`
ssxxjjii
  • 浏览: 950852 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

大数据量,海量数据处理方法总结海量2

 
阅读更多

3.bit-map
   适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
   基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
   扩展:bloom filter可以看做是对bit-map的扩展

 问题实例:

 1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

 8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

 2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

 将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

 4.堆

   适用范围:海量数据前n大,并且n比较小,堆可以放入内存

   基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

 扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

 问题实例:
 1)100w个数中找最大的前100个数。

 用一个100个元素大小的最小堆即可。

 5.双层桶划分

   适用范围:第k大,中位数,不重复或重复的数字

   基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。
   扩展:

 问题实例:
 1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

 有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

 2).5亿个int找它们的中位数。

 这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

 实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

 6.数据库索引

   适用范围:大数据量的增删改查

   基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
 扩展:
 问题实例:

分享到:
评论

相关推荐

    常用大数据量,海量数据处理方法,算法总结

    海量数据处理方法总结 本文总结了常用的海量数据处理方法,包括 Bloom filter、Hashing 和 bit-map 等。这些方法可以用来解决大数据量的问题,例如数据字典、判重、集合求交集等问题。 Bloom Filter Bloom filter...

    大数据量,海量数据 处理方法总结

    大数据量,海量数据,处理方法总结,面试必备。

    大数据量_海量数据_处理方法总结

    下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目...

    大数据量,海量数据 处理方法总结.pdf

    这些技术是大数据量和海量数据处理的基石,在数据科学、网络分析、搜索引擎优化等众多领域有着广泛的应用。在实际使用过程中,可以根据数据的特性和处理需求灵活选择合适的处理方法,并结合问题实例进一步理解和掌握...

    大数据量,海量数据_处理方法总结

    ### 大数据量、海量数据处理方法总结 #### 一、引言 随着互联网技术的发展,数据量呈现出爆炸性增长的趋势。如何高效地处理这些大数据成为了一项挑战性的任务。在IT行业,尤其是在搜索引擎、社交媒体等领域,处理...

    海量 大数据量 数据 处理总结

    海量数据 大数据量 处理的算法和数据结构 对面试IT公司的人非常有用!

    大数据量,海量数据处理方法总结[转][文].pdf

    【大数据量,海量数据处理方法总结】 大数据量的处理是现代信息技术领域的重要课题,尤其在互联网巨头如百度、谷歌和腾讯等公司中,这类问题尤为常见。本文将概述几种处理海量数据的有效方法,包括Bloom Filter、...

    常用大数据量、海量数据处理方法__算法总结

    大数据量的问题是很多面试笔试中经常出现的问题,比如百度,谷歌,腾讯这样的一些涉及到海量数据的公司经常会问到。 本文的一些问题基本直接来源于公司的面试笔试题目。包括Bloom filter,Hashing,bit-map,双层桶...

    海量数据处理方法

    2. 海量数据处理的方法和策略 3. set/map/multiset/multimap 等数据结构的应用 4. 海量数据处理中的分布式处理和并行计算 5. 海量数据处理的面试题和解决方法 在回答这些问题时,需要对海量数据处理的定义、方法和...

    大数据量,海量数据-处理方法总结

    大数据量、海量数据处理方法总结 大数据量的问题是许多面试笔试中经常出现的问题,许多涉及到海量数据的公司经常会问到,这些方法可以基本上处理绝大多数遇到的问题。 1. Bloom Filter: Bloom Filter 是一种空间...

    常用大数据量、海量数据处理方法__算法总结.pdf

    大数据与海量数据处理算法总结 在当今数据爆炸的时代,大数据处理是IT行业的一个热点。无论是社交网络、电子商务还是搜索引擎公司,都面临着海量数据的存储、查询和分析问题。为了有效应对这些挑战,研究者们提出了...

    大数据量,海量数据 处理方法总结.docx

    【大数据量,海量数据处理方法总结】 大数据量的处理是当今信息技术领域的重要议题,尤其是在互联网巨头如百度、谷歌和腾讯等公司中,处理海量数据的能力是衡量技术实力的关键指标。以下是一些常用的大数据处理方法...

    大数据量海量数据处理.pdf

    ### 大数据量海量数据处理的关键技术与方法 在当今数字化时代,数据量的爆发式增长使得大数据处理成为了一个至关重要的领域。面对PB级甚至EB级的数据,传统的数据处理技术已无法满足需求,因此,发展出了多种高效的...

    大数据量,海量数据处理方法总结参照.pdf

    标题中的“大数据量,海量数据处理方法总结参照.pdf”表明这是一个关于处理大量数据的技术文档,主要探讨了在处理海量数据时的各种策略和方法。描述提到这些方法常出现在像百度、谷歌、腾讯这样的大公司面试笔试中,...

    大数据量,海量数据 处理方法总结.pdf

    【大数据量,海量数据处理方法总结】 大数据量的处理是现代信息技术领域中不可或缺的一部分,尤其在互联网巨头如百度、谷歌和腾讯等公司中,面对海量数据的存储、检索和分析是一项核心挑战。本文将总结一些常见的大...

Global site tag (gtag.js) - Google Analytics