`
leonzhx
  • 浏览: 798117 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论
阅读更多

1.  Informal Goal: Connect a bunch of points together as cheaply as possible. 

     Blazingly Fast Greedy Algorithms:

     - Prim's Algorithm

     - Kruskal's algorithm

     O(m log n)  m is the # of edges and n is the # of vertices.

 

2.  Problem Denition:

     Input: Undirected graph G = ( V , E ) and a cost ce for each edge e in E.

     - Assume adjacency list representation

     - OK if edge costs are negative

     Output: minimum cost ( sum of edge costs) tree T contained by E that spans all vertices .

     Definition of spanning tree: 

     a)  T has no cycles
     b)  The subgraph (V,T) is connected (i.e., contains path between each pair of vertices)

 

3.  Standing Assumptions:

     Assumption #1: Input graph G is connected.

     - Else no spanning trees.

     - Easy to check in preprocessing (e.g., depth-rst search).

 

     Assumption #2: Edge costs are distinct.

     - Prim + Kruskal remain correct with ties (which can be broken arbitrarily).

     - Correctness proof a bit more annoying.

 

4.  Prim's MST Algorithm:

     - Initialize X = {s} [s in V chosen arbitrarily]

     - T = empty set [invariant: X = vertices spanned by tree-so-far T]

     - While X <> V

       - Let e = (u, v) be the cheapest edge of G with u in X, v not in X.

       - Add e to T

       - Add v to X.

    While loop: Increase # of spanned vertices in cheapest way possible.

 

5.  Denition of Cut : A cut of a graph G = (V , E) is a partition of V into 2 non-empty sets. ( at most 2^(n-1) -1 cuts)

 

6.  Empty Cut Lemma: A graph is not connected <==> exists a cut (A ,  B) with no crossing edges.

     Proof : <== choose u in A and v in B , there is no path from u to v.

                 ==> for (u, v) in G, that there is no path from u to v, Define :

                        A = {Vertices reachable from u in G}

                        B = V - A

                        So, no edge from A to B, otherwise A will be bigger

 

7.  Double-Crossing Lemma: Suppose the cycle C in E has an edge crossing the cut (A ,  B): then so does some other edge of C. ( the crossing edge of C should be even)

 

8.  Lonely Cut Corollary: If e is the only edge crossing some cut (A , B), then it is not in any cycle.

 

9.  Claim: Prim's algorithm outputs a spanning tree.

     Proof: (1)  Algorithm maintains invariant that T spans X

                (2)  Can't get stuck with X <> V (other wise cut {X, V-X} has no crossing edge ==> G is disconnected

                (3)  No cycles ever get created in T. A newly added edge e is the 1st edge crossing (X , V - X) that gets added to T ==> its addition can't create a cycle in T

 

10.  Cut Property: Consider an edge e of G. Suppose there is a cut (A , B) such that e is the cheapest

edge of G that crosses it. Then e belongs to the MST of G.

        Proof : Suppose there is an edge e that is the cheapest one crossing a cut (A , B), yet e is not in the MST T*.

        Idea: Exchange e with another edge in T* to make it even cheaper(contradiction).

        Since T* is connected, must construct an edge f (<> e) crossing (A , B).

        However exchange f with e may make T* not a spanning tree :



       How to find e' : Let C = cycle created by adding e to T*. ( there is already path between the nodes connected by e, so adding e to T* constructs a cycle)

       By the Double-Crossing Lemma: Some other edge e' of C [with e' <> e and e' in T] crosses (A , B).

       T = T * U {e} - {e'} is also a spanning tree. Since ce < ce' , T cheaper than purported MST T* 

      

 

11.  Claim: Cut Property ==> Prim's algorithm is correct.

    Proof: By previous video, Prim's algorithm outputs a spanning tree T*.

    Key point: Every edge e in T* is explicitly justied by the Cut Property.

                     ==> T* is a subset of the MST

                     ==> Since T* is already a spanning tree, it must be the MST

 

12.  Running time of straightforward implementation:

        - O(n) iterations [where n = # of vertices]

        - O(m) time per iteration [where m = # of edges]

        ==> O(mn) time

 

13.  Prim's Algorithm with Heaps:

       Invariant #1: Elements in heap = vertices of V - X.

       Invariant #2: For v in V - X, key[v] = cheapest edge (u , v) with u in X (or infinitive if no such edges exist).

       Given invariants, Extract-Min yields next vertex v not in X and edge (u , v) crossing (X , V - X) to add to X and T, respectively.

       Can initialize heap with O( m + n log n ) = O(m log n) preprocessing. Inserts m >= n - 1 since G connected.

       Pseudocode: When v added to X:

       - For each edge (v , w) in E:

           - If w in V - X ==> The only whose key might have changed (Update key if needed:)

               - Delete w from heap

               - Recompute key[w]:=min{key[w],cvw}

               - Re-Insert into heap

        

14.  Running Time with Heaps : 

       - Dominated by time required for heap operations

       - (n - 1) Inserts during preprocessing

       - (n - 1) Extract-Mins (one per iteration of while loop)

       - Each edge (v , w) triggers one Delete/Insert combo

           [When its 1rst endpoint is sucked into X]

       ==> O(m) heap operations [ m >= n - 1 since G connected]

       ==> O(m log n) time [As fast as sorting!]

  • 大小: 7.7 KB
分享到:
评论

相关推荐

    mst.7z

    常见的MST算法有Kruskal's Algorithm和Prim's Algorithm: 1. **Kruskal's Algorithm**:这个算法基于贪心策略,按边的权重从小到大依次考虑。每次选择一条不形成环的新边加入到当前的生成树中。这个过程持续到所有...

    MST.rar_mst_mst java_最大生成树

    最大生成树的构建通常基于贪心策略,其中最著名的算法之一是Kruskal's Algorithm和Prim's Algorithm。在本例中,描述提到的是一个针对最大生成树的算法实现,但并未明确指出具体使用了哪种算法。Kruskal's Algorithm...

    kruscal 与Prim算法求解最小生成树

    在`PrimMST`文件中,可以找到Prim算法的C++实现,包括邻接矩阵或邻接表的表示、优先队列的使用以及算法的主体部分。 **代码解析** `KruskalMST`和`PrimMST`文件分别实现了Kruskal和Prim算法。代码可能包含以下几个...

    计算模型与算法技术:9-Greedy Technique.ppt

    Prim’s MST algorithm是另一个使用Greedy Technique的经典算法,用于解决minimum spanning tree问题。该算法的步骤是: 1. 选择一个顶点作为起始顶点,构建初始树T1。 2. 在每次迭代中,从当前树Ti中选择最近的...

    Prim-minimum-spanning-tree-algorithm.zip_prim_prim matlab

    最小生成树(Minimum Spanning Tree, MST)是图论中的一个重要概念,主要应用于网络设计、数据传输优化等领域。Prim算法是解决此问题的一种经典方法,由捷克数学家Vojtěch Jarník在1930年提出,后经美国计算机科学...

    MST.rar_mst_实现MST

    在本压缩包文件"**MST.rar**"中,包含了两种经典的MST算法的实现:克鲁斯卡尔(Kruskal's Algorithm)和普里姆(Prim's Algorithm)。 首先,我们来看克鲁斯卡尔算法。这是一种基于边的贪心策略,它按照边的权重...

    数据结构英文教学课件:21_Graph_04.pdf

    在本教学课件“21_Graph_04.pdf”中,主要讨论了图(Graph)的一个重要应用——最小生成树(Minimum Spanning Tree,MST),以及求解最小生成树的两种经典算法:Kruskal's Algorithm 和 Prim's Algorithm。...

    prim算法最小生成树动态演示

    如果你对这个主题感兴趣,可以进一步探索图论的其他概念,如最短路径算法(Dijkstra's algorithm或Floyd-Warshall algorithm)、最大流最小割问题等,这些都是图论在计算机科学中的基础且实用的部分。

    python graph algorithm_python_graph_shutszh_zip_algorithm_

    5. Kruskal's算法和Prim's算法:用于计算图的最小生成树,前者基于边的贪心策略,后者基于节点的贪心策略。`nx.kruskal_mst(G)` 和 `nx.prim_mst(G)` 分别对应这两个算法。 6. 强连通分量:找出图中所有相互可达的...

    acm 最小生成树 prim算法

    Prim算法是一种用于寻找图中所有顶点构成的最小生成树(Minimum Spanning Tree, MST)的经典算法之一。它适用于带权无向图,并且能够确保得到的MST具有最小的总权重。Prim算法的核心思想是从任意一个顶点出发,逐步...

    最小生成树要点和难点具体应用.zip

    - Prim's Algorithm:普里姆算法,从一个顶点开始,逐步扩展到相邻的顶点,每次选择连接两个已分隔部分的最小权重边。可以使用优先队列(如二叉堆)实现,以高效地找到最小权重边。 2. **性质与定理** - Cut ...

    数据结构 图的最小生成树 C++描述 使用prim算法、kruskal算法

    本话题主要关注如何在图中找到一个成本最低的子集,即最小生成树(Minimum Spanning Tree, MST),它可以连接所有顶点而使得边的总权重最小。我们将探讨两种经典的算法:Prim算法和Kruskal算法,它们都是用C++实现的...

    ft-mst

    Kruskal's Algorithm和Prim's Algorithm是两种常用的解决MST问题的算法。 Fibonacci树是一种特殊的树结构,由Fibonacci序列定义,通常用于数据结构和算法的教学与研究。将Fibonacci树与最小生成树相结合,可能是...

    华南理工大学计算机全英班算法设计实验

    (1) Given a undirected Graph G=(V, E) like below, to calculate the minimum spanning tree using Kruskal’s algorithm and Prim’s algorithm. 4. Experimental Requirement 1)The template should be ...

    prime-tree.rar_tree生成网络图_普鲁姆算法_普鲁母算法_最小生成树_最小生成树 prim

    普鲁姆算法(Prim's Algorithm),也称为普鲁母最小生成树算法,是由Vaclav J. Prim在1930年提出的,是一种贪心算法,用于解决寻找最小生成树的问题。该算法从图中的任意一个顶点开始,逐步增加边,每次添加的边都是...

    数据结构常用算法c++实现

    Prim's minimum spanning tree Kruskal MST Directed/Undirected graph ops Breadth First Search Depth First Search Dijkstra's algorithm Bellman-Ford algorithm Edmonds-Karp Maximal Flow Push–Relabel ...

    最小生成树(MST)问题——北京大学暑期课《ACM/ICPC竞赛训练》

    #include &lt;algorithm&gt; #include using namespace std; const int INFINITE = 1 ; struct Edge { int v; // 边端点 int w; // 边权值 Edge(int v_ = 0, int w_ = INFINITE) : v(v_), w(w_) {} bool operator&lt;...

    ACM-ICPC_algorithm_template.pdf

    + Prim 求 MST(最小生成树) + 次小生成树 O(V^2) + 最小生成森林问题(k 颗树)O(mlogm) + 有向图最小树形图 + Minimal Steiner Tree + Tips K 度最小生成树 * 最短路径 + 最短路径模版(Dijkstra) 邻接表+...

    MST_Parallel

    常见的并行MST算法有Kruskal's算法和Prim's算法的并行版本。下面我们将深入探讨这两种算法及其并行化策略。 1. **Kruskal's Algorithm 并行化** Kruskal's算法是基于贪心策略的,它按边的权重从小到大选择边,并...

    数据结构课程设计——最小生成树

    常见的算法有克鲁斯卡尔(Kruskal's Algorithm)和普里姆(Prim's Algorithm)。 克鲁斯卡尔算法是一种贪心策略,它按照边的权重从小到大依次考虑,每次选择一条不构成环的边加入到当前的生成树中,直到所有的顶点...

Global site tag (gtag.js) - Google Analytics