`
大数据顾问
  • 浏览: 10723 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
文章列表
1研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小说网站里的作品、招聘网站里的职位……当数量超过用户可以遍历的上限时,用户就无所适从了。 对海量信息进行筛选、过滤,将用户最关注最感兴趣的信息展现在用户面前,能大大增加这些内容的转化率,对各类应用系统都有非常巨大的价值。 搜索引擎的出现在一定程度上解决了信息筛选问题,但还远远不够,其存在的两个主要弊端是:第一搜索引擎需要用户主动提供关键词来对海量信息进行筛选。当用户无法准确描述自己的需求时,搜索引擎的筛选效果将大打折扣,而用户将自己的需求和意图转化成关键词的过程有时 ...
 达观数据搜索引擎的Query自动纠错技术和架构 1 背景 如今,搜索引擎是人们的获取信息最重要的方式之一,在搜索页面小小的输入框中,只需输入几个关键字,就能找到你感兴趣问题的相关网页。搜索巨头Google,甚至已经使Google这个创造出来的单词成为动词,有问题Google一下就可以。在国内,百度也同样成为一个动词。除了通用搜索需求外,很多垂直细分领域的搜索需求也很旺盛,比如电商网站的产品搜索,文学网站的小说搜索等。面对这些需求,达观数据(
  随着互联网技术的迅速发展与普及,如何对浩如烟海的数据进行分类、组织和管理,已经成为一个具有重要用途的研究课题。而在这些数据中,文本数据又是数量最大的一类。文本分类是指在给定分类体系下,根据文本内容自动确定文本类别的过程(达观数据科技联合创始人张健)。文本分类有着广泛的应用场景,例如:       新闻网站包含大量报道文章,基于文章内容,需要将这些文章按题材进行自动分类(例如自动划分成政治、经济、军事、体育、娱乐等) 在电子商务网站,用户进行了交易行为后对商品进行评价分类,商家需要对用户的评价划分为正面评价和负面评价,来获取各个商品的用户反馈统计情况。 电 ...
推荐系统和搜索引擎的关系达观陈运文   从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系 ...
大数据时代里,互联网用户每天都会直接或间接使用到大数据技术的成果,直接面向用户的比如搜索引擎的排序结果,间接影响用户的比如网络游戏的流失用户预测、支付平台的欺诈交易监测等等。达观数据技术团队长期以来一直致力于钻研和积累各种大数据技术,曾获得cikm2014数据挖掘竞赛冠军,也开发过智能文本内容审核系统、用户建模系统等多个基于大数据技术的应用系统。机器学习是大数据挖掘的一大基础,本文以机器学习为切入点,将达观在大数据技术实践时的一些经验与大家分享(达观数据联合创始人 纪传俊)      CIKM数据挖掘竞赛获得冠军后领奖   机器学习——海量数据挖掘解决方案 互联网的海量数据不可能靠 ...
Global site tag (gtag.js) - Google Analytics