注: 该文章的原文是由 Tae Jin Gu 编写,原文地址为 How to Analyze Java Thread Dumps
当有障碍,或者是一个基于 JAVA 的 WEB 应用运行的比预期慢的时候,我们需要使用 thread dumps
。如果对于你来说,thread dumps
是非常复杂的,这篇文章或许能对你有所帮助。在这里我将解释在 JAVA 中什么是 threads
,他们的类型,怎么被创建的,怎样管理它们,你怎样从正在运行的应用中 dump threads
,最后你可以怎样分析它以及确定瓶颈或者是阻塞线程。本文来自于 JAVA 应用程序长期调试经验的结果。
Java and Thread
一个 web 服务器使用几十到几百个线程来处理大量并发用户,如果一个或多个线程使用相同的资源,线程之间的竞争就不可避免了,并且有时候可能会发生死锁。
Thread contention 是一个线程等待锁的一个状态,这个锁被另外一个线程持有,等待被释放,不同的线程频繁访问 WEB 应用的共享资源。例如,记录一条日志,线程尝试记录日志之前必须先获取锁来访问共享资源。
死锁是线程竞争的一个特殊状态,一个或是多个线程在等待其他线程完成它们的任务为了完成它们自己的任务。
线程竞争会引起各种不同的问题,为了分析这些这些问题,你需要使用 dump threads,dump threads
能给你提供每个线程的精确状态信息。
JAVA 线程的背景资料
线程同步
一个线程可以与其他线程在同一时间内被处理。为了确保一致性,当多个线程试图使用共享资源的时候,通过使用 hread synchronization
在同一时间内,应该只有一个线程能访问共享资源
JAVA 中的线程同步可以使用监视器,每个 JAVA 对象都有一个单独的监视器,这个监视器仅仅只能被一个线程拥有,对于拥有一个由不同的线程所拥有的监视器的线程,确实需要在队列中等待,以便其他线程释放它的监视器。
线程状态
为了分析一个 thread dump
文件,你需要知道线程状态。线程情况在 java.lang.Thread.State
中阐明了。
图1:线程状态
- NEW:线程刚被创建,但是还没有被处理。
- RUNNABLE:线程占用了 CPU 并且处理了一个任务。(或是是在等待状态由于操作系统的资源分配)
- BLOCKED:该线程正在等待另外的不同的线程释放锁,以便获取监视器锁
- WAITING:该线程正在等待,通过使用了 wait, join 或者是 park 方法
- TIMED_WAITING:该线程正在等待,通过使用了 sleep, wait, join 或者是 park 方法。(这个与
WAITING
不同是通过方法参数指定了最大等待时间,WAITING
可以通过时间或者是外部的变化解除)
线程类型
JAVA 的线程类型分为以下两种:
- daemon threads;
- 非 daemon threads。
Daemon threads 将停止工作当没有其他任何非 Daemon threads
时。即使你不创建任何线程,JAVA 应用也将默认创建几个线程。他们大部分是 daemon threads
。主要用于任务处理比如内存回收或者是 JMX
。
一个运行 static void main(String[] args)
方法的线程被作为非 daemon threads
线程创建,并且当该线程停止工作的时候,所有任何其他 daemon threads
也将停止工作。(这个运行在 main 方法中的线程被称为 VM thread in HotSpot VM)
获取一个 Thread Dump
我们将介绍三种最常用的方法,记住,有非常多的其他方法可以获取thread dump
,一个 thread dump
仅仅只能在测量的时候显示线程状态。因此为了看得线程状态的变化,建议每隔5秒提取5到10次的记录。
使用 jstack 获取 Thread Dump
在 JDK1.6 或者是更高的版本中,通过使用 jstack, 在 MS Windows 平台上可能可以获取到 Thread Dump
。
通过使用 jps
检查当前正在运行的JAVA进程的 PID。
[user@linux ~]$ jps -v 25780 RemoteTestRunner -Dfile.encoding=UTF-8 25590 sub.rmi.registry.RegistryImpl 2999 -Dapplication.home=/home1/user/java/jdk.1.6.0_24 -Xms8m 26300 sun.tools.jps.Jps -mlvV -Dapplication.home=/home1/user/java/jdk.1.6.0_24 -Xms8m
使用明确的 PID 作为 jstack
的参数来获取 thread dumps
。
[user@linux ~]$ jstack -f 5824
使用 jVisualVM 生成 Thread Dump
通过使用一个程序 jVisualVM
来生成 Thread Dump
。
如上图在左侧的任务表示当前正在运行的进程列表,点击你想要信息的那个线程,然后选择 thread tab
页来检查实时的线程信息。点击右边的 Thread Dump
按钮来获取 thread dump
文件。
在 Linux 控制台生成
通过使用 ps -ef
命令来获取当前正在运行的 JAVA 应用程序的进程 ID。
[user@linux ~]$ ps - ef | grep java user 2477 1 0 Dec23 ? 00:10:45 ... user 25780 25361 0 15:02 pts/3 00:00:02 ./jstatd -J -Djava.security.policy=jstatd.all.policy -p 2999 user 26335 25361 0 15:49 pts/3 00:00:00 grep java
使用精确的 pid 作为 kill –SIGQUIT(3)
的参数来获取 thread dump
。
Thread Dump 文件的 线程信息
"pool-1-thread-13" prio=6 tid=0x000000000729a000 nid=0x2fb4 runnable [0x0000000007f0f000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:264) at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:306) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:158) - locked <0x0000000780b7e688> (a java.io.InputStreamReader) at java.io.InputStreamReader.read(InputStreamReader.java:167) at java.io.BufferedReader.fill(BufferedReader.java:136) at java.io.BufferedReader.readLine(BufferedReader.java:299) - locked <0x0000000780b7e688> (a java.io.InputStreamReader) at java.io.BufferedReader.readLine(BufferedReader.java:362)
- 线程名字:当使用
Java.lang.Thread
类生成一个线程的时候,该线程将被命名为Thread-(Number)
。但是当使用java.util.concurrent.ThreadFactory
类的时候,它将被命名为pool-(number)-thread-(number)
。 - 优先级:代表该线程的优先级
- 线程 ID:代表该线程的唯一 ID,(一些有用的信息,比如该线程的 CPU 使用率或者是内存使用率,都能通过该线程 ID 获取到)。
- 线程状态:代表该线程当前的状态
- 线程调用栈:代表该线程的调用栈信息
Thread Dump Patterns by Type When Unable to Obtain a Lock (BLOCKED)
这个应用程序的整体性能下降是因为一个线程占用了锁阻止了其他线程获得锁,在下面的示例中,BLOCKED_TEST pool-1-thread-1
线程占用了 <0x0000000780a000b0>
锁,然而 BLOCKED_TEST pool-1-thread-2
和 BLOCKED_TEST pool-1-thread-3 threads
正在等待获取锁。
"BLOCKED_TEST pool-1-thread-1" prio=6 tid=0x0000000006904800 nid=0x28f4 runnable [0x000000000785f000] java.lang.Thread.State: RUNNABLE at java.io.FileOutputStream.writeBytes(Native Method) at java.io.FileOutputStream.write(FileOutputStream.java:282) at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:65) at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:123) - locked <0x0000000780a31778> (a java.io.BufferedOutputStream) at java.io.PrintStream.write(PrintStream.java:432) - locked <0x0000000780a04118> (a java.io.PrintStream) at sun.nio.cs.StreamEncoder.writeBytes(StreamEncoder.java:202) at sun.nio.cs.StreamEncoder.implFlushBuffer(StreamEncoder.java:272) at sun.nio.cs.StreamEncoder.flushBuffer(StreamEncoder.java:85) - locked <0x0000000780a040c0> (a java.io.OutputStreamWriter) at java.io.OutputStreamWriter.flushBuffer(OutputStreamWriter.java:168) at java.io.PrintStream.newLine(PrintStream.java:496) - locked <0x0000000780a04118> (a java.io.PrintStream) at java.io.PrintStream.println(PrintStream.java:687) - locked <0x0000000780a04118> (a java.io.PrintStream) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:44) - locked <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState$1.run(ThreadBlockedState.java:7) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780a31758> (a java.util.concurrent.locks.ReentrantLock$NonfairSync) "BLOCKED_TEST pool-1-thread-2" prio=6 tid=0x0000000007673800 nid=0x260c waiting for monitor entry [0x0000000008abf000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:43) - waiting to lock <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState\$2.run(ThreadBlockedState.java:26) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor\$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780b0c6a0> (a java.util.concurrent.locks.ReentrantLock$NonfairSync) "BLOCKED_TEST pool-1-thread-3" prio=6 tid=0x00000000074f5800 nid=0x1994 waiting for monitor entry [0x0000000008bbf000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadBlockedState.monitorLock(ThreadBlockedState.java:42) - waiting to lock <0x0000000780a000b0> (a com.nbp.theplatform.threaddump.ThreadBlockedState) at com.nbp.theplatform.threaddump.ThreadBlockedState\$3.run(ThreadBlockedState.java:34) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) Locked ownable synchronizers: - <0x0000000780b0e1b8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
当在死锁状态
这是当线程 A 需要获取线程 B 的锁来继续它的任务,然而线程 B 也需要获取线程 A 的锁来继续它的任务的时候发生的。在thread dump
中,你能看到 DEADLOCK_TEST-1
线程持有 0x00000007d58f5e48
锁,并且尝试获取 0x00000007d58f5e60
锁。你也能看到 DEADLOCK_TEST-2
线程持有 0x00000007d58f5e60
,并且尝试获取 0x00000007d58f5e78
,同时 DEADLOCK_TEST-3
线程持有 0x00000007d58f5e78
,并且在尝试获取 0x00000007d58f5e48
锁,如你所见,每个线程都在等待获取另外一个线程的锁,这状态将不会被改变直到一个线程丢弃了它的锁。
"DEADLOCK_TEST-1" daemon prio=6 tid=0x000000000690f800 nid=0x1820 waiting for monitor entry [0x000000000805f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e60> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e48> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None "DEADLOCK_TEST-2" daemon prio=6 tid=0x0000000006858800 nid=0x17b8 waiting for monitor entry [0x000000000815f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e78> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e60> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None "DEADLOCK_TEST-3" daemon prio=6 tid=0x0000000006859000 nid=0x25dc waiting for monitor entry [0x000000000825f000] java.lang.Thread.State: BLOCKED (on object monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.goMonitorDeadlock(ThreadDeadLockState.java:197) - waiting to lock <0x00000007d58f5e48> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.monitorOurLock(ThreadDeadLockState.java:182) - locked <0x00000007d58f5e78> (a com.nbp.theplatform.threaddump.ThreadDeadLockState$Monitor) at com.nbp.theplatform.threaddump.ThreadDeadLockState$DeadlockThread.run(ThreadDeadLockState.java:135) Locked ownable synchronizers: - None
当持续等待从远处服务器接收消息
该线程是正常的,因为它的状态为 RUNNABLE,尽管如此,当你按照时间顺序排列 Thread Dump
,你会发现 socketReadThread
线程正在无限等待读取 socket。
"socketReadThread" prio=6 tid=0x0000000006a0d800 nid=0x1b40 runnable [0x00000000089ef000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:264) at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:306) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:158) - locked <0x00000007d78a2230> (a java.io.InputStreamReader) at sun.nio.cs.StreamDecoder.read0(StreamDecoder.java:107) - locked <0x00000007d78a2230> (a java.io.InputStreamReader) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:93) at java.io.InputStreamReader.read(InputStreamReader.java:151) at com.nbp.theplatform.threaddump.ThreadSocketReadState$1.run(ThreadSocketReadState.java:27) at java.lang.Thread.run(Thread.java:662)
当 Waiting 时
线程保持在 Waiting
状态,在 Thread Dump
中,IoWaitThread
线程保持等待状态来从 LinkedBlockingQueue
接收消息。如果 LinkedBlockingQueue
一直没有消息,该线程的状态将不会改变。
"IoWaitThread" prio=6 tid=0x0000000007334800 nid=0x2b3c waiting on condition [0x000000000893f000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x00000007d5c45850> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1987) at java.util.concurrent.LinkedBlockingDeque.takeFirst(LinkedBlockingDeque.java:440) at java.util.concurrent.LinkedBlockingDeque.take(LinkedBlockingDeque.java:629) at com.nbp.theplatform.threaddump.ThreadIoWaitState$IoWaitHandler2.run(ThreadIoWaitState.java:89) at java.lang.Thread.run(Thread.java:662)
当线程的资源不能正常的被组织
不必要的线程会堆积起来,当线程的资源不能被正常的组织的话,如果这个发送了,建议监控线程组织过程或检查线程终止的条件。
使用 Thread Dump 怎样解决问题
示例1:当 CPU 利用率高的异常
- 提取获取最高 CPU 使用率的线程。
[user@linux ~]$ ps -mo pid.lwp.stime.time.cpu -C java PID LWP STIME TIME %CPU 10029 - Dec07 00:02:02 99.5 - 10039 Dec07 00:00:00 0.1 - 10040 Dec07 00:00:00 95.5
从这个应用中,发现使用 CPU 最高的线程。
获取使用 CPU 最多的轻量级进程(LWP),把它的唯一标示码 (10039) 转换成十六进制 (0x2737)。
- 然后获取进程的
Thread Dump
,检查进程的动作。
通过 PID 10029 来提取应用程序的 Thread Dump
,然后通过一个 nid 0x2737 来找到这个线程。
"NioProcessor-2" prio=10 tid=0x0a8d2800 nid=0x2737 runnable [0x49aa5000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:210) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:65) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69) - locked <0x74c52678> (a sun.nio.ch.Util$1) - locked <0x74c52668> (a java.util.Collections$UnmodifiableSet) - locked <0x74c501b0> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80) at external.org.apache.mina.transport.socket.nio.NioProcessor.select(NioProcessor.java:65) at external.org.apache.mina.common.AbstractPollingIoProcessor$Worker.run(AbstractPollingIoProcessor.java:708) at external.org.apache.mina.util.NamePreservingRunnable.run(NamePreservingRunnable.java:51) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662)
每个小时的几个时间提取 Thread Dump
,然后检查线程的状态来确定问题。
示例2:当进程的性能异常的慢
多次获得 thread dumps
后,找出 BLOCKED
状态的线程列表。
" DB-Processor-13" daemon prio=5 tid=0x003edf98 nid=0xca waiting for monitor entry [0x000000000825f000] java.lang.Thread.State: BLOCKED (on object monitor) at beans.ConnectionPool.getConnection(ConnectionPool.java:102) - waiting to lock <0xe0375410> (a beans.ConnectionPool) at beans.cus.ServiceCnt.getTodayCount(ServiceCnt.java:111) at beans.cus.ServiceCnt.insertCount(ServiceCnt.java:43) "DB-Processor-14" daemon prio=5 tid=0x003edf98 nid=0xca waiting for monitor entry [0x000000000825f020] java.lang.Thread.State: BLOCKED (on object monitor) at beans.ConnectionPool.getConnection(ConnectionPool.java:102) - waiting to lock <0xe0375410> (a beans.ConnectionPool) at beans.cus.ServiceCnt.getTodayCount(ServiceCnt.java:111) at beans.cus.ServiceCnt.insertCount(ServiceCnt.java:43) " DB-Processor-3" daemon prio=5 tid=0x00928248 nid=0x8b waiting for monitor entry [0x000000000825d080] java.lang.Thread.State: RUNNABLE at oracle.jdbc.driver.OracleConnection.isClosed(OracleConnection.java:570) - waiting to lock <0xe03ba2e0> (a oracle.jdbc.driver.OracleConnection) at beans.ConnectionPool.getConnection(ConnectionPool.java:112) - locked <0xe0386580> (a java.util.Vector) - locked <0xe0375410> (a beans.ConnectionPool) at beans.cus.Cue_1700c.GetNationList(Cue_1700c.java:66) at org.apache.jsp.cue_1700c_jsp._jspService(cue_1700c_jsp.java:120)
在多次获取 thread dumps
后,取得 BLOCKED
状态的线程列表。
如果线程是 BLOCKED
的,提取线程尝试获取的相关联的锁。
通过 thread dumps
,你能确定线程状态停止在 BLOCKED
,因为锁 <0xe0375410>
不能被获取到,这个问题可以通过分析当前夯住的线程的 stack trace
来解决。
使用 DBMS
的时候,为什么以上的范例经常出现再应用程序中,这有两个原因。第一个原因是配置不当。尽管事实是该线程仍然在工作,它们不能展示它们最好的性能,因为 DBCP
的配置文件没有配置正确。如果你多次提取 thread dumps
并且对比它们,你将经常看到被阻塞的线程之前处于不同的状态。
第二个原因是不正常的连接。当与 DBMS
的连接保持在不正常的状态,线程将等待直到超时。在这个例子中,通过多次提取 thread dumps
并对比它们,你会发现与 DBMS 相关的线程仍然在阻塞状态。通过适当改变一些值,比如超时时间,你可以缩短问题发生的时间。
为简单的 Thread Dump 命名线程编码
当使用 java.lang.Thread
对象创建线程的时候,线程被命名为 Thread-(Number) 。当使用 java.util.concurrent.DefaultThreadFactory
对象创建线程的时候,线程被命名为 named pool-(Number)-thread-(Number)。当为应用程序分析成百上千的线程的时候,如果线程依然用它们默认的名字,分析它们将变得非常困难,因为这是非常难以辨别这些线程来分析的。
因此,你被建议开发一个命名线程的规则当一个新线程被创建的时候。
当你使用 java.lang.Thread
创建线程,你可以通过创建参数给该线程定义个约定俗成的名字。
public Thread(Runnable target, String name); public Thread(ThreadGroup group, String name); public Thread(ThreadGroup group, Runnable target, String name); public Thread(ThreadGroup group, Runnable target, String name, long stackSize);
当你使用 java.util.concurrent.ThreadFactory
创建线程的时候,你可以通过生成你自己的线程工厂来命名它,如果你不需要特别的功能性,你可以使用 MyThreadFactory
作为以下描述:
import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ThreadFactory; import java.util.concurrent.atomic.AtomicInteger; public class MyThreadFactory implements ThreadFactory { private static final ConcurrentHashMap<String, AtomicInteger> POOL_NUMBER = new ConcurrentHashMap<String, AtomicInteger>(); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; public MyThreadFactory(String threadPoolName) { if (threadPoolName == null) { throw new NullPointerException("threadPoolName"); } POOL_NUMBER.putIfAbsent(threadPoolName, new AtomicInteger()); SecurityManager securityManager = System.getSecurityManager(); group = (securityManager != null) ? securityManager.getThreadGroup() : Thread.currentThread().getThreadGroup(); AtomicInteger poolCount = POOL_NUMBER.get(threadPoolName); if (poolCount == null) { namePrefix = threadPoolName + " pool-00-thread-"; } else { namePrefix = threadPoolName + " pool-" + poolCount.getAndIncrement() + "-thread-"; } } public Thread newThread(Runnable runnable) { Thread thread = new Thread(group, runnable, namePrefix + threadNumber.getAndIncrement(), 0); if (thread.isDaemon()) { thread.setDaemon(false); } if (thread.getPriority() != Thread.NORM_PRIORITY) { thread.setPriority(Thread.NORM_PRIORITY); } return thread; } }
使用 MBean 获取更多的细节信息
你可以使用 MBean 来获取 ThreadInfo
对象。你也可以获取更加多通过 thread dumps 不能获取的信息。通过使用 ThreadInfo
。
ThreadMXBean mxBean = ManagementFactory.getThreadMXBean(); long[] threadIds = mxBean.getAllThreadIds(); ThreadInfo[] threadInfos = mxBean.getThreadInfo(threadIds); for (ThreadInfo threadInfo : threadInfos) { System.out.println( threadInfo.getThreadName()); System.out.println( threadInfo.getBlockedCount()); System.out.println( threadInfo.getBlockedTime()); System.out.println( threadInfo.getWaitedCount()); System.out.println( threadInfo.getWaitedTime()); }
你可以使用方法 ThreadInfo
来提取阻塞线程或者是等待线程花费的时间。并利用这一点,你也可以得到那些处于非活动状态的时间异常长的线程列表。
总结
在本文中,我关注的是为开发人员提供了大量的多线程编程经验,本素材可能是常识。对于经验较少的开发人员来说,我觉得我直接跳过 thread dumps
,不提供足够的关于 thread activities
的背景知识。这是由于我的知识缺乏,所以我不能很清晰的简洁明了的解释 thread activities
。我衷心的希望本文能给很多开发人员提供帮助。
相关推荐
在《Analyzing Java Thread Dumps.pdf》和《Java Thread Dumps 分析.pdf》这两份文档中,你可以深入理解以下几个关键知识点: 1. **线程状态**:Java线程有六种基本状态,包括新建(New)、可运行(Runnable)、...
### JStack和Java Thread Dumps分析 #### 一、引言 在Java应用程序开发与维护过程中,时常会遇到性能瓶颈或死锁等问题。这些问题往往难以定位,尤其当系统处于高负载下时,更是如此。此时,`JStack`工具便显得尤为...
Thread dumps(线程转储)能帮助我们判断 CPU 峰值、死锁、内存异常、应用反应迟钝、响应时间变长和...在这篇文章当中,总结了7中抓取 Java Thread Dumps 文件的方式,分享给大家,希望对大家学习Java能够有所帮助。
当Java应用程序出现性能问题、死锁或者线程阻塞等情况时,Thread Dump分析就显得尤为重要。以下是对如何进行Java故障排查,特别是利用Thread Dump进行问题定位的详细说明: 1. **获取Thread Dump** - 使用JDK自带...
"Dumps-of-java.zip_DUMPS" 文件似乎包含了一些与Java相关的备考资料,可能是为了帮助用户准备SCJP(Sun Certified Java Programmer)考试。SCJP是Oracle认证的一项权威Java编程能力测试,旨在验证开发者对Java SE...
Java性能分析是优化Java应用程序的关键环节,而IBM Thread and Monitor Dump Analyzer是一款强大的工具,专为了解决Java应用程序中的性能问题,特别是线程和监视器(锁)相关的瓶颈。这款工具能够帮助开发者深入分析...
IBM提供的分析javacore和dump的内存分析工具,非常好用。
性能分析Dump工具,供大家使用. 下载好Jca.jar。将该jar包放到jdk/bin目录下。 输入下面命令,打开JCA分析工具 …/bin>java –jar jca433.jar 弹出工具页面,File—>Open Thread dumps,找到文件
TDA用于分析查看java jstack的thread dump,2020年9月发布的版本 fixing usage with JDK 11 and also providing plugin for VisualVM 2.0 Compiled using JDK 1.8 so Source Level now is 1.8 fixed #20: updated ...
jcmd <PID> Thread.print-线程转储 jcmd 帮助-可用命令列表 jmap -histo-直方图 jmap -dump:活动,文件= <PATH> <PID>-堆转储 ps -eLf-具有其线程的进程列表 kill -3 <PID>-将线程转储到Java进程标准输出 jstack ...
3. **线程转储(Thread Dumps)**:获取线程快照,便于分析线程挂起或其他异常情况。 #### 六、锁监控 此外,JProfiler还支持监控线程间的锁竞争情况,包括: 1. **当前锁定图(Current Locking Graph)**:展示...