http://vrlinux.com/wenzhangjingxuan/20101025/78066_6.html
大数据量的问题是很多面试笔试中经常出现的问题,比如baidu,google,tx这样的一些涉及到海量数据的公司经常会问到。
下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。
1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
2.Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
分享到:
相关推荐
海量数据处理方法总结 本文总结了常用的海量数据处理方法,包括 Bloom filter、Hashing 和 bit-map 等。这些方法可以用来解决大数据量的问题,例如数据字典、判重、集合求交集等问题。 Bloom Filter Bloom filter...
大数据量,海量数据,处理方法总结,面试必备。
下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目...
这些技术是大数据量和海量数据处理的基石,在数据科学、网络分析、搜索引擎优化等众多领域有着广泛的应用。在实际使用过程中,可以根据数据的特性和处理需求灵活选择合适的处理方法,并结合问题实例进一步理解和掌握...
### 大数据量、海量数据处理方法总结 #### 一、引言 随着互联网技术的发展,数据量呈现出爆炸性增长的趋势。如何高效地处理这些大数据成为了一项挑战性的任务。在IT行业,尤其是在搜索引擎、社交媒体等领域,处理...
海量数据 大数据量 处理的算法和数据结构 对面试IT公司的人非常有用!
【大数据量,海量数据处理方法总结】 大数据量的处理是现代信息技术领域的重要课题,尤其在互联网巨头如百度、谷歌和腾讯等公司中,这类问题尤为常见。本文将概述几种处理海量数据的有效方法,包括Bloom Filter、...
大数据量的问题是很多面试笔试中经常出现的问题,比如百度,谷歌,腾讯这样的一些涉及到海量数据的公司经常会问到。 本文的一些问题基本直接来源于公司的面试笔试题目。包括Bloom filter,Hashing,bit-map,双层桶...
海量数据处理是指基于海量数据上的存储、处理、操作,解决方案包括巧妙的算法搭配适合的数据结构,如 Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie 树,以及大而化小、分而治之的策略。根据数据处理的场景,...
大数据量、海量数据处理方法总结 大数据量的问题是许多面试笔试中经常出现的问题,许多涉及到海量数据的公司经常会问到,这些方法可以基本上处理绝大多数遇到的问题。 1. Bloom Filter: Bloom Filter 是一种空间...
大数据与海量数据处理算法总结 在当今数据爆炸的时代,大数据处理是IT行业的一个热点。无论是社交网络、电子商务还是搜索引擎公司,都面临着海量数据的存储、查询和分析问题。为了有效应对这些挑战,研究者们提出了...
【大数据量,海量数据处理方法总结】 大数据量的处理是当今信息技术领域的重要议题,尤其是在互联网巨头如百度、谷歌和腾讯等公司中,处理海量数据的能力是衡量技术实力的关键指标。以下是一些常用的大数据处理方法...
【大数据量,海量数据处理方法总结】 大数据量的处理是现代信息技术领域中不可或缺的一部分,尤其在互联网巨头如百度、谷歌和腾讯等公司中,面对海量数据的存储、检索和分析是一项核心挑战。本文将总结一些常见的大...
标题中的“大数据量,海量数据处理方法总结参照.pdf”表明这是一个关于处理大量数据的技术文档,主要探讨了在处理海量数据时的各种策略和方法。描述提到这些方法常出现在像百度、谷歌、腾讯这样的大公司面试笔试中,...