一、 控制hive任务中的map数:
1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);
2. 举例:
a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
b) 假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数
即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
3. 是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,
而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。
而且,同时可执行的map数是受限的。
4. 是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,
如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;
如何合并小文件,减少map数?
假设一个SQL任务:
Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’;
该任务的inputdir /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。
Map总共消耗的计算资源: SLOTS_MILLIS_MAPS= 623,020
我通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=
8000000000000 ;
set mapred.min.split.size.per.node=
8000000000000 ;
set mapred.min.split.size.per.rack=
8000000000000 ;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500
对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
大概解释一下,100000000表示100M, set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;这个参数表示执行前进行小文件合并,
前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),
进行合并,最终生成了74个块。
如何适当的增加map数?
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
Select data_desc,
count(1),
count(distinct id),
sum(case when …),
sum(case when ...),
sum(…)
from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,
这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as
select * from a
distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,
根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量;
二、 控制hive任务的reduce数:
1. Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce
2. 调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 这次有20个reduce
3. 调整reduce个数方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;这次有15个reduce
4. reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
5. 什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;
其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a) 没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
这点非常常见,希望大家尽量改写。
b) 用了Order by
c) 有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;
同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量;
分享到:
相关推荐
Hive建立在Hadoop之上,支持一种类似于SQL的声明式语言——HiveQL,使得用户能够通过简单的SQL语句来执行复杂的Map-Reduce任务。此外,HiveQL还允许用户插入自定义的Map-Reduce脚本,增强了其灵活性。Hive提供了一个...
4. **Bucketing与Sorting**:为了优化Join,Hive允许用户对表进行bucketing和sorting,这样可以确保相同键值的数据被分配到相同的分区,从而减少Join过程中的数据传输量。 5. **Tez和Spark作为执行引擎**:2011年...
4. **并行执行**:Hive通过MapReduce将复杂的查询操作分解为一系列的Map和Reduce任务,利用Hadoop集群的并行计算能力,提高了处理速度。 5. **优化器**:Hive包含一个查询优化器,可以根据数据分布和查询模式自动...
控制 Map 数和 Reduce 数是 Hive 中一个非常重要的优化手段,影响着数据处理的速度和效率。可以通过设置相关参数来控制 Map 数和 Reduce 数,例如:set mapred.max.split.size=256000000 等。 3. 解决数据倾斜 ...
Hive作为一个数据仓库工具,主要用于处理大规模数据集的分析和查询,而join操作是数据仓库中常见且关键的操作之一。在大数据的背景下,如何高效地执行join操作对于性能优化至关重要。在这一讨论中,将详细介绍Hive中...
3. **Hadoop集群调优**:内存设置、Map/Reduce任务数量、磁盘I/O优化等,影响Hive的整体性能。 4. **资源调度**:了解YARN或Kubernetes的资源管理机制,优化任务调度。 5. **并行执行**:合理设置并发度,充分利用...
在大数据处理中,Hive的性能优化是一个关键环节,以提高查询速度和系统资源的利用率。以下是对"Hive调优总结文档-hive tuning ppt"中可能涉及的多个知识点的详细阐述: 1. **元数据优化**: - **分区策略**:根据...
- **减少job数**:设置`hive.merge.mapfiles`和`hive.merge.mapredfiles`为`true`,可以合并小文件,减少map/reduce job的数量。 - **CDH-hive优化参数**:参考Cloudera提供的调优文档,针对不同场景调整参数配置...
在执行过程中,Hive 可以运行在两种模式下:本地模式(用于测试和调试,所有处理都在单机上完成)和分布式模式(实际生产环境,处理分布在整个集群上)。 5. **Executor**:包括 ExecMapper 和 ExecReducer,它们是...
- **设置合适的Map/Reduce任务数**:过多的任务可能导致资源浪费,应根据数据规模适当调整。 - **手动编写SQL解决倾斜**:有时,自定义SQL能够更精确地解决倾斜问题。 - **避免count(distinct)滥用**:在大数据...
Hive 优化方法整理是 Hive 数据处理过程中的重要步骤,涉及到 Hive 的类 SQL 语句本身进行调优、参数调优、Hadoop 的 HDFS 参数调优和 Map/Reduce 调优等多个方面。 Hive 类 SQL 语句优化 1. 尽量尽早地过滤数据...
在处理Hive优化的讨论中,关键因素之一是控制Hive任务中的Map数量,这直接影响作业的效率和资源消耗。在Hive中,一个作业是通过分析input目录下的数据文件来创建一个或多个Map任务的,而影响Map数量的主要因素包括...
4. **合理设置MapReduce任务数量**:根据实际数据量调整map和reduce任务的数量。 5. **处理小文件问题**:合并小文件可以提高系统调度效率。 6. **全局优化**:确保整个流程而非单一任务达到最佳性能状态。 #### 三...
- **查询增强**:支持复杂的查询并实时监控map/reduce的全过程,便于追踪和调试。 - **工作流程**:文档提到了phpHiveAdmin的工作流程图,但未提供具体细节。推测可能涉及用户界面操作、SQL解析、查询执行和结果返回...
Hive中,Map任务的数量由`mapred.min.split.size`和`mapred.max.split.size`这两个参数决定。默认情况下,`mapred.min.split.size`为1B,`mapred.max.split.size`为256MB,这意味着一个Map任务处理的数据量上限为256...
- 在MapReduce作业中控制数据的分布和排序方式。 - **ClusterBy**: - `SELECT * FROM table_name CLUSTER BY column_name;` - **常见全局排序需求**: - 在大型数据集中实现全局排序通常需要额外的步骤,例如通过...
- 开启`hive.exec.parallel`,允许并行执行Map任务或Reduce任务,加速查询处理。 3. **索引使用**: - 虽然Hive目前的索引支持有限,但在某些场景下依然可以利用索引来优化查询。 #### 五、平台优化 1. **硬件...