(转)
目前网上关于memcached的分析主要是内存管理部分,下面对memcached的线程模型做下简单分析
有不对的地方还请大家指正,对memcahced和libevent不熟悉的请先google之
先看下memcahced启动时线程处理的流程
memcached的多线程主要是通过实例化多个libevent实现的,分别是一个主线程和n个workers线程
无论是主线程还是workers线程全部通过libevent管理网络事件,实际上每个线程都是一个单独的libevent实例
主线程负责监听客户端的建立连接请求,以及accept 连接
workers线程负责处理已经建立好的连接的读写等事件
先看一下大致的图示:
首先看下主要的数据结构(thread.c):
- /* An item in the connection queue. */
- typedef struct conn_queue_item CQ_ITEM;
- struct conn_queue_item {
- int sfd;
- int init_state;
- int event_flags;
- int read_buffer_size;
- int is_udp;
- CQ_ITEM *next;
- };
CQ_ITEM 实际上是主线程accept后返回的已建立连接的fd的封装
- /* A connection queue. */
- typedef struct conn_queue CQ;
- struct conn_queue {
- CQ_ITEM *head;
- CQ_ITEM *tail;
- pthread_mutex_t lock;
- pthread_cond_t cond;
- };
CQ是一个管理CQ_ITEM的单向链表
- typedef struct {
- pthread_t thread_id; /* unique ID of this thread */
- struct event_base *base; /* libevent handle this thread uses */
- struct event notify_event; /* listen event for notify pipe */
- int notify_receive_fd; /* receiving end of notify pipe */
- int notify_send_fd; /* sending end of notify pipe */
- CQ new_conn_queue; /* queue of new connections to handle */
- } LIBEVENT_THREAD;
这是memcached里的线程结构的封装,可以看到每个线程都包含一个CQ队列,一条通知管道pipe
和一个libevent的实例event_base
另外一个重要的最重要的结构是对每个网络连接的封装conn
- typedef struct{
- int sfd;
- int state;
- struct event event;
- short which;
- char *rbuf;
- ... //这里省去了很多状态标志和读写buf信息等
- }conn;
memcached主要通过设置/转换连接的不同状态,来处理事件(核心函数是drive_machine)
下面看下线程的初始化流程:
在memcached.c的main函数中,首先对主线程的libevent做了初始化
- /* initialize main thread libevent instance */
- main_base = event_init();
然后初始化所有的workers线程,并启动,启动过程细节在后面会有描述
- /* start up worker threads if MT mode */
- thread_init(settings.num_threads, main_base);
接着主线程调用(这里只分析tcp的情况,目前memcached支持udp方式)
- server_socket(settings.port, 0)
这个方法主要是封装了创建监听socket,绑定地址,设置非阻塞模式并注册监听socket的
libevent 读事件等一系列操作
然后主线程调用
- /* enter the event loop */
- event_base_loop(main_base, 0);
这时主线程启动开始通过libevent来接受外部连接请求,整个启动过程完毕
下面看看thread_init是怎样启动所有workers线程的,看一下thread_init里的核心代码
- void thread_init(int nthreads, struct event_base *main_base) {
- //。。。省略
- threads = malloc(sizeof(LIBEVENT_THREAD) * nthreads);
- if (! threads) {
- perror("Can't allocate thread descriptors");
- exit(1);
- }
- threads[0].base = main_base;
- threads[0].thread_id = pthread_self();
- for (i = 0; i < nthreads; i++) {
- int fds[2];
- if (pipe(fds)) {
- perror("Can't create notify pipe");
- exit(1);
- }
- threads[i].notify_receive_fd = fds[0];
- threads[i].notify_send_fd = fds[1];
- setup_thread(&threads[i]);
- }
- /* Create threads after we've done all the libevent setup. */
- for (i = 1; i < nthreads; i++) {
- create_worker(worker_libevent, &threads[i]);
- }
- }
threads的声明是这样的
static LIBEVENT_THREAD *threads;
thread_init首先malloc线程的空间,然后第一个threads作为主线程,其余都是workers线程
然后为每个线程创建一个pipe,这个pipe被用来作为主线程通知workers线程有新的连接到达
看下setup_thread
- static void setup_thread(LIBEVENT_THREAD *me) {
- if (! me->base) {
- me->base = event_init();
- if (! me->base) {
- fprintf(stderr, "Can't allocate event base\n");
- exit(1);
- }
- }
- /* Listen for notifications from other threads */
- event_set(&me->notify_event, me->notify_receive_fd,
- EV_READ | EV_PERSIST, thread_libevent_process, me);
- event_base_set(me->base, &me->notify_event);
- if (event_add(&me->notify_event, 0) == -1) {
- fprintf(stderr, "Can't monitor libevent notify pipe\n");
- exit(1);
- }
- cq_init(&me->new_conn_queue);
- }
setup_thread主要是创建所有workers线程的libevent实例(主线程的libevent实例在main函数中已经建立)
由于之前 threads[0].base = main_base;所以第一个线程(主线程)在这里不会执行event_init()
然后就是注册所有workers线程的管道读端的libevent的读事件,等待主线程的通知
最后在该方法里将所有的workers的CQ初始化了
create_worker实际上就是真正启动了线程,pthread_create调用worker_libevent方法,该方法执行
event_base_loop启动该线程的libevent
这里我们需要记住每个workers线程目前只在自己线程的管道的读端有数据时可读时触发,并调用
thread_libevent_process方法
看一下这个函数
- static void thread_libevent_process(int fd, short which, void *arg){
- LIBEVENT_THREAD *me = arg;
- CQ_ITEM *item;
- char buf[1];
- if (read(fd, buf, 1) != 1)
- if (settings.verbose > 0)
- fprintf(stderr, "Can't read from libevent pipe\n");
- item = cq_peek(&me->new_conn_queue);
- if (NULL != item) {
- conn *c = conn_new(item->sfd, item->init_state, item->event_flags,
- item->read_buffer_size, item->is_udp, me->base);
- 。。。//省略
- }
- }
函数参数的fd是这个线程的管道读端的描述符
首先将管道的1个字节通知信号读出(这是必须的,在水平触发模式下如果不处理该事件,则会被循环通知,知道事件被处理)
cq_peek是从该线程的CQ队列中取队列头的一个CQ_ITEM,这个CQ_ITEM是被主线程丢到这个队列里的,item->sfd是已经建立的连接
的描述符,通过conn_new函数为该描述符注册libevent的读事件,me->base是代表自己的一个线程结构体,就是说对该描述符的事件
处理交给当前这个workers线程处理,conn_new方法的最重要的内容是:
- conn *conn_new(const int sfd, const int init_state, const int event_flags,
- const int read_buffer_size, const bool is_udp, struct event_base *base) {
- 。。。
- event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
- event_base_set(base, &c->event);
- c->ev_flags = event_flags;
- if (event_add(&c->event, 0) == -1) {
- if (conn_add_to_freelist(c)) {
- conn_free(c);
- }
- perror("event_add");
- return NULL;
- }
- 。。。
- }
可以看到新的连接被注册了一个事件(实际是EV_READ|EV_PERSIST),由当前线程处理(因为这里的event_base是该workers线程自己的)
当该连接有可读数据时会回调event_handler函数,实际上event_handler里主要是调用memcached的核心方法drive_machine
最后看看主线程是如何通知workers线程处理新连接的,主线程的libevent注册的是监听socket描述字的可读事件,就是说
当有建立连接请求时,主线程会处理,回调的函数是也是event_handler(因为实际上主线程也是通过conn_new初始化的监听socket 的libevent可读事件)
最后看看memcached网络事件处理的最核心部分- drive_machine
需要铭记于心的是drive_machine是多线程环境执行的,主线程和workers都会执行drive_machine
- static void drive_machine(conn *c) {
- bool stop = false;
- int sfd, flags = 1;
- socklen_t addrlen;
- struct sockaddr_storage addr;
- int res;
- assert(c != NULL);
- while (!stop) {
- switch(c->state) {
- case conn_listening:
- addrlen = sizeof(addr);
- if ((sfd = accept(c->sfd, (struct sockaddr *)&addr, &addrlen)) == -1) {
- //省去n多错误情况处理
- break;
- }
- if ((flags = fcntl(sfd, F_GETFL, 0)) < 0 ||
- fcntl(sfd, F_SETFL, flags | O_NONBLOCK) < 0) {
- perror("setting O_NONBLOCK");
- close(sfd);
- break;
- }
- dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
- DATA_BUFFER_SIZE, false);
- break;
- case conn_read:
- if (try_read_command(c) != 0) {
- continue;
- }
- ....//省略
- }
- }
首先大家不到被while循环误导(大部分做java的同学都会马上联想到是个周而复始的loop)其实while通常满足一个
case后就会break了,这里用while是考虑到垂直触发方式下,必须读到EWOULDBLOCK错误才可以
言归正传,drive_machine主要是通过当前连接的state来判断该进行何种处理,因为通过libevent注册了读写时间后回调的都是
这个核心函数,所以实际上我们在注册libevent相应事件时,会同时把事件状态写到该conn结构体里,libevent进行回调时会把
该conn结构作为参数传递过来,就是该方法的形参
memcached里连接的状态通过一个enum声明
- enum conn_states {
- conn_listening, /** the socket which listens for connections */
- conn_read, /** reading in a command line */
- conn_write, /** writing out a simple response */
- conn_nread, /** reading in a fixed number of bytes */
- conn_swallow, /** swallowing unnecessary bytes w/o storing */
- conn_closing, /** closing this connection */
- conn_mwrite, /** writing out many items sequentially */
- };
实际对于case conn_listening:这种情况是主线程自己处理的,workers线程永远不会执行此分支
我们看到主线程进行了accept后调用了
dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,DATA_BUFFER_SIZE, false);
这个函数就是通知workers线程的地方,看看
- void dispatch_conn_new(int sfd, int init_state, int event_flags,
- int read_buffer_size, int is_udp) {
- CQ_ITEM *item = cqi_new();
- int thread = (last_thread + 1) % settings.num_threads;
- last_thread = thread;
- item->sfd = sfd;
- item->init_state = init_state;
- item->event_flags = event_flags;
- item->read_buffer_size = read_buffer_size;
- item->is_udp = is_udp;
- cq_push(&threads[thread].new_conn_queue, item);
- MEMCACHED_CONN_DISPATCH(sfd, threads[thread].thread_id);
- if (write(threads[thread].notify_send_fd, "", 1) != 1) {
- perror("Writing to thread notify pipe");
- }
- }
可以清楚的看到,主线程首先创建了一个新的CQ_ITEM,然后通过round robin策略选择了一个thread
并通过cq_push将这个CQ_ITEM放入了该线程的CQ队列里,那么对应的workers线程是怎么知道的呢
就是通过这个
write(threads[thread].notify_send_fd, "", 1)
向该线程管道写了1字节数据,则该线程的libevent立即回调了thread_libevent_process方法(上面已经描述过)
然后那个线程取出item,注册读时间,当该条连接上有数据时,最终也会回调drive_machine方法,也就是
drive_machine方法的 case conn_read:等全部是workers处理的,主线程只处理conn_listening 建立连接这个
这部分代码确实比较多,没法全部贴出来,请大家参考源码,最新版本1.2.6,我省去了很多优化的地方
比如,每个CQ_ITEM被malloc时会一次malloc很多个,以减小碎片的产生等等细节。
相关推荐
**memcached源码分析** `memcached`是一个高性能、分布式内存对象缓存系统,用于在动态系统中减少数据库负载,提升应用性能。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站的响应速度。本文...
通过对Memcached源码的深入分析,我们不仅理解了其核心功能是如何实现的,还掌握了如何更高效地使用它来提升Web应用的性能。了解这些内部细节对于优化应用程序的缓存策略以及故障排查具有重要意义。
**Memcached Java源码分析——Performance分支** Memcached是一款高性能的分布式内存对象缓存系统,广泛应用于Web应用中,用于缓解数据库的负载。在Java环境中,我们常常使用Java客户端库来与Memcached服务器进行...
通过对memcached的线程模型和网络事件处理的分析,我们可以看到其高效的设计:主线程与工作线程的分离,确保了连接建立的快速响应和连接处理的并发性。libevent的事件驱动模型,则使得memcached能够灵活、高效地处理...
**Memcached开源库源码分析** Memcached是一款高性能、分布式内存对象缓存系统,它广泛应用于Web应用中,用于减轻数据库的负载,提高数据访问速度。这个开源库提供了高效的键值存储服务,允许应用程序快速存取临时...
1. **网络通信**:memcached 使用libevent库处理网络事件,这是一个非阻塞I/O模型,能够高效地处理大量的并发连接。libevent通过监听套接字,当有新的连接请求或数据可读时,会触发相应的回调函数,使得memcached...
9. **源码分析**:如果涉及,可能会讲解memcached源码中与性能相关的部分,比如内存管理、数据结构优化等。 10. **最佳实践**:分享在单线程模式下优化memcached性能的方法,可能包括调整配置参数、优化数据存储...
易语言是一种专为中国人设计的编程语言,它以简体中文作为编程语法,降低了编程的门槛,使得更多非计算机专业的人也能进行程序开发。...同时,源码分析也有助于提高编程技能,理解网络编程和分布式系统的设计思想。
5. **线程模型** - `memcached`是一个单线程服务,通过libevent的事件模型来处理并发请求,避免了多线程的上下文切换开销。 6. **性能优化** - **预读取(Prefetching)**:预测客户端可能需要的数据,提前加载到...
- 下载Memcached源码包,配置并编译安装。 具体命令如下: ```bash # 安装libevent wget http://www.monkey.org/~provos/libevent/libevent-2.0.21-stable.tar.gz tar xzf libevent-2.0.21-stable.tar.gz cd ...
Memcached采用线程模型来处理并发请求。主线程负责接收连接并分配给worker线程,worker线程执行实际的请求处理。这种模型简化了并发控制,同时也确保了高并发下的响应效率。 六、分布式哈希算法 客户端的哈希算法...
4. **多线程模型**:Memcached采用多线程模型处理客户端请求,每个线程负责一个连接,这样可以避免线程上下文切换的开销。 5. **TCP/IP通信**:服务器与客户端之间通过TCP/IP协议进行通信,使用自定义的二进制协议...
本文将针对 Memcached 的1.4版本进行源码分析,探讨其核心设计与实现原理。 1. **整体架构** Memcached 采用客户端-服务器模型,服务器端通过 TCP 或 UDP 协议提供服务,客户端则通过网络调用这些服务。在1.4版本...
4. **多线程模型**:memcached采用单进程多线程模型,每个连接分配一个工作线程,提高了并发处理能力。 **二、memcached的使用** 1. **安装部署**:在Linux环境下,可以通过编译源码安装memcached,配置参数包括...
4. **多线程**:服务器端采用多线程模型,每个连接由单独的线程处理,提高了并发性能。 5. **压缩**:虽然内存中的数据是未压缩的,但如果需要,Memcached可以对存储的数据进行压缩,节省内存空间。 **应用场景** ...
**memcached源码下载** `memcached`是一个高性能、分布式内存对象缓存系统,它能够有效地缓解数据库的负载,提高应用程序的性能。该系统最初由Danga Interactive公司的Brad Fitzpatrick开发,现已成为许多大型网站...
2. **源码分析**:帮助开发者理解Memcached的内部实现,包括其数据结构、网络通信机制、线程模型和内存管理等。 3. **Memcached命令行工具**:如`telnet`命令行操作,以及如何进行基本的添加、删除、查看缓存项。 ...