。MOLAP系统的特点是将细节数据和...
它支持MOLAP、ROLAP和HOLAP,以及统一维度模型(UDM),允许集成关系型和OLAP视图。主动缓存功能(Proactive Cache)将MOLAP的优势引入ROLAP,提高了分析性能。此外,SSAS还提供了多种数据挖掘算法,如决策树、朴素...
OLAP 系统可以分为 MOLAP、ROLAP 和 HOLAP 三种: * 多维 OLAP(Multi-Dimensional OLAP,简称 MOLAP),是预先根据数据需要分析的维度进行建模,在数据的物理存储层面以"立方体"(Cube) 的结构进行存储,具有查询...
在OLAP(在线分析处理)中,有三种主要的存储模式:MOLAP、ROLAP和HOLAP。MOLAP优化了多维数据的存储,提供快速查询响应,适用于频繁使用的数据集。ROLAP依赖于关系数据库,更适合大型数据集,而HOLAP则结合两者优点...
OLAP(在线分析处理)有三种主要存储模式:MOLAP、ROLAP和HOLAP。MOLAP优化了多维数据的存储,适合快速查询;ROLAP利用关系数据库存储数据,灵活性高,适合大数据量;HOLAP结合两者优点,兼顾速度和灵活性。 粒度是...
常见的开源OLAP工具有 Mondrian、Pentaho Analysis ( mondrian ) 和 Jpivot 等,它们能够提供类似MOLAP、ROLAP或HOLAP的分析能力。 开源BI系统的优点包括降低成本、社区支持、自由定制等,但用户需要自行处理集成、...
最后,数据集市的构建还涉及到数据存储的选择,例如MOLAP、ROLAP和HOLAP。MOLAP因其高效的性能而常被首选,它将数据预计算并存储在多维立方体中,以便快速查询。构建MOLAP的具体步骤包括数据的预处理、立方体的生成...
7. MOLAP、ROLAP和HOLAP:这三种OLAP存储模式分别代表多维、关系和混合方式,影响数据的存储和查询性能。MOLAP适合快速查询,ROLAP利用关系数据库存储,而HOLAP结合两者优点。 8. 粒度:数据仓库中数据的详细程度,...
支持MOLAP、ROLAP和HOLAP存储模式,适应不同的业务需求。其特点包括统一维度模型、主动缓存、自定义汇总和安全控制,使得用户可以进行深度分析并生成各种复杂的报表。 【数据挖掘】微软提供了深入的数据挖掘工具,...
1. **数据仓库的概念与模型**:介绍数据仓库的基本概念,如多维模型(星型、雪花型、星座型),以及数据仓库的不同架构(层次型、关系型、MOLAP、ROLAP、HOLAP)。 2. **数据仓库的生命周期**:包括需求分析、数据...
OLAP引擎主要有三类:ROLAP、MOLAP和HOLAP。 * ROLAP(关系型OLAP):基于关系型数据库,计算时根据原始数据进行聚合运算。常见的实现是使用MySQL、SqlServer等传统数据库,小数据量可以使用这些数据库,大数据量...
OLAP的实现技术主要分为三种:关系型联机分析处理(ROLAP)、多维联机分析处理(MOLAP)和混合型联机分析处理(HOLAP)。这三种技术各有优缺点,适用于不同的场景。 **关系型联机分析处理(ROLAP)**是基于传统的...