在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下。因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数。
Lucene的打分公式非常复杂,如下:
在推导之前,先逐个介绍每部分的意义:
- t:Term,这里的Term是指包含域信息的Term,也即title:hello和content:hello是不同的Term
- coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包含的搜索词越多,则此文档则打分越高。
- queryNorm(q):计算每个查询条目的方差和,此值并不影响排序,而仅仅使得不同的query之间的分数可以比较。其公式如下:
- tf(t in d):Term t在文档d中出现的词频
- idf(t):Term t在几篇文档中出现过
- norm(t, d):标准化因子,它包括三个参数:
- Document boost:此值越大,说明此文档越重要。
- Field boost:此域越大,说明此域越重要。
- lengthNorm(field) = (1.0 / Math.sqrt(numTerms)):一个域中包含的Term总数越多,也即文档越长,此值越小,文档越短,此值越大。
- 各类Boost值
- t.getBoost():查询语句中每个词的权重,可以在查询中设定某个词更加重要,common^4 hello
- d.getBoost():文档权重,在索引阶段写入nrm文件,表明某些文档比其他文档更重要。
- f.getBoost():域的权重,在索引阶段写入nrm文件,表明某些域比其他的域更重要。
以上在Lucene的文档中已经详细提到,并在很多文章中也被阐述过,如何调整上面的各部分,以影响文档的打分,请参考有关Lucene的问题(4):影响Lucene对文档打分的四种方式一文。
然而上面各部分为什么要这样计算在一起呢?这么复杂的公式是怎么得出来的呢?下面我们来推导。
首先,将以上各部分代入score(q, d)公式,将得到一个非常复杂的公式,让我们忽略所有的boost,因为这些属于人为的调整,也省略coord,这和公式所要表达的原理无关。得到下面的公式:
然后,有Lucene学习总结之一:全文检索的基本原理中的描述我们知道,Lucene的打分机制是采用向量空间模型的:
我们把文档看作一系列词(Term),每一个词(Term)都有一个权重(Term weight),不同的词(Term)根据自己在文档中的权重来影响文档相关性的打分计算。
于是我们把所有此文档中词(term)的权重(term weight) 看作一个向量。
Document = {term1, term2, …… ,term N}
Document Vector = {weight1, weight2, …… ,weight N}
同样我们把查询语句看作一个简单的文档,也用向量来表示。
Query = {term1, term 2, …… , term N}
Query Vector = {weight1, weight2, …… , weight N}
我们把所有搜索出的文档向量及查询向量放到一个N维空间中,每个词(term)是一维。
我们认为两个向量之间的夹角越小,相关性越大。
所以我们计算夹角的余弦值作为相关性的打分,夹角越小,余弦值越大,打分越高,相关性越大。
余弦公式如下:
下面我们假设:
查询向量为Vq = <w(t1, q), w(t2, q), ……, w(tn, q)>
文档向量为Vd = <w(t1, d), w(t2, d), ……, w(tn, d)>
向量空间维数为n,是查询语句和文档的并集的长度,当某个Term不在查询语句中出现的时候,w(t, q)为零,当某个Term不在文档中出现的时候,w(t, d)为零。
w代表weight,计算公式一般为tf*idf。
我们首先计算余弦公式的分子部分,也即两个向量的点积:
Vq*Vd = w(t1, q)*w(t1, d) + w(t2, q)*w(t2, d) + …… + w(tn ,q)*w(tn, d)
把w的公式代入,则为
Vq*Vd = tf(t1, q)*idf(t1, q)*tf(t1, d)*idf(t1, d) + tf(t2, q)*idf(t2, q)*tf(t2, d)*idf(t2, d) + …… + tf(tn ,q)*idf(tn, q)*tf(tn, d)*idf(tn, d)
在这里有三点需要指出:
- 由于是点积,则此处的t1, t2, ……, tn只有查询语句和文档的并集有非零值,只在查询语句出现的或只在文档中出现的Term的项的值为零。
- 在查询的时候,很少有人会在查询语句中输入同样的词,因而可以假设tf(t, q)都为1
- idf是指Term在多少篇文档中出现过,其中也包括查询语句这篇小文档,因而idf(t, q)和idf(t, d)其实是一样的,是索引中的文档总数加一,当索引中的文档总数足够大的时候,查询语句这篇小文档可以忽略,因而可以假设idf(t, q) = idf(t, d) = idf(t)
基于上述三点,点积公式为:
Vq*Vd = tf(t1, d) * idf(t1) * idf(t1) + tf(t2, d) * idf(t2) * idf(t2) + …… + tf(tn, d) * idf(tn) * idf(tn)
所以余弦公式变为:
下面要推导的就是查询语句的长度了。
由上面的讨论,查询语句中tf都为1,idf都忽略查询语句这篇小文档,得到如下公式
所以余弦公式变为:
下面推导的就是文档的长度了,本来文档长度的公式应该如下:
这里需要讨论的是,为什么在打分过程中,需要除以文档的长度呢?
因为在索引中,不同的文档长度不一样,很显然,对于任意一个term,在长的文档中的tf要大的多,因而分数也越高,这样对小的文档不公平,举一个极端的例子,在一篇1000万个词的鸿篇巨著中,"lucene"这个词出现了11次,而在一篇12个词的短小文档中,"lucene"这个词出现了10次,如果不考虑长度在内,当然鸿篇巨著应该分数更高,然而显然这篇小文档才是真正关注"lucene"的。
然而如果按照标准的余弦计算公式,完全消除文档长度的影响,则又对长文档不公平(毕竟它是包含了更多的信息),偏向于首先返回短小的文档的,这样在实际应用中使得搜索结果很难看。
所以在Lucene中,Similarity的lengthNorm接口是开放出来,用户可以根据自己应用的需要,改写lengthNorm的计算公式。比如我想做一个经济学论文的搜索系统,经过一定时间的调研,发现大多数的经济学论文的长度在8000到10000词,因而lengthNorm的公式应该是一个倒抛物线型的,8000到 10000词的论文分数最高,更短或更长的分数都应该偏低,方能够返回给用户最好的数据。
在默认状况下,Lucene采用DefaultSimilarity,认为在计算文档的向量长度的时候,每个Term的权重就不再考虑在内了,而是全部为一。
而从Term的定义我们可以知道,Term是包含域信息的,也即title:hello和content:hello是不同的Term,也即一个Term只可能在文档中的一个域中出现。
所以文档长度的公式为:
代入余弦公式:
再加上各种boost和coord,则可得出Lucene的打分计算公式。
转:http://forfuture1978.iteye.com/blog/609502
分享到:
相关推荐
Lucene学习总结之二:Lucene的总体架构 Lucene学习总结之三:Lucene的索引文件格式(1) Lucene学习总结之三:Lucene的索引文件格式(2) Lucene学习总结之三:Lucene的索引文件格式(3) Lucene学习总结之四:...
24 Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser(1)
5. **文档长度信息**:用于调整文档评分,较短的文档中出现的术语可能更重要。 在实际应用中,Lucene提供了丰富的API,允许开发人员自定义分析器来处理文本,以适应各种语言和领域的特殊需求。此外,Lucene还支持...
它的核心功能之一是根据用户查询与文档的相关性进行打分,这个过程涉及到一个关键的概念——评分公式。本文将深入探讨Lucene的评分公式,理解其工作原理,并探讨如何通过自定义评分公式来影响搜索结果的排序。 首先...
赠送jar包:lucene-core-7.7.0.jar; 赠送原API文档:lucene-core-7.7.0-javadoc.jar; 赠送源代码:lucene-core-7.7.0-sources.jar; 赠送Maven依赖信息文件:lucene-core-7.7.0.pom; 包含翻译后的API文档:lucene...
lucene打分公式解释,非常详细,帮助理解搜索ranking.
赠送jar包:lucene-sandbox-6.6.0.jar; 赠送原API文档:lucene-sandbox-6.6.0-javadoc.jar; 赠送源代码:lucene-sandbox-6.6.0-sources.jar; 赠送Maven依赖信息文件:lucene-sandbox-6.6.0.pom; 包含翻译后的API...
由于林良益先生在2012之后未对IKAnalyzer进行更新,后续lucene分词接口发生变化,导致不可使用,所以此jar包支持lucene6.0以上版本
4. 结果排序:Lucene提供了多种评分算法,如TF-IDF,用于衡量文档与查询的相关性,从而对搜索结果进行排序。 5. 获取结果:Searcher返回的TopDocs对象包含了匹配的文档及其得分,可以进一步获取Document详情。 三...
**Lucene学习总结** 在深入理解Lucene之前,我们首先需要了解什么是全文检索。全文检索是一种从大量文本数据中快速查找所需信息的技术。它通过建立索引来实现高效的搜索,而Lucene正是Java环境下最著名的全文搜索...
6. **排序与评分(Scoring)**:Lucene根据相关性对搜索结果进行排序,相关性评分主要基于词频和文档频率等。 7. **内存缓存(In-memory Caching)**:为了提升性能,Lucene会缓存某些数据,如文档频率、位向量等。...
lucene使用总结笔记lucene使用总结笔记lucene使用总结笔记lucene使用总结笔记lucene使用总结笔记
Lucene 是一个开源的全文检索库,由Apache软件基金会开发并维护。它是Java编写的一个高性能、可扩展的信息检索库,广泛应用于搜索引擎和其他需要全文搜索功能的应用中。在本压缩包中,包含了Lucene的最新版本——...
总结来说,Lucene 7.2.1 是一个强大的全文检索工具,通过其丰富的功能和高效性能,为开发者提供了构建强大搜索引擎的可能。对于需要处理大量文本数据的应用,使用Lucene进行索引和查询无疑是一个明智的选择。
**Lucene学习指南** Lucene是一个高性能、全文检索库,由Apache软件基金会开发并维护,是Java编程语言中广泛使用的搜索引擎库。它提供了一个简单的API,使得开发者能够方便地在应用中实现全文检索功能。本篇文章将...
6. **结果排序**:Lucene根据评分对搜索结果进行排序,返回给用户。可以自定义评分函数以适应不同的排序策略。 在这个"Lucene3.3.0学习Demo"中,你可以期待以下内容: - 示例代码展示如何初始化索引目录,创建`...
本文将围绕“Lucene5学习之拼音搜索”这一主题,详细介绍其拼音搜索的实现原理和实际应用。 首先,我们需要理解拼音搜索的重要性。在中文环境中,由于汉字的复杂性,用户往往习惯于通过输入词语的拼音来寻找信息。...
1. **文档模型**:Lucene中的每个文档由多个字段组成,每个字段可以有不同属性,如是否被索引、是否被存储等。 2. **分词器(Tokenizer)**:这是将原始文本拆分成可搜索的词元的过程,不同的分词器适用于不同的...