`
bjyjtdj
  • 浏览: 17968 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论
文章列表
半连接(semijoin)       之前已经讨论了reduce-side join和map-side join(replicated join),第一种较通用但效率不高,第二种对于表的大小有需求。然而即使存在表的大小不对称的情况,在许多情况下较小的表仍然不能存到内存中。这里讨论一下半连接(semijoin),这是传统的关系型数据库中的概念。它对应这样一种常见需求:用户只关心合并之后的某些元组。例如,在前面的例子中,我只想知道Customer ID为3的元组信息。这时,前面那些方法就传输了大量的无用数据,Customer ID为1,2,4的完全可以舍弃掉。       既然如此 ...
BloomFilter是什么?        BloomFilter主要提供两种操作: add()和contains(),作用分别是将元素加入其中以及判断一个元素是否在其中,类似于Java中的Set接口,它内部采用的byte数组来节省空间。其独特之处在于contains()方法,当 ...
     本文讲述如何在map端完成join操作。之前我们提到了reduce-join,这种方法的灵活性不错,也是理所当然地能够想到的方法;但这种方法存在的一个最大的问题是性能。大量的中间数据需要从map节点通过网络发送到reduce节点,因而效率比较低。实际上,两表的join操作中很多都是无用的数据。现在考虑可能的一种场景,其中一个表非常小,以致于可以直接存放在内存中,那么我们可以利用Hadoop提供的DistributedCache机制,将较小的表加入到其中,在每个map节点都能够访问到该表,最终实现在map阶段完成join操作。这里提一下DistributedCache,可以直观上将它看作 ...
    上一篇介绍了 Repartition Join 的基本思想,实践出真知,具体的实现中总是存在各种细节问题。下面我们通过具体的源码分析来加深理解。本文分析的是 Hadoop-0.20.2 版本的 datajoin 代码,其它版本也许会有变化,这里 ...
在关系型数据库中 join 是非常常见的操作,各种优化手段已经到了极致。在海量数据的环境下,不可避免的也会碰到这种类型的需求,例如在数据分析时需要连接从不同的数据源中获取到的数据。不同于传统的单机模式,在分布式存储的下采用 MapReduce 编程模型,也有相应的处理措施和优化方法。 本文对 Hadoop 中最基本的 join 方法进行简单介绍,这也是其它许多方法和优化措施的基础。文中所采用的例子来自于《 Hadoop in Action 》一 ...
Global site tag (gtag.js) - Google Analytics