`
xangqun
  • 浏览: 82568 次
  • 性别: Icon_minigender_1
  • 来自: 江西
社区版块
存档分类
最新评论
文章列表
2.4、搜索查询对象     2.4.2、创建Scorer及SumScorer对象树 当创建完Weight对象树的时候,调用IndexSearcher.search(Weight, Filter, int),代码如下:   //(a)创建文档号收集器 TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder()); search(weight, filter, collector); //(b)返回搜索结果 return coll ...
2.4、搜索查询对象   2.4.1.2、创建Weight对象树 BooleanQuery.createWeight(Searcher) 最终返回return new BooleanWeight(searcher),BooleanWeight构造函数的具体实现如下:   public BooleanWeight(Searcher searcher) {   this.similarity = getSimilarity(searcher);   weights = new ArrayList<Weight>(clauses.size());   //也是一个 ...
2.3、QueryParser解析查询语句生成查询对象 代码为: QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "contents", new StandardAnalyzer(Version.LUCENE_CURRENT)); Query query = parser.parse("+(+apple* -boy) (cat* dog) -(eat~ foods)"); 此过程相对复杂,涉及JavaCC,QueryParser,分词器,查询语法等,本章不会 ...
二、Lucene搜索详细过程 为了解析Lucene对索引文件搜索的过程,预先写入索引了如下几个文件: file01.txt: apple apples cat dog file02.txt: apple boy cat category file03.txt: apply dog eat etc file04.txt: apply cat foods 2.1、打开IndexReader指向索引文件夹 代码为: IndexReader reader = IndexReader.open(FSDirectory.open(indexDir)); 其实是调用了DirectoryRea ...
一、Lucene搜索过程总论 搜索的过程总的来说就是将词典及倒排表信息从索引中读出来,根据用户输入的查询语句合并倒排表,得到结果文档集并对文档进行打分的过程。 其可用如下图示:   总共包括以下几个过程: IndexReader打开索引文件,读取并打开指向索引文件的流。 用户输入查询语句 将查询语句转换为查询对象Query对象树 构造Weight对象树,用于计算词的权重Term Weight,也即计算打分公式中与仅与搜索语句相关与文档无关的部分(红色部分)。 构造Scorer对象树,用于计算打分(TermScorer.score())。 在构造Scorer对象 ...
在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下。因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数。 Lucene的打分公式非常复杂,如下:     在推导 ...
一、段合并过程总论 IndexWriter中与段合并有关的成员变量有:   HashSet<SegmentInfo> mergingSegments = new HashSet<SegmentInfo>(); //保存正在合并的段,以防止合并期间再次选中被合并。 MergePolicy mergePolicy = new LogByteSizeMergePolicy(this);//合并策略,也即选取哪些段来进行合并。 MergeScheduler mergeScheduler = new ConcurrentMergeScheduler();//段合并器 ...
6、关闭IndexWriter对象 代码: writer.close(); --> IndexWriter.closeInternal(boolean)       --> (1) 将索引信息由内存写入磁盘: flush(waitForMerges, true, true);       --> (2) 进行段合并: mergeScheduler.merge(this); 对段的合并将在后面的章节进行讨论,此处仅仅讨论将索引信息由写入磁盘的过程。 代码: IndexWriter.flush(boolean triggerMerge, boo ...
5、DocumentsWriter对CharBlockPool,ByteBlockPool,IntBlockPool的缓存管理 在索引的过程中,DocumentsWriter将词信息(term)存储在CharBlockPool中,将文档号(doc ID),词频(freq)和位置(prox)信息存储在ByteBlockPool中。 在ByteBlockPool中,缓存是分块(slice)分配的,块(slice)是分层次的,层次越高,此层的块越大,每一层的块大小事相同的。 nextLevelArray表示的是当前层的下一层是第几层,可见第9层的下一层还是第9层,也就是说最高有9层。 ...
3、将文档加入IndexWriter 代码: writer.addDocument(doc); -->IndexWriter.addDocument(Document doc, Analyzer analyzer)      -->doFlush = docWriter.addDocument(doc, analyzer);           --> DocumentsWriter.updateDocument(Document, Analyzer, Term) 注:--> 代表一级函数调用 IndexWriter继而调用DocumentsWriter.ad ...
对于Lucene的索引过程,除了将词(Term)写入倒排表并最终写入Lucene的索引文件外,还包括分词(Analyzer)和合并段(merge segments)的过程,本次不包括这两部分,将在以后的文章中进行分析。 Lucene的索引过程,很多的博客,文章都有介绍,推荐大家上网搜一篇文章:《Annotated Lucene》,好像中文名称叫《Lucene源码剖析》是很不错的。 想要真正了解Lucene索引文件过程,最好的办法是跟进代码调试,对着文章看代码,这样不但能够最详细准确的掌握索引过程(描述都是有偏差的,而代码是不会骗你的),而且还能够学习Lucene的一些优秀的实现,能够在以后的 ...
四、具体格式 4.2. 反向信息 反向信息是索引文件的核心,也即反向索引。 反向索引包括两部分,左面是词典(Term Dictionary),右面是倒排表(Posting List)。 在Lucene中,这两部分是分文件存储的,词典是存储在tii,tis中的,倒排表又包括两部分,一部分是文档号及词频,保存在frq中,一部分是词的位置信息,保存在prx中。 Term Dictionary (tii, tis) –> Frequencies (.frq) –> Positions (.prx) 4.2.1. 词典(tis)及词典索引(tii)信息 ...
四、具体格式 上面曾经交代过,Lucene保存了从Index到Segment到Document到Field一直到Term的正向信息,也包括了从Term到Document映射的反向信息,还有其他一些Lucene特有的信息。下面对这三种信息一一介绍。 4.1. 正向信息 Index –> Segments (segments.gen, segments_N) –> Field(fnm, fdx, fdt) –> Term (tvx, tvd, tvf) 上面的层次结构不是十分的准确,因为segments.gen和segments_N保存的是段(segment)的元数据信息( ...
Lucene的索引里面存了些什么,如何存放的,也即Lucene的索引文件格式,是读懂Lucene源代码的一把钥匙。 当我们真正进入到Lucene源代码之中的时候,我们会发现: Lucene的索引过程,就是按照全文检索的基本过程,将倒排表写成此 ...
Lucene总的来说是: 一个高效的,可扩展的,全文检索库。 全部用Java实现,无须配置。 仅支持纯文本文件的索引(Indexing)和搜索(Search)。 不负责由其他格式的文件抽取纯文本文件,或从网络中抓取文件的过程。 在Lucene in action中,Lucene 的构架和过程如下图,   说明Lucene是有索引和搜索的两个过程,包含索引创建,索引,搜索三个要点。 让我们更细一些看Lucene的各组件:   被索引的文档用Document对象表示。 IndexWriter通过函数addDocument将文档添加到索引中,实现创建索 ...
Global site tag (gtag.js) - Google Analytics