不是吧 你这个是list和iterate的不同吧
在hibernate中,如果使用了延迟加载(比如常见的load方法),那么除访问主键以外的其它属性时,
就会去访问数据库(假设不考虑hibernate的一级缓存),此时session是不允许被关闭。
5个最常问的几个Hibernate面试问题,不一定你都能回答:
1.实体对象在Hibernate中如何进行状态迁移?
实体对象的状态及转化:
有了上面关于Hibernate缓存的知识,我们再来介绍实体对象的状态就非常容易理解了。
A:自由态对象:(临时状态-transient)
当我们通过Java的new关键字来生成一个实体对象时,这时这个实体对象就处于自由状态,如下:
Customer customer=new Customer(“zx”,27,images);
这时customer对象就处于自由状态,为什么说customer对象处于自由状态呢?这是因为,此时customer只是通过JVM获得了一块内存空间,还并没有通过Session对象的save()方法保存进数据库,因此也就还没有纳入Hibernate的缓存管理中,也就是说customer对象现在还自由的游荡于Hibernate缓存管理之外。所以我们可以看出自由对象最大的特点就是,在数据库中不存在一条与它对应的记录。
B:持久化对象: Persistent(持久态)
持久化对象就是已经被保存进数据库的实体对象,并且这个实体对象现在还处于Hibernate的缓存管理之中。这是对该实体对象的任何修改,都会在清理缓存时同步到数据库中。如下所示:
Customer customer=new Customer(“zx”,27,images);
tx=session.beginTransaction();
session.save(customer);
customer=(Customer)session.load(Customer.class,”1”);
customer.setAge(28);
tx.commit();
这时我们并没有显示调用session.update()方法来保存更新,但是对实体对象的修改还是会同步更新到数据库中,因为此时customer对象通过save方法保存进数据库后,已经是持久化对象了,然后通过load方法再次加载它,它仍然是持久化对象,所以它还处于Hibernate缓存的管理之中,这时当执行tx.commit()方法时,Hibernate会自动清理缓存,并且自动将持久化对象的属性变化同步到到数据库中。
C:游离对象: 游离状态---detached
当一个持久化对象,脱离开Hibernate的缓存管理后,它就处于游离状态,游离对象和自由对象的最大区别在于,游离对象在数据库中可能还存在一条与它对应的记录,只是现在这个游离对象脱离了Hibernate的缓存管理,而自由对象不会在数据库中出现与它对应的数据记录。如下所示:
Customer customer=new Customer(“zx”,27,images);
tx=session.beginTransaction();
session.save(customer);
customer=(Customer)session.load(Customer.class,”1”);
customer.setAge(28);
tx.commit();
session.close();
当session关闭后,customer对象就不处于Hibernate的缓存管理之中了,但是此时在数据库中还存在一条与customer对象对应的数据记录,所以此时customer对象处于游离态。
D:三种对象状态之间的转化:
这三种对象状态,是可以相互转化的,一个自由对象可以通过session.save()方法或者session.saveorupdate()方法变成持久化对象,一个持久化对象可以通过session.flush()或者session.evict()方法,移出Hibernate缓存从而转化为游离对象,一个游离对象可以通过再次加载或者调用session.update()方法,再次恢复为持久化对象,也可以通过调用session.delete()方法变成自由对象,并且删除数据库中对应的数据记录。
示例程序:
Configuration cfg = new Configuration();
SessionFactory sf=cfg.configure().buildSessionFactory();
Customer customer=new Customer(“zx”,27,images);//customer对象处于自由状态
Session session=sf.openSession();
Transaction tx=session.beginTransaction();
session.save(customer);//保存后customer对象处于持久化状态
session.flush();//清空缓存后customer对象处于游离状态
tx.commit();
session.close();
Session session2=sf.openSession();
Transaction tx2=session2.beginTransaction();
session2.update(customer);//通过调用update()方法将游离状态的customer对象,再次转化成持久化状态
session2.delete(customer);//调用delete()方法后,当清空缓存时,会将customer对象移出缓存,同时会在数据库中生成delete事务,来删除customer对象对应的数据记录
tx.commit();
session.close();
2.何谓Hibernate的N+1问题,如何解决?
Hibernate n+1问题
默认情况下,query.iterate查询时候,有可以能出现N+1问题
具体来说当你查询时首先hibernate会发出一天查询所有主键的sql语句,然后跟新缓存。N就是指首先hiberante会到缓存中查询,如果缓存中不存在与之匹配的数据,再会发出sql查询。
主要的原因是:默认情况下iterate利用缓存数据来查询,当缓存为空会多查询一次,把ID加进来。
在Session的缓存中存放的是相互关联的对象图。默认情况下,当Hibernate从数据库中加载Customer对象时,会同时加载所有关联的 Order对象。以Customer和Order类为例,假定ORDERS表的CUSTOMER_ID外键允许为null
以下Session的find()方法用于到数据库中检索所有的Customer对象:
List customerLists=session.find("from Customer as c");
运行以上find()方法时,Hibernate将先查询CUSTOMERS表中所有的记录,然后根据每条记录的ID,到ORDERS表中查询有参照关系的记录,Hibernate将依次执行以下select语句:
select * from CUSTOMERS;
select * from ORDERS where CUSTOMER_ID=1;
select * from ORDERS where CUSTOMER_ID=2;
select * from ORDERS where CUSTOMER_ID=3;
select * from ORDERS where CUSTOMER_ID=4;
通过以上5条select语句,Hibernate最后加载了4个Customer对象和5个Order对象,在内存中形成了一幅关联的对象图.
Hibernate在检索与Customer关联的Order对象时,使用了默认的立即检索策略。这种检索策略存在两大不足:
(1) select语句的数目太多,需要频繁的访问数据库,会影响检索性能。如果需要查询n个Customer对象,那么必须执行n+1次select查询语句。这就是经典的n+1次select查询问题。这种检索策略没有利用SQL的连接查询功能,例如以上5条select语句完全可以通过以下1条 select语句来完成:
select * from CUSTOMERS left outer join ORDERS
on CUSTOMERS.ID=ORDERS.CUSTOMER_ID
以上select语句使用了SQL的左外连接查询功能,能够在一条select语句中查询出CUSTOMERS表的所有记录,以及匹配的ORDERS表的记录。
(2)在应用逻辑只需要访问Customer对象,而不需要访问Order对象的场合,加载Order对象完全是多余的操作,这些多余的Order对象白白浪费了许多内存空间。
为了解决以上问题,Hibernate提供了其他两种检索策略:延迟检索策略和迫切左外连接检索策略。延迟检索策略能避免多余加载应用程序不需要访问的关联对象,迫切左外连接检索策略则充分利用了SQL的外连接查询功能,能够减少select语句的数目。
对数据库访问还是必须考虑性能问题的, 在设定了1 对多这种关系之后, 查询就会出现传说中的n +1 问题。
1 )1 对多,在1 方,查找得到了n 个对象, 那么又需要将n 个对象关联的集合取出,于是本来的一条sql查询变成了n +1 条
2)多对1 ,在多方,查询得到了m个对象,那么也会将m个对象对应的1 方的对象取出, 也变成了m+1
怎么解决n +1 问题?
1 )lazy=true, hibernate3开始已经默认是lazy=true了;lazy=true时不会立刻查询关联对象,只有当需要关联对象(访问其属性,非id字段)时才会发生查询动作。
2)二级缓存, 在对象更新,删除,添加相对于查询要少得多时, 二级缓存的应用将不怕n +1 问题,因为即使第一次查询很慢,之后直接缓存命中也是很快的。
不同解决方法,不同的思路,第二条却刚好又利用了n +1 。
3) 当然你也可以设定fetch=join(annotation : @ManyToOne() @Fetch(FetchMode.JOIN))
3.Hibernate延迟加载的机制是什么,如何工作?
4.Hibernate级联保存要如何做?
5.Hibernate的二级缓存和一级缓存有什么区别?
6.OpenSessionInViewFilter作用及配置
7.Hibernate中的Inverse和cascade属性配置
8.load()和get()的区别
9.hibernate读缓存
分享到:
相关推荐
利用Simulink实现混合储能系统在直流微网中的下垂控制策略研究:保持直流母线电压稳定的实践与探究,Simulink仿真下的光储直流微网混合储能系统下垂控制策略优化研究(注意版本要求为2021A以上),混合储能系统 光储微网 下垂控制 Simulink仿真 注意版本2021A以上 由光伏发电系统和混合储能系统构成直流微网。 混合储能系统由超级电容器和蓄电池构成,通过控制混合储能系统来维持直流母线电压稳定。 混合储能系统采用下垂控制来实现超级电容和蓄电池的功率分配,蓄电池响应低频量,超级电容响应高频量。 通过改变光照来影响光伏出力,控制混合储能系统保持微网直流母线电压稳定在380V,不受光伏出力变化影响。 ,混合储能系统; 光储微网; 下垂控制; Simulink仿真; 版本2021A; 直流母线电压稳定; 光伏出力变化; 超级电容器; 蓄电池。,2021A+混合储能系统:光储微网下垂控制Simulink仿真研究
内容概要:本文档是针对JavaScript这一跨平台解释型语言的详尽入门手册,首先概述了JavaScript的概念及其重要特性,强调它不仅适用于前端同时也活跃于Node.js的服务器环境之中,从而成为全栈开发的重要技能。紧接着文档阐述了JavaScript的基本语法元素如变量声明、数据类型、运算符及控制结构,让新手理解JavaScript的语法规则,并通过函数与对象操作加深印象。之后介绍了一些常见的实用工具和高级用法,例如模板字符串、解构赋值以及异步编程手段(比如Promise)。对于想要深入探索的应用场景给出了广泛的指引,无论是传统的web开发还是新兴领域的IoT或自动化脚本编写皆有所涉猎。 适合人群:对于那些没有编程背景或有其他编程经验但仍希望了解并擅长运用JavaScript的个人来说非常适合。 使用场景及目标:目的是向初学者提供足够的理论指导和技术实践机会,使他们能够在不同平台上利用JavaScript创造出有意义的作品;不论是想要从事专业软件开发或是业余项目爱好者都能够从中受益。 其他说明:文档还提供了大量权威且有用的外部链接供进一步深造学习,包括但不限于主流的在线课程、权威的技术参考资料及充满活力的支持社区。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,不平衡电网下的svg无功补偿,级联H桥svg无功补偿statcom,采用三层控制策略。 (1)第一层采用电压电流双闭环pi控制,电压电流正负序分离,电压外环通过产生基波正序有功电流三相所有H桥模块直流侧平均电压恒定,电流内环采用前馈解耦控制; (2)第二层相间电压均衡控制,注入零序电压,控制通过注入零序电压维持相间电压平衡; (3)第三层相内电压均衡控制,使其所有子模块吸收的有功功率与其损耗补,从而保证所有H桥子模块直流侧电压值等于给定值。 有参考资料。 639,核心关键词: 1. 不平衡电网下的SVG无功补偿 2. 级联H桥SVG无功补偿STATCOM 3. 三层控制策略 4. 电压电流双闭环PI控制 5. 电压电流正负序分离 6. 直流侧平均电压恒定 7. 前馈解耦控制 8. 相间电压均衡控制 9. 零序电压注入 10. 相内电压均衡控制 以上十个关键词用分号分隔的格式为:不
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
基于主从博弈的动态定价策略与电动汽车充电管理优化在智能小区的实践(MATLAB+CPLEX gurobi实现),基于主从博弈理论的智能小区电动汽车充电与代理商动态定价策略优化研究,MATLAB代码:基于主从博弈的智能小区代理商定价策略及电动汽车充电管理 关键词:电动汽车 主从博弈 动态定价 智能小区 充放电优化 参考文档:《基于主从博弈的智能小区代理商定价策略及电动汽车充电管理》基本复现 仿真平台:MATLAB+CPLEX gurobi平台 主要内容:代码主要做的是一个电动汽车充电管理和智能小区代理商动态定价的问题,将代理商和车主各自追求利益最大化建模为主从博弈,上层以代理商的充电电价作为优化变量,下层以电动汽车的充电策略作为优化变量,通过优化得出最优电价策略以及动态充电策略。 ,电动汽车; 主从博弈; 动态定价; 智能小区; 充放电优化; MATLAB; CPLEX; gurobi平台。,基于主从博弈的电动汽车充电管理与定价策略优化MATLAB代码实现
基于Matlab语言实现的设计项目 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计中的部分功能,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
Labiew噪音与振动检测模块源码揭秘:傅里叶变换与倍频程技术应用于实际项目,LabVIEW平台噪声与振动检测模块源码解析:基于傅里叶变换与倍频程原理的实用功能模块,已成功应用于实际项目,虚拟产品退换政策严谨执行,Labiew噪音与振动检测模块源码,改功能模块已运用到实际项目,原理是利用傅里叶变和倍频程实现的,产品一旦发概不 。 需要的可以联系哟 ,Labiew源码; 噪音与振动检测模块; 傅里叶变换; 倍频程; 实际项目运用,Labiew傅里叶变换倍频程噪音振动检测模块源码
基于Comsol多物理场仿真的光伏集热器异形体建模技术研究,探索comsol多物理场仿真技术:光伏集热器异形体建模应用,comsol多物理场仿真,光伏集热器,异形体建模 ,comsol多物理场仿真; 光伏集热器仿真; 异形体建模,Comsol多物理场仿真在光伏集热器及异形体建模中的应用
器官3D分割-基于WinForm框架开发的医学影像系统源码+sln+演示视频(毕设基于c#和python开发).zip 【项目简单介绍】 主要功能 肺炎诊断 器官 3D 分割 该系统具备肺炎诊断和器官 3D 分割的功能,并模仿了罗万科技的系统界面风格。 python和c#开发实现
MATLAB可以用于开发水果识别系统。这种系统通常利用机器学习和图像处理技术,对输入的水果图像进行特征提取和分类识别。以下是开发水果识别系统的一般步骤: 1. 数据收集:收集包含各种水果类别的图像数据集。 2. 数据预处理:对图像进行预处理,包括裁剪、缩放、灰度化等操作。 3. 特征提取:从每个水果图像中提取特征,例如颜色直方图、纹理特征、形状特征等。 4. 数据标记:为每个图像标记水果类别,形成训练集和测试集。 5. 模型训练:使用机器学习算法(如支持向量机、卷积神经网络等)对训练集进行训练,建立水果识别模型。 6. 模型测试:使用测试集对模型进行测试和评估,调整模型超参数以提高准确率。 7. 系统集成:将训练好的模型集成到MATLAB应用程序中,实现水果识别功能。 8. 用户界面设计:设计用户友好的界面,以便用户上传水果图像并查看识别结果。 MATLAB提供了丰富的图像处理工具箱和机器学习工具箱,可以帮助开发者快速构建水果识别系统。通过结合这些工具箱,可以实现水果的快速、准确识别。
COMSOL声子晶体仿真研究:一维至三维能带与带隙分析及色散曲线弹性波声波分析,声子晶体仿真:COMSOL代做能带图、带隙图及弹性波、声波分析与优化设计,COMSOL代做 声子晶体仿真,一维,二维,三维能带图,带隙图,色散曲线,弹性波,声波。 ,COMSOL代做;声子晶体仿真;一维/二维/三维能带图;带隙图;色散曲线;弹性波仿真;声波分析,COMSOL声子晶体仿真专家:一至三维声波模拟及能带图绘制
Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用
陪读租房系统(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 本系统有三个角色:管理员、租客和房主,要求具备以下功能: (a) 管理员;管理员使用本系统涉到的功能主要有:首页、个人中心、租客管理、房主管理、房源信息管理、房源类型管理、教育书籍管理、文章分类管理、租房信息管理、合同信息管理、在线咨询管理、咨阅回复管理、教育论坛、系统管理等功能。 (b) 租客;进入前台系统可以实现首页、房源信息、教育书籍、教育论坛、公告信息、后台管理等功能进行操作。 (C) 房主;进入系统可以实现首页、个人中心、房源信息管理、租房信息管理、合同信息管理、在线咨询管理、咨询回复管理等功能进行操作。 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。
vue3的一些语法以及知识点
1、文件内容:libicu-doc-50.2-4.el7_7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/libicu-doc-50.2-4.el7_7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
水果销售商城(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 水果购物网站用户可以注册登录,在首页开通会员卡,查看水果,购买水果,查看水果信息,以及个人中心修改个人资料,在自己的后台查看自己的购买记录等。 水果购物网站管理员功能:个人中心管理,用户管理,会员管理,会员卡管理,开通会员记录管理,积分管理,水果管理,购买水果订单管理,积分兑换管理,积分兑换记录管理,加积分记录管理,减积分记录管理。 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。
基于Matlab的双输入深度学习模型构建指南:处理序列与图像数据的创新性应用,Matlab双输入深度学习模型搭建指南:如何处理两种输入数据并实现创新与优势,Matlab搭建双输入深度学习模型,双输入网络。 相比普通的单输入网络,双输入网络能处理两种输入数据,在科研上也更具有优势和创新性。 如何用Matlab搭建双输入网络也是困扰本人很长时间的一个问题,现已弄明白。 注意,需要Matlab 2022b及以上版本,以下版本估计是都不行。 本程序是两个输入全为一维序列的情况(第二个输入序列是第一个输入序列的特征值,或者变后的序列)。 也可改为两边输入都是图像,或者一边输入图像,一边输入图像的一维特征序列。 本程序工作如下: 1、加载数据,两种输入数据一一对应,第二个数据是第一个数据做FFT之后的序列,属于一个类别。 两种数据样本数相等,序列长度不相等。 2、搭建双输入网络,此网络一边是CNN-LSTM,一边是CNN。 3、训练。 4、测试,输出准确率。 注:程序可直接运行,包教会和调通。 可以有偿修改为两边输入都是图像,或一边输入图像一边输入序列的模型。 可有偿替数据,调通程序。 程序注释详
包含十大管理49个过程组的输入与输出和解释,还有EVA铮值管理的公式汇总和解释