注: 该文章的原文是由 Tae Jin Gu 编写,原文地址为 How to Analyze Java Thread Dumps
当有障碍,或者是一个基于 JAVA 的 WEB 应用运行的比预期慢的时候,我们需要使用 thread dumps
。如果对于你来说,thread dumps
是非常复杂的,这篇文章或许能对你有所帮助。在这里我将解释在 JAVA 中什么是 threads
,他们的类型,怎么被创建的,怎样管理它们,你怎样从正在运行的应用中 dump threads
,最后你可以怎样分析它以及确定瓶颈或者是阻塞线程。本文来自于 JAVA 应用程序长期调试经验的结果。
Java and Thread
一个 web 服务器使用几十到几百个线程来处理大量并发用户,如果一个或多个线程使用相同的资源,线程之间的竞争就不可避免了,并且有时候可能会发生死锁。
Thread contention 是一个线程等待锁的一个状态,这个锁被另外一个线程持有,等待被释放,不同的线程频繁访问 WEB 应用的共享资源。例如,记录一条日志,线程尝试记录日志之前必须先获取锁来访问共享资源。
死锁是线程竞争的一个特殊状态,一个或是多个线程在等待其他线程完成它们的任务为了完成它们自己的任务。
线程竞争会引起各种不同的问题,为了分析这些这些问题,你需要使用 dump threads,dump threads
能给你提供每个线程的精确状态信息。
JAVA 线程的背景资料
线程同步
一个线程可以与其他线程在同一时间内被处理。为了确保一致性,当多个线程试图使用共享资源的时候,通过使用 hread synchronization
在同一时间内,应该只有一个线程能访问共享资源
JAVA 中的线程同步可以使用监视器,每个 JAVA 对象都有一个单独的监视器,这个监视器仅仅只能被一个线程拥有,对于拥有一个由不同的线程所拥有的监视器的线程,确实需要在队列中等待,以便其他线程释放它的监视器。
线程状态
为了分析一个 thread dump
文件,你需要知道线程状态。线程情况在 java.lang.Thread.State
中阐明了。
图1:线程状态
- NEW:线程刚被创建,但是还没有被处理。
- RUNNABLE:线程占用了 CPU 并且处理了一个任务。(或是是在等待状态由于操作系统的资源分配)
- BLOCKED:该线程正在等待另外的不同的线程释放锁,以便获取监视器锁
- WAITING:该线程正在等待,通过使用了 wait, join 或者是 park 方法
- TIMED_WAITING:该线程正在等待,通过使用了 sleep, wait, join 或者是 park 方法。(这个与
WAITING
不同是通过方法参数指定了最大等待时间,WAITING
可以通过时间或者是外部的变化解除)
线程类型
JAVA 的线程类型分为以下两种:
- daemon threads;
- 非 daemon threads。
Daemon threads 将停止工作当没有其他任何非 Daemon threads
时。即使你不创建任何线程,JAVA 应用也将默认创建几个线程。他们大部分是 daemon threads
。主要用于任务处理比如内存回收或者是 JMX
。
一个运行 static void main(String[] args)
方法的线程被作为非 daemon threads
线程创建,并且当该线程停止工作的时候,所有任何其他 daemon threads
也将停止工作。(这个运行在 main 方法中的线程被称为 VM thread in HotSpot VM)
获取一个 Thread Dump
我们将介绍三种最常用的方法,记住,有非常多的其他方法可以获取thread dump
,一个 thread dump
仅仅只能在测量的时候显示线程状态。因此为了看得线程状态的变化,建议每隔5秒提取5到10次的记录。
使用 jstack 获取 Thread Dump
在 JDK1.6 或者是更高的版本中,通过使用 jstack, 在 MS Windows 平台上可能可以获取到 Thread Dump
。
通过使用 jps
检查当前正在运行的JAVA进程的 PID。
[user@linux ~]$ jps -v 25780 RemoteTestRunner -Dfile.encoding=UTF-8 25590 sub.rmi.registry.RegistryImpl 2999 -Dapplication.home=/home1/user/java/jdk.1.6.0_24 -Xms8m 26300 sun.tools.jps.Jps -mlvV -Dapplication.home=/home1/user/java/jdk.1.6.0_24 -Xms8m
使用明确的 PID 作为 jstack
的参数来获取 thread dumps
。
[user@linux ~]$ jstack -f 5824
使用 jVisualVM 生成 Thread Dump
通过使用一个程序 jVisualVM
来生成 Thread Dump
。
如上图在左侧的任务表示当前正在运行的进程列表,点击你想要信息的那个线程,然后选择 thread tab
页来检查实时的线程信息。点击右边的 Thread Dump
按钮来获取 thread dump
文件。
在 Linux 控制台生成
通过使用 ps -ef
命令来获取当前正在运行的 JAVA 应用程序的进程 ID。
[user@linux ~]$ ps - ef | grep java user 2477 1 0 Dec23 ? 00:10:45 ... user 25780 25361 0 15:02 pts/3 00:00:02 ./jstatd -J -Djava.security.policy=jstatd.all.policy -p 2999 user 26335 25361 0 15:49 pts/3 00:00:00 grep java
使用精确的 pid 作为 kill –SIGQUIT(3)
的参数来获取 thread dump
。
Thread Dump 文件的 线程信息
"pool-1-thread-13" prio=6 tid=0x000000000729a000 nid=0x2fb4 runnable [0x0000000007f0f000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:264) at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:306) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:158) - locked <0x0000000780b7e688> (a java.io.InputStreamReader) at java.io.InputStreamReader.read(InputStreamReader.java:167) at java.io.BufferedReader.fill(BufferedReader.java:136) at java.io.BufferedReader.readLine(BufferedReader.java:299) - locked <0x0000000780b7e688> (a java.io.InputStreamReader) at java.io.BufferedReader.readLine(BufferedReader.java:362)
- 线程名字:当使用
Java.lang.Thread
类生成一个线程的时候,该线程将被命名为Thread-(Number)
。但是当使用java.util.concurrent.ThreadFactory
类的时候,它将被命名为pool-(number)-thread-(number)
。 - 优先级:代表该线程的优先级
- 线程 ID:代表该线程的唯一 ID,(一些有用的信息,比如该线程的 CPU 使用率或者是内存使用率,都能通过该线程 ID 获取到)。
- 线程状态:代表该线程当前的状态
- 线程调用栈:代表该线程的调用栈信息
Thread Dump Patterns by Type When Unable to Obtain a Lock (BLOCKED)
这个应用程序的整体性能下降是因为一个线程占用了锁阻止了其他线程获得锁,在下面的示例中,BLOCKED_TEST pool-1-thread-1
线程占用了 <0x0000000780a000b0>
锁,然而 BLOCKED_TEST pool-1-thread-2
和 BLOCKED_TEST pool-1-thread-3 threads
正在等待获取锁。
"BLOCKED_TEST pool-1-thread-1" prio=6 tid=0x0000000006904800 nid=0x28f4 runnable [0x000000000785f000] java.lang.Thread.State: RUNNABLE at java.io.FileOutputStream.writeBytes(Native Method) at java.io.FileOutputStream.write(FileOutputStream.java:282) at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:65) at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:123) - locked <0x0000000780a31778> (a java.io.BufferedOutputStream) at java.io.PrintStream.write(PrintStream.java:432) - locked <0x0000000780a04118> (a java.io.PrintStream) at sun.nio.cs.StreamEncoder.writeBytes(StreamEncoder.java:202) at sun.nio.cs.StreamEncoder.implFlushBuffer(StreamEncoder.java:272) at sun.nio.cs.StreamEncoder.flushBuffer(StreamEncoder.java:85) - locked <0x0000000780a040c0> (a java.io.OutputStreamWriter) at java.io.OutputStreamWriter.flushBuffer(OutputStreamWriter.java:168) at java.io.PrintStream.newLine(PrintStream.java:496) - locked <0x0000000780a04118> (a java.io.PrintStream) at java.io.PrintStream.println(PrintStream.java:687) - locked <0x0000000780a04118> (a java.io.PrintStream) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:44) - locked <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState$1.run(ThreadBlockedState.java:7) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780a31758> (a java.util.concurrent.locks.ReentrantLock$NonfairSync) "BLOCKED_TEST pool-1-thread-2" prio=6 tid=0x0000000007673800 nid=0x260c waiting for monitor entry [0x0000000008abf000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:43) - waiting to lock <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState\$2.run(ThreadBlockedState.java:26) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor\$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780b0c6a0> (a java.util.concurrent.locks.ReentrantLock$NonfairSync) "BLOCKED_TEST pool-1-thread-3" prio=6 tid=0x00000000074f5800 nid=0x1994 waiting for monitor entry [0x0000000008bbf000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:42) - waiting to lock <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState\$3.run(ThreadBlockedState.java:34) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780b0e1b8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
当在死锁状态
这是当线程 A 需要获取线程 B 的锁来继续它的任务,然而线程 B 也需要获取线程 A 的锁来继续它的任务的时候发生的。在thread dump
中,你能看到 DEADLOCK_TEST-1
线程持有 0x00000007d58f5e48
锁,并且尝试获取 0x00000007d58f5e60
锁。你也能看到 DEADLOCK_TEST-2
线程持有 0x00000007d58f5e60
,并且尝试获取 0x00000007d58f5e78
,同时 DEADLOCK_TEST-3
线程持有 0x00000007d58f5e78
,并且在尝试获取 0x00000007d58f5e48
锁,如你所见,每个线程都在等待获取另外一个线程的锁,这状态将不会被改变直到一个线程丢弃了它的锁。
"DEADLOCK_TEST-1" daemon prio=6 tid=0x000000000690f800 nid=0x1820 waiting for monitor entry [0x000000000805f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e60> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e48> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None "DEADLOCK_TEST-2" daemon prio=6 tid=0x0000000006858800 nid=0x17b8 waiting for monitor entry [0x000000000815f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e78> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e60> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None "DEADLOCK_TEST-3" daemon prio=6 tid=0x0000000006859000 nid=0x25dc waiting for monitor entry [0x000000000825f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e48> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e78> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None
当持续等待从远处服务器接收消息
该线程是正常的,因为它的状态为 RUNNABLE,尽管如此,当你按照时间顺序排列 Thread Dump
,你会发现 socketReadThread
线程正在无限等待读取 socket。
"socketReadThread" prio=6 tid=0x0000000006a0d800 nid=0x1b40 runnable [0x00000000089ef000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:264) at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:306) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:158) - locked <0x00000007d78a2230> (a java.io.InputStreamReader) at sun.nio.cs.StreamDecoder.read0(StreamDecoder.java:107) - locked <0x00000007d78a2230> (a java.io.InputStreamReader) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:93) at java.io.InputStreamReader.read(InputStreamReader.java:151) at com.nbp.theplatform.threaddump.ThreadSocketReadState$1.run(ThreadSocketReadState.java:27) at java.lang.Thread.run(Thread.java:662)
当 Waiting 时
线程保持在 Waiting
状态,在 Thread Dump
中,IoWaitThread
线程保持等待状态来从 LinkedBlockingQueue
接收消息。如果 LinkedBlockingQueue
一直没有消息,该线程的状态将不会改变。
"IoWaitThread" prio=6 tid=0x0000000007334800 nid=0x2b3c waiting on condition [0x000000000893f000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x00000007d5c45850> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1987) at java.util.concurrent.LinkedBlockingDeque.takeFirst(LinkedBlockingDeque.java:440) at java.util.concurrent.LinkedBlockingDeque.take(LinkedBlockingDeque.java:629) at com.nbp.theplatform.threaddump.ThreadIoWaitState$IoWaitHandler2.run(ThreadIoWaitState.java:89) at java.lang.Thread.run(Thread.java:662)
当线程的资源不能正常的被组织
不必要的线程会堆积起来,当线程的资源不能被正常的组织的话,如果这个发送了,建议监控线程组织过程或检查线程终止的条件。
使用 Thread Dump 怎样解决问题
示例1:当 CPU 利用率高的异常
- 提取获取最高 CPU 使用率的线程。
[user@linux ~]$ ps -mo pid.lwp.stime.time.cpu -C java PID LWP STIME TIME %CPU 10029 - Dec07 00:02:02 99.5 - 10039 Dec07 00:00:00 0.1 - 10040 Dec07 00:00:00 95.5
从这个应用中,发现使用 CPU 最高的线程。
获取使用 CPU 最多的轻量级进程(LWP),把它的唯一标示码 (10039) 转换成十六进制 (0x2737)。
- 然后获取进程的
Thread Dump
,检查进程的动作。
通过 PID 10029 来提取应用程序的 Thread Dump
,然后通过一个 nid 0x2737 来找到这个线程。
"NioProcessor-2" prio=10 tid=0x0a8d2800 nid=0x2737 runnable [0x49aa5000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:210) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:65) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69) - locked <0x74c52678> (a sun.nio.ch.Util$1) - locked <0x74c52668> (a java.util.Collections$UnmodifiableSet) - locked <0x74c501b0> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80) at external.org.apache.mina.transport.socket.nio.NioProcessor.select(NioProcessor.java:65) at external.org.apache.mina.common.AbstractPollingIoProcessor$Worker.run(AbstractPollingIoProcessor.java:708) at external.org.apache.mina.util.NamePreservingRunnable.run(NamePreservingRunnable.java:51) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662)
每个小时的几个时间提取 Thread Dump
,然后检查线程的状态来确定问题。
示例2:当进程的性能异常的慢
多次获得 thread dumps
后,找出 BLOCKED
状态的线程列表。
" DB-Processor-13" daemon prio=5 tid=0x003edf98 nid=0xca waiting for monitor entry [0x000000000825f000] java.lang.Thread.State: BLOCKED (on object monitor) at beans.ConnectionPool.getConnection(ConnectionPool.java:102) - waiting to lock <0xe0375410> (a beans.ConnectionPool) at beans.cus.ServiceCnt.getTodayCount(ServiceCnt.java:111) at beans.cus.ServiceCnt.insertCount(ServiceCnt.java:43) "DB-Processor-14" daemon prio=5 tid=0x003edf98 nid=0xca waiting for monitor entry [0x000000000825f020] java.lang.Thread.State: BLOCKED (on object monitor) at beans.ConnectionPool.getConnection(ConnectionPool.java:102) - waiting to lock <0xe0375410> (a beans.ConnectionPool) at beans.cus.ServiceCnt.getTodayCount(ServiceCnt.java:111) at beans.cus.ServiceCnt.insertCount(ServiceCnt.java:43) " DB-Processor-3" daemon prio=5 tid=0x00928248 nid=0x8b waiting for monitor entry [0x000000000825d080] java.lang.Thread.State: RUNNABLE at oracle.jdbc.driver.OracleConnection.isClosed(OracleConnection.java:570) - waiting to lock <0xe03ba2e0> (a oracle.jdbc.driver.OracleConnection) at beans.ConnectionPool.getConnection(ConnectionPool.java:112) - locked <0xe0386580> (a java.util.Vector) - locked <0xe0375410> (a beans.ConnectionPool) at beans.cus.Cue_1700c.GetNationList(Cue_1700c.java:66) at org.apache.jsp.cue_1700c_jsp._jspService(cue_1700c_jsp.java:120)
在多次获取 thread dumps
后,取得 BLOCKED
状态的线程列表。
如果线程是 BLOCKED
的,提取线程尝试获取的相关联的锁。
通过 thread dumps
,你能确定线程状态停止在 BLOCKED
,因为锁 <0xe0375410>
不能被获取到,这个问题可以通过分析当前夯住的线程的 stack trace
来解决。
使用 DBMS
的时候,为什么以上的范例经常出现再应用程序中,这有两个原因。第一个原因是配置不当。尽管事实是该线程仍然在工作,它们不能展示它们最好的性能,因为 DBCP
的配置文件没有配置正确。如果你多次提取 thread dumps
并且对比它们,你将经常看到被阻塞的线程之前处于不同的状态。
第二个原因是不正常的连接。当与 DBMS
的连接保持在不正常的状态,线程将等待直到超时。在这个例子中,通过多次提取 thread dumps
并对比它们,你会发现与 DBMS 相关的线程仍然在阻塞状态。通过适当改变一些值,比如超时时间,你可以缩短问题发生的时间。
为简单的 Thread Dump 命名线程编码
当使用 java.lang.Thread
对象创建线程的时候,线程被命名为 Thread-(Number) 。当使用 java.util.concurrent.DefaultThreadFactory
对象创建线程的时候,线程被命名为 named pool-(Number)-thread-(Number)。当为应用程序分析成百上千的线程的时候,如果线程依然用它们默认的名字,分析它们将变得非常困难,因为这是非常难以辨别这些线程来分析的。
因此,你被建议开发一个命名线程的规则当一个新线程被创建的时候。
当你使用 java.lang.Thread
创建线程,你可以通过创建参数给该线程定义个约定俗成的名字。
public Thread(Runnable target, String name); public Thread(ThreadGroup group, String name); public Thread(ThreadGroup group, Runnable target, String name); public Thread(ThreadGroup group, Runnable target, String name, long stackSize);
当你使用 java.util.concurrent.ThreadFactory
创建线程的时候,你可以通过生成你自己的线程工厂来命名它,如果你不需要特别的功能性,你可以使用 MyThreadFactory
作为以下描述:
import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ThreadFactory; import java.util.concurrent.atomic.AtomicInteger; public class MyThreadFactory implements ThreadFactory { private static final ConcurrentHashMap<String, AtomicInteger> POOL_NUMBER = new ConcurrentHashMap<String, AtomicInteger>(); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; public MyThreadFactory(String threadPoolName) { if (threadPoolName == null) { throw new NullPointerException("threadPoolName"); } POOL_NUMBER.putIfAbsent(threadPoolName, new AtomicInteger()); SecurityManager securityManager = System.getSecurityManager(); group = (securityManager != null) ? securityManager.getThreadGroup() : Thread.currentThread().getThreadGroup(); AtomicInteger poolCount = POOL_NUMBER.get(threadPoolName); if (poolCount == null) { namePrefix = threadPoolName + " pool-00-thread-"; } else { namePrefix = threadPoolName + " pool-" + poolCount.getAndIncrement() + "-thread-"; } } public Thread newThread(Runnable runnable) { Thread thread = new Thread(group, runnable, namePrefix + threadNumber.getAndIncrement(), 0); if (thread.isDaemon()) { thread.setDaemon(false); } if (thread.getPriority() != Thread.NORM_PRIORITY) { thread.setPriority(Thread.NORM_PRIORITY); } return thread; } }
使用 MBean 获取更多的细节信息
你可以使用 MBean 来获取 ThreadInfo
对象。你也可以获取更加多通过 thread dumps 不能获取的信息。通过使用 ThreadInfo
。
ThreadMXBean mxBean = ManagementFactory.getThreadMXBean(); long[] threadIds = mxBean.getAllThreadIds(); ThreadInfo[] threadInfos = mxBean.getThreadInfo(threadIds); for (ThreadInfo threadInfo : threadInfos) { System.out.println( threadInfo.getThreadName()); System.out.println( threadInfo.getBlockedCount()); System.out.println( threadInfo.getBlockedTime()); System.out.println( threadInfo.getWaitedCount()); System.out.println( threadInfo.getWaitedTime()); }
你可以使用方法 ThreadInfo
来提取阻塞线程或者是等待线程花费的时间。并利用这一点,你也可以得到那些处于非活动状态的时间异常长的线程列表。
总结
在本文中,我关注的是为开发人员提供了大量的多线程编程经验,本素材可能是常识。对于经验较少的开发人员来说,我觉得我直接跳过 thread dumps
,不提供足够的关于 thread activities
的背景知识。这是由于我的知识缺乏,所以我不能很清晰的简洁明了的解释 thread activities
。我衷心的希望本文能给很多开发人员提供帮助。
相关推荐
内容概要:本文主要探讨了SNS单模无芯光纤的仿真分析及其在通信和传感领域的应用潜力。首先介绍了模间干涉仿真的重要性,利用Rsoft beamprop模块模拟不同模式光在光纤中的传播情况,进而分析光纤的传输性能和模式特性。接着讨论了光纤传输特性的仿真,包括损耗、色散和模式耦合等参数的评估。随后,文章分析了光纤的结构特性,如折射率分布、包层和纤芯直径对性能的影响,并探讨了镀膜技术对光纤性能的提升作用。最后,进行了变形仿真分析,研究外部因素导致的光纤变形对其性能的影响。通过这些分析,为优化光纤设计提供了理论依据。 适合人群:从事光纤通信、光学工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解SNS单模无芯光纤特性和优化设计的研究项目,旨在提高光纤性能并拓展其应用场景。 其他说明:本文不仅提供了详细的仿真方法和技术细节,还对未来的发展方向进行了展望,强调了SNS单模无芯光纤在未来通信和传感领域的重要地位。
发那科USM通讯程序socket-set
嵌入式八股文面试题库资料知识宝典-WIFI.zip
源码与image
内容概要:本文详细探讨了物流行业中路径规划与车辆路径优化(VRP)的问题,特别是针对冷链物流、带时间窗的车辆路径优化(VRPTW)、考虑充电桩的车辆路径优化(EVRP)以及多配送中心情况下的路径优化。文中不仅介绍了遗传算法、蚁群算法、粒子群算法等多种优化算法的理论背景,还提供了完整的MATLAB代码及注释,帮助读者理解这些算法的具体实现。此外,文章还讨论了如何通过MATLAB处理大量数据和复杂计算,以得出最优的路径方案。 适合人群:从事物流行业的研究人员和技术人员,尤其是对路径优化感兴趣的开发者和工程师。 使用场景及目标:适用于需要优化车辆路径的企业和个人,旨在提高配送效率、降低成本、确保按时交付货物。通过学习本文提供的算法和代码,读者可以在实际工作中应用这些优化方法,提升物流系统的性能。 其他说明:为了更好地理解和应用这些算法,建议读者参考相关文献和教程进行深入学习。同时,实际应用中还需根据具体情况进行参数调整和优化。
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip
内容概要:本文介绍了基于灰狼优化算法(GWO)的城市路径规划优化问题(TSP),并通过Matlab实现了该算法。文章详细解释了GWO算法的工作原理,包括寻找猎物、围捕猎物和攻击猎物三个阶段,并提供了具体的代码示例。通过不断迭代优化路径,最终得到最优的城市路径规划方案。与传统TSP求解方法相比,GWO算法具有更好的全局搜索能力和较快的收敛速度,适用于复杂的城市环境。尽管如此,算法在面对大量城市节点时仍面临运算时间和参数设置的挑战。 适合人群:对路径规划、优化算法感兴趣的科研人员、学生以及从事交通规划的专业人士。 使用场景及目标:①研究和开发高效的路径规划算法;②优化城市交通系统,提升出行效率;③探索人工智能在交通领域的应用。 其他说明:文中提到的代码可以作为学习和研究的基础,但实际应用中需要根据具体情况调整算法参数和优化策略。
嵌入式八股文面试题库资料知识宝典-Intel3.zip
嵌入式八股文面试题库资料知识宝典-2019京东C++.zip
嵌入式八股文面试题库资料知识宝典-北京光桥科技有限公司面试题.zip
内容概要:本文详细探讨了十字形声子晶体的能带结构和传输特性。首先介绍了声子晶体作为新型周期性结构在物理学和工程学中的重要地位,特别是十字形声子晶体的独特结构特点。接着从散射体的形状、大小、排列周期等方面分析了其对能带结构的影响,并通过理论计算和仿真获得了能带图。随后讨论了十字形声子晶体的传输特性,即它对声波的调控能力,包括传播速度、模式和能量分布的变化。最后通过大量实验和仿真验证了理论分析的正确性,并得出结论指出散射体的材料、形状和排列方式对其性能有重大影响。 适合人群:从事物理学、材料科学、声学等相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解声子晶体尤其是十字形声子晶体能带与传输特性的科研工作者,旨在为相关领域的创新和发展提供理论支持和技术指导。 其他说明:文中还对未来的研究方向进行了展望,强调了声子晶体在未来多个领域的潜在应用价值。
嵌入式系统开发_USB主机控制器_Arduino兼容开源硬件_基于Mega32U4和MAX3421E芯片的USB设备扩展开发板_支持多种USB外设接入与控制的通用型嵌入式开发平台_
e2b8a-main.zip
少儿编程scratch项目源代码文件案例素材-火柴人跑酷(2).zip
内容概要:本文详细介绍了HarmonyOS分布式远程启动子系统,该系统作为HarmonyOS的重要组成部分,旨在打破设备间的界限,实现跨设备无缝启动、智能设备选择和数据同步与连续性等功能。通过分布式软总线和分布式数据管理技术,它能够快速、稳定地实现设备间的通信和数据同步,为用户提供便捷的操作体验。文章还探讨了该系统在智能家居、智能办公和教育等领域的应用场景,展示了其在提升效率和用户体验方面的巨大潜力。最后,文章展望了该系统的未来发展,强调其在技术优化和应用场景拓展上的无限可能性。 适合人群:对HarmonyOS及其分布式技术感兴趣的用户、开发者和行业从业者。 使用场景及目标:①理解HarmonyOS分布式远程启动子系统的工作原理和技术细节;②探索该系统在智能家居、智能办公和教育等领域的具体应用场景;③了解该系统为开发者提供的开发优势和实践要点。 其他说明:本文不仅介绍了HarmonyOS分布式远程启动子系统的核心技术和应用场景,还展望了其未来的发展方向。通过阅读本文,用户可以全面了解该系统如何通过技术创新提升设备间的协同能力和用户体验,为智能生活带来新的变革。
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_1.zip
少儿编程scratch项目源代码文件案例素材-激光反弹.zip
内容概要:本文详细介绍了COMSOL相控阵检测技术在有机玻璃斜楔上放置16阵元进行工件内部缺陷检测的方法。首先阐述了相控阵检测技术的基本原理,特别是通过控制各阵元的激发时间和相位来实现声波的聚焦和扫描。接着,重点解析了横孔缺陷的反射接收波,解释了波的折射现象及其背后的物理原因。最后,通过实例展示了COMSOL模拟声波传播过程的成功应用,验证了该技术的有效性和准确性。 适合人群:从事固体力学、无损检测领域的研究人员和技术人员,尤其是对相控阵检测技术和COMSOL仿真感兴趣的读者。 使用场景及目标:适用于需要精确检测工件内部缺陷的研究和工业应用场景,旨在提高检测精度和效率,确保产品质量和安全。 其他说明:文中提到的声速匹配现象有助于理解波在不同介质间的传播特性,这对优化检测参数设置有重要意义。
少儿编程scratch项目源代码文件案例素材-极速奔跑者.zip
嵌入式八股文面试题库资料知识宝典-微软_interview.zip