转自: http://blog.csdn.net/luanlouis/article/details/41576373?utm_source=tuicool&utm_medium=referral
HashMap在Java开发中有着非常重要的角色地位,每一个Java程序员都应该了解HashMap。
本文主要从源码角度来解析HashMap的设计思路,并且详细地阐述HashMap中的几个概念,并深入探讨HashMap的内部结构和实现细节,讨论HashMap的性能问题,并且在文中贯穿着一些关于HashMap常见问题的讨论。
读完本文,你会了解到: 1. HashMap的设计思路和内部结构组成
2. HashMap中的一些概念: 什么是阀值?为什么会有阀值?什么是加载因子?它们有什么作用?
3. HashMap的性能问题以及使用事项
4. HashMap的源码实现解析
5. 为什么JDK建议我们重写Object.equals(Object obj)方法时,需要保证对象可以返回相同的hashcode值?
1. HashMap设计思路以及内部结构组成
HashMap设计思路Map<K,V>是一种以键值对存储数据的容器,而HashMap则是借助了键值Key的hashcode值来组织存储,使得可以非常快速和高效地地根据键值key进行数据的存取。
对于键值对<Key,Value>,HashMap内部会将其封装成一个对应的Entry<Key,Value>对象,即Entry<Key,Value>对象是键值对<Key,Value>的组织形式;
对于每个对象而言,JVM都会为其生成一个hashcode值。HashMap在存储键值对Entry<Key,Value>的时候,会根据Key的hashcode值,以某种映射关系,决定应当将这对键值对Entry<Key,Value>存储在HashMap中的什么位置上;
当通过Key值取数据的时候,然后根据Key值的hashcode,以及内部映射条件,直接定位到Key对应的Value值存放在什么位置,可以非常高效地将Value值取出。
为了实现上述的设计思路,在HashMap内部,采用了数组+链表的形式来组织键值对Entry<Key,Value>。
HashMap内部维护了一个Entry[] table 数组,当我们使用 new HashMap()创建一个HashMap时,Entry[] table 的默认长度为16。Entry[] table的长度又被称为这个HashMap的容量(capacity);
对于Entry[] table的每一个元素而言,或为null,或为由若干个Entry<Key,Value>组成的链表。HashMap中Entry<Key,Value>的数目被称为HashMap的大小(size);
Entry[] table中的某一个元素及其对应的Entry<Key,Value>又被称为桶(bucket);
其结构如下图所示:
HashMap内部组织结构由上图所示,现在来看一下HashMap的基本工作流程:
2. 什么是阀值?为什么会有阀值?什么是加载因子?它们有什么作用?
HashMap设计的初衷,是为了尽可能地迅速根据Key的hashCode值, 直接就可以定位到对应的Entry<Key,Value>对象,然后得到Value。
请读者考虑这样一个问题:
当我们使用 HashMap map = new HashMap()语句时,我们会创建一个HashMap对象,它内部的 Entry[] table的大小为 16,我们假定Entry[] table的大小会改变。现在,我们现在向它添加160对Key值完全不同的键值对<Key,Value>,那么,该HashMap内部有可能下面这种情况:即对于每一个桶中的由Entry<Key,Value>组成的链表的长度会非常地长!我们知道,对于查找链表操作的时间复杂度是很高的,为O(n)。这样的一个HashMap的性能会很低很低,如下图所示:
现在再来分析一下这个问题,当前的HashMap能够实现:
1. 根据Key的hashCode,可以直接定位到存储这个Entry<Key,Value>的桶所在的位置,这个时间的复杂度为O(1);
2. 在桶中查找对应的Entry<Key,Value>对象节点,需要遍历这个桶的Entry<Key,Value>链表,时间复杂度为O(n);
那么,现在,我们应该尽可能地将第2个问题的时间复杂度o(n)降到最低,读者现在是不是有想法了:我们应该要求桶中的链表的长度越短越好!桶中链表的长度越短,所消耗的查找时间就越低,最好就是一个桶中就一个Entry<Key,Value>对象节点就好了!
这样一来,桶中的Entry<Key,Value>对象节点要求尽可能第少,这就要求,HashMap中的桶的数量要多了。
我们知道,HashMap的桶数目,即Entry[] table数组的长度,由于数组是内存中连续的存储单元,它的空间代价是很大的,但是它的随机存取的速度是Java集合中最快的。我们增大桶的数量,而减少Entry<Key,Value>链表的长度,来提高从HashMap中读取数据的速度。这是典型的拿空间换时间的策略。
但是我们不能刚开始就给HashMap分配过多的桶(即Entry[] table 数组起始不能太大),这是因为数组是连续的内存空间,它的创建代价很大,况且我们不能确定给HashMap分配这么大的空间,它实际到底能够用多少,为了解决这一个问题,HashMap采用了根据实际的情况,动态地分配桶的数量。
HashMap的权衡策略
要动态分配桶的数量,这就要求要有一个权衡的策略了,HashMap的权衡策略是这样的:
如果
HashMap的大小> HashMap的容量(即Entry[] table的大小)*加载因子(经验值0.75)
则
HashMap中的Entry[] table 的容量扩充为当前的一倍;
然后重新将以前桶中的Entry<Key,Value>链表重新分配到各个桶中
上述的 HashMap的容量(即Entry[] table的大小) * 加载因子(经验值0.75)就是所谓的阀值(threshold):
最后,请读者看一个实例:
默认创建的HashMap map =new HashMap();map的容量是 16,那么,当我们往 map中添加第几个完全不同的键值对<Key,Value>时,HashMap的容量会扩充呢?
呵呵,很简单的计算:由于默认的加载因子是0.75 ,那么,此时map的阀值是 16*0.75 = 12,即添加第13 个键值对<Key,Value>的时候,map的容量会扩充一倍。
这时候读者可能会有疑问:本来Entry[] table的容量是16,当放入12个键值对<Key,Value>后,不是至少还剩下4个Entry[] table 元素没有被使用到吗?这不是浪费了宝贵的空间了吗?! 确实如此,但是为了尽可能第减少桶中的Entry<Key,Value>链表的长度,以提高HashMap的存取性能,确定的这个经验值。如果读者你对存取效率要求的不是太高,想省点空间的话,你可以new HashMap(int initialCapacity, float loadFactor)构造方法将这个因子设置得大一些也无妨。
2. HashMap的算法实现解析
HashMap的算法实现最重要的两个是put() 和get() 两个方法,下面我将分析这两个方法:
- public V put(K key, V value);
- public V get(Object key);
另外,HashMap支持Key值为null 的情况,我也将详细地讨论这个问题。
1. 向HashMap中存储一对键值对<Key,Value>流程---put()方法实现:
put()方法-向HashMap存储键值对<Key,Value>
a. 获取这个Key的hashcode值,根据此值确定应该将这一对键值对存放在哪一个桶中,即确定要存放桶的索引;
b. 遍历所在桶中的Entry<Key,Value>链表,查找其中是否已经有了以Key值为Key存储的Entry<Key,Value>对象,
c1. 若已存在,定位到对应的Entry<Key,Value>,其中的Value值更新为新的Value值;返回旧值;
c2. 若不存在,则根据键值对<Key,Value> 创建一个新的Entry<Key,Value>对象,然后添加到这个桶的Entry<Key,Value>链表的头部。
d. 当前的HashMap的大小(即Entry<key,Value>节点的数目)是否超过了阀值,若超过了阀值(threshold),则增大HashMap的容量(即Entry[] table 的大小),并且重新组织内部各个Entry<Key,Value>排列。
详细流程如下列的代码所示:
- /**
- * 将<Key,Value>键值对存到HashMap中,如果Key在HashMap中已经存在,那么最终返回被替换掉的Value值。
- * Key 和Value允许为空
- */
- public V put(K key, V value) {
- //1.如果key为null,那么将此value放置到table[0],即第一个桶中
- if (key == null)
- return putForNullKey(value);
- //2.重新计算hashcode值,
- int hash = hash(key.hashCode());
- //3.计算当前hashcode值应当被分配到哪一个桶中,获取桶的索引
- int i = indexFor(hash, table.length);
- //4.循环遍历该桶中的Entry列表
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- //5. 查找Entry<Key,Value>链表中是否已经有了以Key值为Key存储的Entry<Key,Value>对象,
- //已经存在,则将Value值覆盖到对应的Entry<Key,Value>对象节点上
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {//请读者注意这个判定条件,非常重要!!!
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- //6不存在,则根据键值对<Key,Value> 创建一个新的Entry<Key,Value>对象,然后添加到这个桶的Entry<Key,Value>链表的头部。
- addEntry(hash, key, value, i);
- return null;
- }
- /**
- * Key 为null,则将Entry<null,Value>放置到第一桶table[0]中
- */
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
- /**
- * 根据特定的hashcode 重新计算hash值,
- * 由于JVM生成的的hashcode的低字节(lower bits)冲突概率大,(JDK只是这么一说,至于为什么我也不清楚)
- * 为了提高性能,HashMap对Key的hashcode再加工,取Key的hashcode的高字节参与运算
- */
- static int hash(int h) {
- // This function ensures that hashCodes that differ only by
- // constant multiples at each bit position have a bounded
- // number of collisions (approximately 8 at default load factor).
- h ^= (h >>> 20) ^ (h >>> 12);
- return h ^ (h >>> 7) ^ (h >>> 4);
- }
- /**
- * 返回此hashcode应当分配到的桶的索引
- */
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
当HashMap的大小大于阀值时,HashMap容量的扩充算法 当当前的HashMap的大小大于阀值时,HashMap会对此HashMap的容量进行扩充,即对内部的Entry[] table 数组进行扩充。
HashMap对容量(Entry[] table数组长度) 有两点要求:
1. 容量的大小应当是 2的N次幂;
2. 当容量大小超过阀值时,容量扩充为当前的一倍;这里第2点很重要,如果当前的HashMap的容量为16,需要扩充时,容量就要变成16*2 = 32,接着就是32*2=64、64*2=128、128*2=256.........可以看出,容量扩充的大小是呈指数级的级别递增的。
这里容量扩充的操作可以分为以下几个步骤:
1. 申请一个新的、大小为当前容量两倍的数组;
2. 将旧数组的Entry[] table中的链表重新计算hash值,然后重新均匀地放置到新的扩充数组中;
3. 释放旧的数组;
由上述的容量扩充的步骤来看,一次容量扩充的代价非常大,所以在容量扩充时,扩充的比例为当前的一倍,这样做是尽量减少容量扩充的次数。
为了提高HashMap的性能:
1.在使用HashMap的过程中,你比较明确它要容纳多少Entry<Key,Value>,你应该在创建HashMap的时候直接指定它的容量;
2. 如果你确定HashMap的使用的过程中,大小会非常大,那么你应该控制好 加载因子的大小,尽量将它设置得大些。避免Entry[] table过大,而利用率觉很低。
- /**
- * Rehashes the contents of this map into a new array with a
- * larger capacity. This method is called automatically when the
- * number of keys in this map reaches its threshold.
- *
- * If current capacity is MAXIMUM_CAPACITY, this method does not
- * resize the map, but sets threshold to Integer.MAX_VALUE.
- * This has the effect of preventing future calls.
- *
- * @param newCapacity the new capacity, MUST be a power of two;
- * must be greater than current capacity unless current
- * capacity is MAXIMUM_CAPACITY (in which case value
- * is irrelevant).
- */
- void resize(int newCapacity) {
- Entry[] oldTable = table;
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return;
- }
- Entry[] newTable = new Entry[newCapacity];
- transfer(newTable);
- table = newTable;
- threshold = (int)(newCapacity * loadFactor);
- }
- /**
- * Transfers all entries from current table to newTable.
- */
- void transfer(Entry[] newTable) {
- Entry[] src = table;
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) {
- Entry<K,V> e = src[j];
- if (e != null) {
- src[j] = null;
- do {
- Entry<K,V> next = e.next;
- int i = indexFor(e.hash, newCapacity);
- e.next = newTable[i];
- newTable[i] = e;
- e = next;
- } while (e != null);
- }
- }
- }
为什么JDK建议我们重写Object.equals(Object obj)方法时,需要保证对象可以返回相同的hashcode值?
Java程序员都看过JDK的API文档,该文档关于Object.equals(Object obj)方法,有这样的描述:
“注意:当此方法被重写时,通常有必要重写hashCode 方法,以维护hashCode 方法的常规协定,该协定声明相等对象必须具有相等的哈希码。”
读者虽然知道这个协定,但是不一定真正知道为什么会有这一个要求,现在,就来看看原因吧。
请读者再注意看一下上述的额put()方法实现,当遍历某个桶中的Entry<Key,Value>链表来查找Entry实例的过程中所使用的判断条件:
对于给定的Key,Value,判断该Key是否与Entry链表中有某一个Entry对象的Key值相等使用的是(k==e.key)==key) || key.equals(k),另外还有一个判断条件:即Key经过hash函数转换后的hash值和当前Entry对象的hash属性值相等(该hash属性值和Entry内的Key经过hash方法转换后的hash值相等)。
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- //5. 查找Entry<Key,Value>链表中是否已经有了以Key值为Key存储的Entry<Key,Value>对象,
- //已经存在,则将Value值覆盖到对应的Entry<Key,Value>对象节点上
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
上述的情况我们可以总结为;HashMap在确定Key是否在HashMap中存在的要求有两个:
1. Key值是否相等;
2. hashcode是否相等;
所以我们在定义类时,如果重写了equals()方法,但是hashcode却没有保证相等,就会导致当使用该类实例作为Key值放入HashMap中,会出现HashMap“工作异常”的问题,会出现你不希望的情况。下面让我们通过一个例子来看看这个“工作异常”情况:
例子: 定义一个简单Employee类,重写equals方法,而没有重写hashCode()方法。然后使用该类创建两个实例,放置到一个HashMap中:
- package com.louis.hashlearning;
- /**
- * 简单Employee Bean,重写equals方法,未重写hashCode()方法
- * @author louluan
- */
- public class Employee {
- private String employeeCode;
- private String name;
- public Employee(String employeeCode, String name) {
- this.employeeCode = employeeCode;
- this.name = name;
- }
- public String getEmployeeCode() {
- return employeeCode;
- }
- public String getName() {
- return name;
- }
- @Override
- public boolean equals(Object o)
- {
- if(o instanceof Employee)
- {
- Employee e = (Employee)o;
- if(this.employeeCode.equals(e.getEmployeeCode()) && name.equals(e.getName()))
- {
- return true;
- }
- }
- return false;
- }
- }
输出结果:
- package com.louis.hashlearning;
- import java.util.HashMap;
- public class Test {
- public static void main(String[] args) {
- Employee em1= new Employee("123","louis");
- Employee em2= new Employee("123","louis");
- boolean equals= em1.equals(em2);
- System.out.println("em1 equals em2 ? " +equals);
- HashMap map = new HashMap();
- map.put(em1, "test1");
- map.put(em2, "test2");
- System.out.println("map size:"+map.size());
- }
- }
结果分析:
上述的例子中,我们使用了new Employee("123","louis"); 语句创建了两个完全一样的对象em1,em2,对我们来说,它们就是相同的对象,然后,我们将这两个我们认为相等的对象作为Key值放入HashMap中,我们想要的结果是:HashMap中的Entry<Key,Value>键值对数目应该就一个,并且Entry对象的Value值应该是由"test1" 替换成"test2",但是实际的结果是:HashMap的大小为2,即HashMap中有两个Entry<Key,Value>键值对!!!
原因现在读者清晰了:因为em1和em2对象的hashCode()继承自Object,它们返回两个不同的值,即em1 和em2的hashcode值不相同。
从上面的这个例子可以看出:
我们重写Object.equals(Object obj)方法时,需要保证对象可以返回相同的hashcode。否则,HashMap工作的时候会有不可控的异常情况出现。
2. get() 方法的实现:
根据特定的Key值从HashMap中取Value的结果就比较简单了:
get()方法-根据Key从HashMap中取Valuea. 获取这个Key的hashcode值,根据此hashcode值决定应该从哪一个桶中查找;
b. 遍历所在桶中的Entry<Key,Value>链表,查找其中是否已经有了以Key值为Key存储的Entry<Key,Value>对象,
c1. 若已存在,定位到对应的Entry<Key,Value>,返回value
c2. 若不存在,返回null;
具体算法如下:
- /**
- * Returns the value to which the specified key is mapped,
- * or {@code null} if this map contains no mapping for the key.
- * 返回key对应的Value值,如果HashMap中没有,则返回null;
- * 支持Key为null情况
- * <p>More formally, if this map contains a mapping from a key
- * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
- * key.equals(k))}, then this method returns {@code v}; otherwise
- * it returns {@code null}. (There can be at most one such mapping.)
- *
- * <p>A return value of {@code null} does not <i>necessarily</i>
- * indicate that the map contains no mapping for the key; it's also
- * possible that the map explicitly maps the key to {@code null}.
- * The {@link #containsKey containsKey} operation may be used to
- * distinguish these two cases.
- *
- * @see #put(Object, Object)
- */
- public V get(Object key) {
- if (key == null)
- return getForNullKey();
- int hash = hash(key.hashCode());
- //遍历列表
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
- return e.value;
- }
- return null;
- }
3.HashMap对Key为null情况的支持
HashMap允许Key以null的形式存取,Hashmap会将Key为null组成的Entry<null,Value>放置到table[0],即第一个桶中,在put()和get()操作时,会先对Key 为null的值特殊处理:
- /**
- * Offloaded version of get() to look up null keys. Null keys map
- * to index 0. This null case is split out into separate methods
- * for the sake of performance in the two most commonly used
- * operations (get and put), but incorporated with conditionals in
- * others.
- * get 操作
- */
- private V getForNullKey() {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null)
- return e.value;
- }
- return null;
- }
- /**
- * Key 为null,则将Entry<null,Value>放置到第一桶table[0]中
- */
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
4. 键值对Entry<Key,Value>的移除----remove(key)方法的实现
根据key值移除键值对的操作也比较简单,内部关键的流程分为两个:
1. 根据Key的hashcode 值和Key定位到Entry<key,Value> 对象在HashMap中的位置;
2. 由于Entry<Key,Value>是一个链表元素,之后便是链表删除节点的操作了;
- /**
- * Removes the mapping for the specified key from this map if present.
- *
- * @param key key whose mapping is to be removed from the map
- * @return the previous value associated with <tt>key</tt>, or
- * <tt>null</tt> if there was no mapping for <tt>key</tt>.
- * (A <tt>null</tt> return can also indicate that the map
- * previously associated <tt>null</tt> with <tt>key</tt>.)
- */
- public V remove(Object key) {
- Entry<K,V> e = removeEntryForKey(key);
- return (e == null ? null : e.value);
- }
- /**
- * Removes and returns the entry associated with the specified key
- * in the HashMap. Returns null if the HashMap contains no mapping
- * for this key.
- */
- final Entry<K,V> removeEntryForKey(Object key) {
- int hash = (key == null) ? 0 : hash(key.hashCode());
- int i = indexFor(hash, table.length);
- Entry<K,V> prev = table[i];
- Entry<K,V> e = prev;
- while (e != null) {
- Entry<K,V> next = e.next;
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) {
- modCount++;
- size--;
- if (prev == e)
- table[i] = next;
- else
- prev.next = next;
- e.recordRemoval(this);
- return e;
- }
- prev = e;
- e = next;
- }
- return e;
- }
4. HashMap的特点总结:
1. HashMap是线程不安全的,如果想使用线程安全的,可以使用Hashtable;它提供的功能和Hashmap基本一致。HashMap实际上是一个Hashtable的轻量级实现;
2. 允许以Key为null的形式存储<null,Value>键值对;
3. HashMap的查找效率非常高,因为它使用Hash表对进行查找,可直接定位到Key值所在的桶中;
4. 使用HashMap时,要注意HashMap容量和加载因子的关系,这将直接影响到HashMap的性能问题。加载因子过小,会提高HashMap的查找效率,但同时也消耗了大量的内存空间,加载因子过大,节省了空间,但是会导致HashMap的查找效率降低。
相关推荐
面试中,HashMap的源码分析与实现是一个常见的考察点,因为它涉及到数据结构、并发处理和性能优化等多个核心领域。本篇文章将深入探讨HashMap的内部工作原理、关键特性以及其在实际应用中的考量因素。 HashMap基于...
### HashMap的原理与扩容机制详解 #### 一、HashMap的基本工作原理 HashMap是Java集合框架中的一个重要组成部分,它实现了Map...通过对源码的深入分析,我们可以更好地理解HashMap的工作原理以及其背后的设计思想。
HashMap是一个基于哈希表实现的键值对存储结构,它提供了快速的插入、删除和查找操作,平均时间复杂度为O(1)。HashMap非线程安全,适合于单线程环境或已经通过并发工具类控制并发的场景。 二、HashMap底层原理 ...
这里我们将深入探讨这种三数组实现HashMap的原理和可能的优势。 1. **基本概念**: - **HashMap**:HashMap是Java集合框架的一部分,它通过哈希函数将键(Key)映射到对应的值(Value),形成键值对。键必须是唯一...
### HashMap部分源码分析 #### 一、HashMap数据结构 ...通过以上分析可以看出,HashMap的实现充分利用了哈希算法的优势,同时巧妙地解决了哈希冲突的问题,使其成为Java中一个非常高效且实用的数据结构。
通过以上分析,我们可以了解到实现一个自定义的HashMap涉及许多细节和技巧,包括哈希函数的设计、冲突解决策略的选择、以及性能优化等。在实际编程中,理解这些概念有助于我们更好地使用和定制HashMap,满足特定需求...
### HashMap的Hash原理详解 #### 一、概述 在Java编程语言中,`HashMap`是实现`Map`接口的...通过以上分析,我们可以更加深入地理解`HashMap`内部的工作机制,这对于理解和优化基于`HashMap`的应用程序具有重要意义。
在Java编程语言中,`HashMap`和`HashTable`都是实现键值对存储的数据结构,但它们之间存在一些显著的区别,这些区别主要体现在...对于学习和理解,源码阅读是非常有价值的,可以帮助深入理解Java集合框架的设计原理。
HashMap类在Java编程...在阅读《HashMap1.js》和《HashMap.js》这两个文件时,可以深入分析其JavaScript版本的HashMap实现,虽然与Java版本可能有所不同,但基本的哈希映射原理是相通的,有助于拓宽对哈希表的理解。
`HashMap`通过散列表来存储数据,这种设计使得在大多数情况下,其插入、删除和查找操作的时间复杂度均为O(1)。 #### 二、HashMap的数据结构 `HashMap`的数据结构由数组和链表共同组成,其中数组作为基础容器,每个...
HashMap是Java中广泛使用的非同步散列表,其设计和实现是高效且灵活的。在JDK1.8之前,HashMap的底层数据结构采用的是数组+链表的方式,这种方式称为“拉链法”来解决哈希冲突。拉链法的基本思想是将相同哈希值的...
在Java编程语言中,`HashMap`和`List`(通常指的是`ArrayList`或`LinkedList`)是两种常用的数据结构,它们各自在不同的场景下有着不同的...在设计和优化系统时,理解这些数据结构的内在工作原理和性能特性至关重要。
这里我们将分析一个简单的自定义HashMap实现,它使用Java数组和链表来完成put和get操作。 首先,我们看到类`MyHashMap`包含一个名为`Entry`的内部类,`Entry`类代表数组中的每个元素,它包含了键(K)和值(V),...
在Java中实现算符优先分析,我们需要创建一个数据结构来存储算符优先表,可以使用HashMap来实现,键是算符,值是一个包含优先级和结合性的对象。此外,还需要一个栈来保存中间结果和未处理的算符。 解析过程通常...
本教程将深入分析2022年Java中HashMap的内部机制、关键属性和操作。 HashMap的核心属性包括容量(capacity)和负载因子(load factor)。容量是指HashMap可以存储的元素的最大数量,而负载因子则是HashMap在达到多...
这两个类分别实现了Map接口和Set接口,虽然它们的用途不同,但它们底层的实现原理有很强的关联性。本文将深入分析HashMap和HashSet的哈希存储机制。 首先,HashSet是一个基于哈希表实现的无序不重复元素集合。它...
通过分析和学习易语言HashMap类的源码,开发者可以深入理解哈希表的工作原理,以及易语言如何实现高效的数据结构。这对于提升编程技能,尤其是理解和优化数据结构的性能,具有很大的帮助。同时,源码也可以作为参考...
通过深入研究`hashmap.pas`的源代码,开发者不仅可以学习到HashMap的具体实现,还能进一步理解哈希表的工作原理和数据结构设计。这不仅有助于提升Delphi项目中的数据处理能力,也为跨平台或跨语言开发提供了借鉴,...
这里我们将深入探讨Java 8 HashMap如何与Comparable接口结合使用,以及这背后的编程技术和设计原理。 首先,我们了解下Comparable接口。Comparable接口是Java中用于定义对象之间自然顺序的接口,它只有一个方法`...