`
paofan
  • 浏览: 394347 次
社区版块
存档分类
最新评论

Homesteading the Noosphere

    博客分类:
  • SOG
阅读更多
Homesteading the Noosphere by Eric S. Raymond

After observing a contradiction between the 'official' ideology defined by open-source licenses and the actual behavior of hackers, we examine the actual customs which regulate the ownership and control of open-source software. We discover that they imply an underlying theory of property rights homologous to the Lockean theory of land tenure. We relate that to an analysis of the hacker culture as a 'gift culture' in which participants compete for prestige by giving time, energy, and creativity away. We then examine the implications of this analysis for conflict resolution in the culture, and develop some prescriptive implications.


An Introductory Contradiction

Anyone who watches the busy, tremendously productive world of Internet open-source software for a while is bound to notice an interesting contradiction between what open-source hackers say they believe and the way they actually behave - between the official ideology of the open-source culture and its actual practice.

Cultures are adaptive machines. The open-source culture is a response to an identifiable set of drives and pressures. As usual, the culture's adaptation to its circumstances manifests both as conscious ideology and as implicit, unconscious or semi-conscious knowledge. And, as is not uncommon, the unconscious adaptations are partly at odds with the conscious ideology.

In this paper, we will dig around the roots of that contradiction, and use it to discover those drives and pressures. We will deduce some interesting things about the hacker culture and its customs. We will conclude by suggesting ways in which the culture's implicit knowledge can be leveraged better.

The Varieties of Hacker Ideology

The ideology of the Internet open-source culture (what hackers say they believe) is a fairly complex topic in itself. All members agree that open source (that is, software which is freely re-distributable and can readily be evolved and modified to fit changing needs) is a good thing and worthy of significant and collective effort. This agreement effectively defines membership in the culture. However, the reasons individuals and various subcultures give for this belief vary considerably.

One degree of variation is zealotry; whether open source development is regarded merely as a convenient means to an end (good tools and fun toys and an interesting game to play) or as an end in itself.

A person of great zeal might say "Free software is my life! I exist to create useful, beautiful programs and information resources, and then give them away." A person of moderate zeal might say "Open source is a good thing which I am willing to spend significant time helping happen." A person of little zeal might say "Yes, open source is OK sometimes. I play with it and respect people who build it."

Another degree of variation is in hostility to commercial software and/or the companies perceived to dominate the commercial software market.

A very anti-commercial person might say "Commercial software is theft and hoarding. I write free software to end this evil." A moderately anti-commercial person might say "Commercial software in general is OK because programmers deserve to get paid, but companies that coast on shoddy products and throw their weight around are evil." A commercial person might say "Commercial software is OK, I just use and/or write open-source software because I like it better."

All nine of the attitudes implied by the cross-product of the above categories are represented in the open-source culture. The reason it is worthwhile to point out the distinctions is because they imply different agendas, and different adaptive and cooperative behaviors.

Historically, the most visible and best-organized part of the hacker culture has been both very zealous and very anti-commercial. The Free Software Foundation (FSF) founded by Richard M. Stallman (RMS) supported a great deal of open-source development from the early 1980s on, including tools like Emacs and GCC which are still basic to the Internet open-source world, and seem likely to remain so for the forseeable future.

For many years the FSF was the single most important focus of open-source hacking, producing a huge number of tools still critical to the culture. The FSF was also long the only sponsor of open source with an institutional identity visible to outside observers of the hacker culture. They effectively defined the term 'free software', deliberately giving it a confrontational weight (which the newer label 'open source' just as deliberately avoids).

Thus, perceptions of the hacker culture from both within and outside it tended to identify the culture with the FSF's zealous attitude and perceived anti-commercial aims (RMS himself denies he is anti-commercial, but his program has been so read by most people, including many of his most vocal partisans). The FSF's vigorous and explicit drive to "Stamp Out Software Hoarding!" became the closest thing to a hacker ideology, and RMS the closest thing to a leader of the hacker culture.

The FSF's license terms, the "General Public Licence" (GPL), expresses the FSF's zealous and anti-commercial attitudes. It is very widely used in the open-source world. North Carolina's Sunsite is the largest and most popular software archive in the Linux world. In July 1997 about half the Sunsite software packages with explicit license terms used GPL.

But the FSF was never the only game in town. There was always a quieter, less confrontational and more market-friendly strain in the hacker culture. The pragmatists were loyal not so much to an ideology as to a group of engineering traditions founded on early open-source efforts which predated the FSF. These traditions included, most importantly, the intertwined technical cultures of Unix and the pre-commercial Internet.

The typical pragmatist attitude is only moderately anti-commercial, and its major grievance against the corporate world is not 'hoarding' per se. Rather it is that world's perverse refusal to adopt superior approaches incorporating Unix and open standards and open-source software. If the pragmatist hates anything, it is less likely to be 'hoarders' in general than the current King of the software establishment (formerly IBM, now Microsoft).

To pragmatists, the GPL is important as a tool rather than an end in itself. Its main value is not as a weapon against 'hoarding', but as a tool for encouraging software sharing and the growth of bazaar-mode development communities. The pragmatist values having good tools and toys more than he dislikes commercialism, and may use high-quality commercial software without ideological discomfort. At the same time, his open-source experience has taught him standards of technical quality that very little closed software can meet.

For many years, the pragmatist point of view expressed itself within the hacker culture mainly as a stubborn current of refusal to completely buy into the GPL in particular or the FSF's agenda in general. Through the 1980s and early 1990s, this attitude tended to be associated with fans of Berkeley Unix, users of the BSD license, and the early efforts to build open-source Unixes from the BSD source base. These efforts, however, failed to build bazaar communities of significant size, and became seriously fragmented and ineffective.

Not until the Linux explosion of early 1993-1994 did pragmatism find a real power base. Although Linus Torvalds never made a point of opposing RMS, he set an example by looking benignly on the growth of a commercial Linux industry, by publicly endorsing the use of high-quality commercial software for specific tasks, and by gently deriding the more purist and fanatical elements in the culture.

A side effect of the rapid growth of Linux was the induction of a large number of new hackers for which Linux was their primary loyalty and the FSF's agenda primarily of historical interest. Though the newer wave of Linux hackers might describe the system as "the choice of a GNU generation", most tended to emulate Torvalds more than Stallman.

Increasingly it was the anti-commercial purists who found themselves in a minority. How much things had changed would not become apparent until the Netscape announcement in January 1998 that it would distribute Navigator 5.0 in source. This excited more interest in 'free software' within the corporate world. The subsequent call to the hacker culture to exploit this unprecedented opportunity and to re-label its product from 'free software' to 'open source' was met with a level of instant approval that surprised everybody involved.

In a reinforcing development, the pragmatist part of the culture was itself becoming polycentric by the mid-1990s. Other semi-independent communities with their own self-consciousness and charismatic leaders began to bud from the Unix/Internet root stock. Of these, the most important after Linux was the Perl culture under Larry Wall. Smaller, but still significant, were the traditions building up around John Osterhout's Tcl and Guido Van Rossum's Python languages. All three of these communities expressed their ideological independence by devising their own, non-GPL licensing schemes.

Promiscuous Theory, Puritan Practice

Through all these changes, nevertheless, there remained a broad consensus theory of what 'free software' or 'open source' is. The clearest expression of this common theory can be found in the various open-source licenses, all of which have crucial common elements.

In 1997 these common elements were distilled into the Debian Free Software Guidelines, which became the Open Source Definition. Under the guidelines defined by the OSD, an open-source license must protect an unconditional right of any party to modify (and redistribute modified versions of) open-source software.

Thus, the implicit theory of the OSD (and OSD-conforming licenses such as the GPL, the BSD license, and Perl's Artistic License) is that anyone can hack anything. Nothing prevents half a dozen different people from taking any given open-source product (such as, say the Free Software Foundations's gcc C compiler), duplicating the sources, running off with them in different evolutionary directions, but all claiming to be the product.

In practice, however, such 'forking' almost never happens. Splits in major projects have been rare, and always accompanied by re-labeling and a large volume of public self-justification. It is clear that, in such cases as the GNU Emacs/XEmacs split, or the gcc/egcs split, or the various fissionings of the BSD splinter groups, that the splitters felt they were going against a fairly powerful community norm.

In fact (and in contradiction to the anyone-can-hack-anything consensus theory) the open-source culture has an elaborate but largely unrecognized set of ownership customs. These customs regulate who can modify software, the circ umstances under which it can be modified, and (especially) who has the right to redistribute modified versions back to the community.

The taboos of a culture throw its norms into sharp relief. Therefore, it will be useful later on if we summarize some important ones here.

  • There is strong social pressure against forking projects. It does not happen except under plea of dire necessity, with much public self-justification, and with a renaming.
  • Distributing changes to a project without the cooperation of the moderators is frowned upon, except in special cases like essentially trivial porting fixes.
  • Removing a person's name from a project history, credits or maintainer list is absolutely not done without the person's explicit consent.

In the remainder of this paper, we shall examine these taboos and ownership customs in detail. We shall inquire not only into how they function but what they reveal about the underlying social dynamics and incentive structures of the open-source community.

Ownership and Open Source

What does 'ownership' mean when property is infinitely reproducible, highly malleable, and the surrounding culture has neither coercive power relationships nor material scarcity economics?

Actually, in the case of the open-source culture this is an easy question to answer. The owner(s) of a software project are those who have the exclusive right, recognized by the community at large, to re-distribute modified versions [1].

According to the standard open-source licenses, all parties are equals in the evolutionary game. But in practice there is a very well-recognized distinction between 'official' patches, approved and integrated into the evolving software by the publicly recognized maintainers, and 'rogue' patches by third parties. Rogue patches are unusual, and generally not trusted [2].

That public redistribution is the fundamental issue is easy to establish. Custom encourages people to patch software for personal use when necessary. Custom is indifferent to people who redistribute modified versions within a closed user or development group. It is only when modifications are posted to the open-source community in general, to compete with the original, that ownership becomes an issue.

There are, in general, three ways to acquire ownership of an open-source project. One, the most obvious, is to found the project. When a project has only one maintainer since its inception and the maintainer is still active, custom does not even permit a question as to who owns the project.

The second way is to have ownership of the project handed to you by the previous owner (this is sometimes known as 'passing the baton'). It is well understood in the community that project owners have a duty to pass projects to competent successors when they are no longer willing or able to invest needed time in development or maintenance work.

It is significant that in the case of major projects, such transfers of control are generally announced with some fanfare. While it is unheard of for the open-source community at large to actually interfere in the owner's choice of succession, customary practice clearly incorporates a premise that public legitimacy is important.

For minor projects, it is generally sufficient for a change history included with the project distribution to note the change of ownership. The clear presumption is that if the former owner has not in fact voluntarily transferred control, he or she may reassert control with community backing by objecting publicly within a reasonable period of time.

The third way to acquire ownership of a project is to observe that it needs work and the owner has disappeared or lost interest. If you want to do this, it is your responsibility to make the effort to find the owner. If you don't succeed, then you may announce in a relevant place (such as a Usenet newsgroup dedicated to the application area) that the project appears to be orphaned, and that you are considering taking responsibility for it.

Custom demands that you allow some time to pass before following up with an announcement that you have declared yourself the new owner. In this interval, if someone else announces that they have been actually working on the project, their claim trumps yours. It is considered good form to give public notice of your intentions more than once. More points for good form if you announce in many relevant forums (related newsgroups, mailing lists); and still more if you show patience in waiting for replies. In general, the more visible effort you make to allow the previous owner or other claimants to respond, the better your claim if no response is forthcoming.

If you have gone through this process in sight of the project's user community, and there are no objections, then you may claim ownership of the orphaned project and so note in its history file. This, however, is less secure than being passed the baton, and you cannot expect to be considered fully legitimate until you have made substantial improvements in the sight of the user community.

I have observed these customs in action for twenty years, going back to the pre-FSF ancient history of open-source software. They have several very interesting features. One of the most interesting is that most hackers have followed them without being fully aware of doing so. Indeed, the above may be the first conscious and reasonably complete summary ever to have been written down.

Another is that, for unconscious customs, they have been followed with remarkable (even astonishing) consistency. I have observed the evolution of literally hundreds of open-source projects, and I can still count the number of significant violations I have observed or heard about on my fingers.

Yet a third interesting feature is that as these customs have evolved over time, they have done so in a consistent direction. That direction has been to encourage more public accountability, more public notice, and more care about preserving the credits and change histories of projects in ways which (among other things) establish the legitimacy of the present owners.

These features suggest that the customs are not accidental, but are products of some kind of implicit agenda or generative pattern in the open-source culture that is utterly fundamental to the way it operates.

An early respondent pointed out that contrasting the Internet hacker culture with the cracker/pirate culture (the "warez d00dz" centered around game-cracking and pirate bulletin-board systems) illuminates the generative patterns of both rather well. We'll return to the d00dz for contrast later in the paper.

Locke and Land Title

To understand this generative pattern, it helps to notice a historical analogy for these customs that is far outside the domain of hackers' usual concerns. As students of legal history and political philosophy may recognize, the theory of property they imply is virtually identical to the Anglo-American common-law theory of land tenure.

In this theory, there are three ways to acquire ownership of land.

On a frontier, where land exists that has never had an owner, one can acquire ownership by homesteading, mixing one's labor with the unowned land, fencing it, and defending one's title.

The usual means of transfer in settled areas is transfer of title, that is receiving the deed from the previous owner. In this theory, the concept of 'chain of title' is important. The ideal proof of ownership is a chain of deeds and transfers extending back to when the land was originally homesteaded.

Finally, the common-law theory recognizes that land title may be lost or abandoned (for example, if the owner dies without heirs, or the records needed to establish chain of title to vacant land are gone). A piece of land that has become derelict in this way may be claimed by adverse possession - one moves in, improves it, and defends title as if homesteading.

This theory, like hacker customs, evolved organically in a context where central authority was weak or nonexistent. It developed over a period of a thousand years from Norse and Germanic tribal law. Because it was systematized and rationalized in the early modern era by the English political philosopher John Locke, it is sometimes referred to as the 'Lockean' theory of property.

Logically similar theories have tended to evolve wherever property has high economic or survival value and no single authority is powerful enough to force central allocation of scarce goods. This is true even in the hunter-gatherer cultures that are sometimes romantically thought to have no concept of 'property'. For example, in the traditions of the !Kung San bushmen of the Kalahari Desert, there is no ownership of hunting grounds. But there is ownership of water holes and springs under a theory recognizably akin to Locke's.

The !Kung San example is instructive, because it shows that Lockean property customs arise only where the expected return from the resource exceeds the expected cost of defending it. Hunting grounds are not property because the return from hunting is highly unpredictable and variable, and (although highly prized) not a necessity for day-to-day survival. Water holes, on the other hand, are vital to survival and small enough to defend.

The 'noosphere' of this paper's title is the territory of ideas, the space of all possible thoughts [3]. What we see implied in hacker ownership customs is a Lockean theory of property rights in one subset of the noosphere, the space of all programs. Hence 'homesteading the noosphere', which is what every founder of a new open-source project does.

Fare Rideau correctly points out that hackers do not exactly operate in the territory of pure ideas. He asserts that hackers really only own programming projects - intense focus points of material labor (development, service, etc); reputation, trustworthiness, and other individual traits are then associated with these projects. He asserts that the space spanned by hacker projects, is not the noosphere but a sort of dual of it, the space of noosphere-exploring program projects. With a nod to astrophysicists, it would be etymologically correct to call this dual space the 'ergosphere' or 'sphere of work'.

In practice, the distinction between noosphere and ergosphere is not important for the purposes of this paper. It is dubious whether the 'noosphere' in the pure sense Fare insists on can be said to exist in any meaningful way; one would almost have to be a Platonist philosopher to believe in it. And the distinction between noosphere and ergosphere is only of practical importance if one wishes to assert that ideas (the elements of the noosphere) cannot be owned, but their instantiations as projects can. This question leads to issues in the theory of intellectual property which are beyond the scope of this paper.

To avoid confusion, however, it is important to note that neither the noosphere nor the ergosphere is the same as the totality of virtual locations in electronic media that is sometimes (to the disgust of most hackers) called 'cyberspace'. Property there is regulated by completely different rules that are closer to those of the material substratum - essentially, he who owns the media and machines on which a part of 'cyberspace' is hosted owns that piece of cyberspace as a result.

The Lockean structure suggests strongly that open-source hackers observe the customs they do in order to defend some kind of expected return from their effort. The return must be more significant than the effort of homesteading projects, the cost of maintaining version histories that document 'chain of title', and the time cost of doing public notifications and a waiting period before taking adverse possession of an orphaned project.

Furthermore, the 'yield' from open source must be something more than simply the use of the software, something else that would be compromised or diluted by forking. If use were the only issue, there would be no taboo against forking, and open-source ownership would not resemble land tenure at all. In fact, this alternate world (where use is the only yield) is the one implied by existing open-source licenses.

We can eliminate some candidate kinds of yield right away. Because you can't coerce effectively over a network connection, seeking power is right out. Likewise, the open-source culture doesn't have anything much resembling money or an internal scarcity economy, so hackers cannot be pursuing anything very closely analogous to material wealth.

There is one way that open-source activity can help people become wealthier, however - a way that provides a valuable clue to what actually motivates it. Occasionally, the reputation one gains in the hacker culture can spill over into the real world in economically significant ways. It can get you a better job offer, or a consulting contract, or a book deal.

This kind of side effect, however, is at best rare and marginal for most hackers; far too much so to make it convincing as a sole explanation, even if we ignore the repeated protestations by hackers that they're doing what they do not for money but out of idealism or love.

However, the way such economic side-effects are mediated is worth examination. Below we'll see that an understanding of the dynamics of reputation within the open-source culture itself has considerable explanatory power

The Hacker Culture as Gift Economy

To understand the role of reputation in the open-source culture, it is helpful to move from history further into anthropology and economics, and examine the difference between exchange cultures and gift cultures.

Humans have an innate drive to compete for social status; it's wired in by our evolutionary history. For most human history before the invention of agriculture, our ancestors lived in small nomadic hunting-gathering bands. High-status individuals got the healthiest mates and access to the best food. This drive for status expresses itself in different ways, depending largely on the degree of scarcity of survival goods.

Most ways humans have of organizing are adaptations to scarcity and want. Each way carries with it different ways of gaining social status.

The simplest way is the command hierarchy. In command hierarchies, allocation of scarce goods is done by one central authority and backed up by force. Command hierarchies scale very poorly [4]; they become increasingly brutal and inefficient as they get larger. For this reason, command hierarchies above the size of an extended family are almost always parasites on a larger economy of a different type. In command hierarchies, social status is primarily determined by access to coercive power.

Our society is predominantly an exchange economy. This is a sophisticated adaptation to scarcity that, unlike the command model, scales quite well. Allocation of scarce goods is done in a decentralized way through trade and voluntary cooperation (and in fact, the dominating effect of competitive desire is to produce cooperative behavior). In an exchange economy, social status is primarily determined by having control of things (not necessarily material things) to use or trade.

Most people have implicit mental models for both of the above, and how they interact with each other. Government, the military, and organized crime (for example) are command hierarchies parasitic on the broader exchange economy we call 'the free market'. There's a third model, however, that is radically different from either and not generally recognized except by anthropologists; the gift culture.

Gift cultures are adaptations not to scarcity but to abundance. They arise in populations that do not have significant material-scarcity problems with survival goods. We can observe gift cultures in action among aboriginal cultures living in ecozones with mild climates and abundant food. We can also observe them in certain strata of our own society, especially in show business and among the very wealthy.

Abundance makes command relationships difficult to sustain and exchange relationships an almost pointless game. In gift cultures, social status is determined not by what you control but by what you give away.

Thus the Kwakiutl chieftain's potlach party. Thus the multi-millionaire's elaborate and usually public acts of philanthropy. And thus the hacker's long hours of effort to produce high-quality open source.

Examined in this way, it is quite clear that the society of open-source hackers is in fact a gift culture. Within it, there is no serious shortage of the 'survival necessities' - disk space, network bandwidth, computing power. Software is freely shared. This abundance creates a situation in which the only available measure of competitive success is reputation among one's peers.

This observation is not in itself entirely sufficient to explain the observed features of hacker culture, however. The cracker d00dz have a gift culture which thrives in the same (electronic) media as that of the hackers, but their behavior is very different. The group mentality in their culture is much stronger and more exclusive than among hackers. They hoard secrets rather than sharing them; one is much more likely to find cracker groups distributing sourceless executables that crack software than tips that give away how they did it.

What this shows, in case it wasn't obvious, is that there is more than one way to run a gift culture. History and values matter. I have summarized the history of the hacker culture elsewhere [5]; the ways in which it shaped present behavior are not mysterious. Hackers have defined their culture by set of choices about the form which their competition will take. It is that form which we will examine in the remainder of this paper.

The Joy of Hacking

In making this 'reputation game' analysis, by the way, I do not mean to devalue or ignore the pure artistic satisfaction of designing beautiful software and making it work. We all experience this kind of satisfaction and thrive on it. People for whom it is not a significant motivation never become hackers in the first place, just as people who don't love music never become composers.

So perhaps we should consider another model of hacker behavior in which the pure joy of craftsmanship is the primary motivation. This 'craftsmanship' model would have to explain hacker custom as a way of maximizing both the opportunities for craftsmanship and the quality of the results. Does this conflict with or suggest different results than the 'reputation game' model?

Not really. In examining the 'craftsmanship' model, we come back to the same problems that constrain hackerdom to operate like a gift culture. How can one maximize quality if there is no metric for quality? If scarcity economics doesn't operate, what metrics are available besides peer evaluation? It appears that any craftsmanship culture ultimately must structure itself through a reputation game - and, in fact, we can observe exactly this dynamic in many historical craftsmanship cultures from the medieval guilds onwards.

In one important respect, the 'craftsmanship' model is weaker than the 'gift culture' model; by itself, it doesn't help explain the contradiction we initially described at the start of this paper.

Finally, the 'craftsmanship' motivation itself may not be psychologically as far removed from the reputation game as we might like to assume. Imagine your beautiful program locked up in a drawer and never used again. Now imagine it being used effectively and with pleasure by many people. Which dream gives you satisfaction?

Nevertheless, we'll keep an eye on the craftsmanship model. It is intuitively appealing to many hackers, and explains some aspects of individual behavior well enough.

After I published the first version of this paper, an anonymous respondent commented: "You may not work to get reputation, but the reputation is a real payment with consequences if you do the job well." This is a subtle and important point. The reputation incentives continue to operate whether or not a craftsman is aware of them; thus, ultimately, whether or not a hacker understands his own behavior as part of the reputation game, his behavior will be shaped by that game.

The Many Faces of Reputation

There are reasons general to every gift culture why peer repute (prestige) is worth playing for.

First and most obviously, good reputation among one's peers is a primary reward. We're wired to experience it that way for evolutionary reasons touched on earlier. Many people learn to redirect their drive for prestige into various sublimations that have no obvious connection to a visible peer group, such as "honor", "ethical integrity", "piety", etc.; this does not change the underlying mechanism.

Secondly, prestige is a good way (and in a pure gift economy, the only way) to attract attention and cooperation from others. If one is well known for generosity, intelligence, fair dealing, leadership ability, or other good qualities, it becomes much easier to persuade other people that they will gain by association with you.

Thirdly, if your gift economy is in contact with or intertwined with an exchange economy or a command hierarchy, your reputation may spill over and earn you higher status there.

Beyond these general reasons, the peculiar conditions of the hacker culture make prestige even more valuable than it would be in a 'real world' gift culture.

The main 'peculiar condition' is that the artifacts one gives away (or, interpreted another way, are the visible sign of one's gift of energy and time) are very complex. Their value is nowhere near as obvious as that of material gifts or exchange-economy money. It is much harder to objectively distinguish a fine gift from a poor one. Accordingly, the success of a giver's bid for status is delicately dependent on the critical judgement of peers.

Another peculiarity is the relative purity of the open-source culture. Most gift cultures are compromised - either by exchange-economy relationships such as trade in luxury goods, or by command-economy relationships such as family or clan groupings. No significant analogues of these exist in the open-source culture; thus, ways of gaining status other than by peer repute are virtually absent.

Ownership Rights and Reputation Incentives

We are now in a position to pull together the previous analyses into a coherent account of hacker ownership customs. We understand the yield from homesteading the noosphere now; it is peer repute in the gift culture of hackers, with all the secondary gains and side-effects that implies.

From this understanding, we can analyze the Lockean property customs of hackerdom as a means of maximizing reputation incentives; of ensuring that peer credit goes where it is due and does not go where it is not due.

The three taboos we observed above make perfect sense under this analysis. One's reputation can suffer unfairly if someone else misappropriates or mangles one's work; these taboos (and related customs) attempt to prevent this from happening.

All three of these taboo behaviors inflict global harm on the open-source community as well as local harm on the victim(s). Implicitly they damage the entire community by decreasing each potential contributor's perceived likelihood that gift/productive behavior will be rewarded.

It's important to note that there are alternate candidate explanations for two of these three taboos.

First, hackers often explain their antipathy to forking projects by bemoaning the wasteful duplication of work it would imply as the child products evolved in more-or-less parallel into the future. They may also observe that forking tends to split the co-developer community, leaving both child projects with fewer brains to work with than the parent.

A respondent has pointed out that it is unusual for more than one offspring of a fork to survive with significant 'market share' into the long term. This strengthens the incentives for all parties to cooperate and avoid forking, because it's hard to know in advance who will be on the losing side and see a lot of their work either disappear entirely or languish in obscurity.

Dislike of rogue patches is often explained by observing that they can complicate bug-tracking enormously, and inflict work on maintainers who have quite enough to do catching their own mistakes.

There is considerable truth to these explanations, and they certainly do their bit to reinforce the Lockean logic of ownership. But while intellectually attractive, they fail to explain why so much emotion and territoriality gets displayed on the infrequent occasions that the taboos get bent or broken - not just by the injured parties, but by bystanders and observers who often react quite harshly. Cold-blooded concerns about duplication of work and maintenance hassles simply do not sufficiently explain the observed behavior.

Then, too, there is the third taboo. It's hard to see how anything but the reputation-game analysis can explain this. The fact that this taboo is seldom analyzed much more deeply than "It wouldn't be fair" is revealing in its own way, as we shall see in the next section.

The Problem of Ego

At the beginning of the paper I mentioned that the unconscious adaptive knowledge of a culture is often at odds with its conscious ideology. We've seen one major example of this already in the fact that Lockean ownership customs have been widely followed despite the fact that they violate the stated intent of the standard licenses.

I have observed another interesting example of this phenomenon when discussing the reputation-game analysis with hackers. This is that many hackers resisted the analysis and showed a strong reluctance to admit that their behavior was motivated by a desire for peer repute or, as I incautiously labeled it at the time, 'ego satisfaction'.

This illustrates an interesting point about the hacker culture. It consciously distrusts and despises egotism and ego-based motivations; self-promotion tends to be mercilessly criticized, even when the community might appear to have something to gain from it. So much so, in fact, that the culture's 'big men' and tribal elders are required to talk softly and humorously deprecate themselves at every turn in order to maintain their status. How this attitude meshes with an incentive structure that apparently runs almost entirely on ego cries out for explanation.

A large part of it, certainly, stems from the generally negative Europo-American attitude towards 'ego'. The cultural matrix of most hackers teaches them that desiring ego satisfaction is a bad (or at least immature) motivation; that ego is at best an eccentricity tolerable only in prima-donnas and often an actual sign of mental pathology. Only sublimated and disguised forms like "peer repute", "self-esteem", "professionalism" or "pride of accomplishment" are generally acceptable.

I could write an entire other essay on the unhealthy roots of this part of our cultural inheritance, and the astonishing amount of self-deceptive harm we do by believing (against all the evidence of psychology and behavior) that we ever have truly 'selfless' motives. Perhaps I would, if Friedrich Wilhelm Nietzsche and Ayn Rand had not already done an entirely competent job (whatever their other failings) of deconstructing 'altruism' into unacknowledged kinds of self-interest.

But I am not doing moral philosophy or psychology here, so I will simply observe one minor kind of harm done by the belief that ego is evil, which is this: it has made it emotionally difficult for many hackers to consciously understand the social dynamics of their own culture.

But we are not quite done with this line of investigation. The surrounding culture's taboo against visibly ego-driven behavior is so much intensified in the hacker (sub)culture that one must suspect it of having some sort of special adaptive function for hackers. Certainly the taboo is weaker among many other gift cultures, such as the peer cultures of theater people or the very wealthy.

The Value of Humility

Having established that prestige is central to the hacker culture's reward mechanisms, we now need to understand why it has seemed so important that this fact remain semi-covert and largely unadmitted.

The contrast with the pirate culture is instructive. In that culture, status-seeking behavior is overt and even blatant. These crackers seek acclaim for releasing "zero-day warez" (cracked software redistributed on the day of the original uncracked version's release) but are closemouthed about how they do it. These magicians don't like to give away their tricks. And, as a result, the knowledge base of the cracker culture as a whole increases only slowly.

In the hacker community, by contrast, one's work is one's statement. There's a very strict meritocracy (the best craftsmanship wins) and there's a strong ethos that quality should (indeed must) be left to speak for itself. The best brag is code that "just works", and that any competent programmer can see is good stuff. Thus, the hacker culture's knowledge base increases rapidly.

A taboo against ego-driven posturing therefore increases productivity. But that's a second-order effect; what is being directly protected here is the quality of the information in the community's peer-evaluation system. That is, boasting or self-importance is suppressed because it behaves like noise tending to corrupt the vital signals from experiments in creative and cooperative behavior.

The hacker culture's medium of gifting is intangible, its communications channels are poor at expressing emotional nuance, and face-to-face contact among its members is the exception rather than the rule. This gives it a lower tolerance of noise than most other gift cultures, and goes a long way to explain the example in public humility required of its tribal elders.

Talking softly is also functional if one aspires to be a maintainer of a successful project; one must convince the community that one has good judgement, because most of the maintainer's job is going to be judging other people's code. Who would be inclined to contribute work to someone who clearly can't judge the quality of their own code, or whose behavior suggests they will attempt to unfairly hog the reputation return from the project? Potential contributors want project leaders with enough humility and class be able to say, when objectively appropriate, "Yes, that does work better than my version, I'll use it" - and to give credit where credit is due.

Yet another reason for humble behavior is that in the open source world, you seldom want to give the impression that a project is 'done'. This might lead a potential contributor not to feel needed. The way to maximize your leverage is to be humble about the state of the program. If one does one's bragging through the code, and then says "Well shucks, it doesn't do x, y, and z, so it can't be that good", patches for x, y, and z will often swiftly follow.

Finally, I have personally observed that the self-deprecating behavior of some leading hackers reflects a real (and not unjustified) fear of becoming the object of a personality cult. Linus Torvalds and Larry Wall both provide clear and numerous examples of such avoidance behavior. Once on a dinner expedition with Larry Wall I joked "You're the alpha hacker here - you get to pick the restaurant." He flinched audibly. And rightly so; failing to distinguish their shared values from their leaders has ruined a good many communities, a pattern of which he and Linus cannot fail to be fully aware. On the other hand, most hackers would love to have Larry's problem, if they could but bring themselves to admit it.

Global Implications of the Reputation-Game Model

The reputation-game analysis has some more implications that may not be immediately obvious. Many of these derive from the fact that one gains more prestige from founding a successful project than from cooperating in an existing one. One also gains more from projects which are strikingly innovative, as opposed to being 'me, too' incremental improvements on software that already exists. On the other hand, software that nobody but the author understands or has a need for is a non-starter in the reputation game, and it's often easier to attract good notice by contributing to an existing project than it is to get people to notice a new one. Finally, it's much harder to compete with an already successful project than it is to fill an empty niche.

Thus, there's an optimum distance from one's neighbors (the most similar competing projects). Too close and one's product will be a 'me, too!' of limited value, a poor gift (one would be better off contributing to an existing project). Too far away, and nobody will be able to use, understand, or perceive the relevance of one's effort (again, a poor gift). This creates a pattern of homesteading in the noosphere that rather resembles that of settlers spreading into a physical frontier - not random, but like a diffusion-limited fractal wave. Projects tend to get started to fill functional gaps near the frontier.

Some very successful projects become 'category killers'; nobody wants to homestead anywhere near them because competing against the established base for the attention of hackers would be too hard. People who might otherwise found their own distinct efforts end up, instead, adding extensions for these big, successful projects. The classic 'category killer' example is GNU Emacs; its variants fill the ecological niche for a fully-programmable editor so completely that nobody has even attempted a truly different design since the early 1980s. Instead, people write Emacs modes.

Globally, these two tendencies (gap-filling and category-killers) have driven a broadly predictable trend in project starts over time. In the 1970s most of the open source that existed was toys and demos. In the 1980s the push was in development and Internet tools. In the 1990s the action shifted to operating systems. In each case, a new and more difficult level of problems was attacked when the possibilities of the previous one had been nearly exhausted.

This trend has interesting implications for the near future. In early 1998, Linux looks very much like a category-killer for the niche 'free operating systems' - people who might otherwise write competing OSs are now writing Linux device drivers and extensions instead. And most of the lower-level tools the culture ever imagined having as open-source already exist. What's left?

Applications. As the year 2000 approaches, it seems safe to predict that open-source development effort will increasingly shift towards the last virgin territory - programs for non-techies. A clear early indicator is the developmentof GIMP, the Photoshop-like image workshop that is open source's first major application with the kind of end-user-friendly GUI interface considered de rigeur in commercial applications for the last decade. Another is the amount of buzz surrounding application-toolkit projects like KDE and GNOME.

Finally, the reputation-game analysis explains the oft-cited dictum that you do not become a hacker by calling yourself a hacker - you become a hacker when other hackers call you a hacker. A 'hacker', considered in this light, is somebody who has shown (by contributing gifts) that he or she both has technical ability and understands how the reputation game works. This judgement is mostly one of awareness and acculturation, and can only be delivered by those already well inside the culture.

Noospheric Property and the Ethology of Territory

To understand the consequences of property customs, it will help us to look at them from yet another angle; that of animal ethology, specifically the ethology of territory.

Property is an abstraction of animal territoriality, which evolved as a way of reducing intra-species violence. By marking his bounds, and respecting the bounds of others, a wolf diminishes his chances of being in a fight which could weaken or kill him and make him less reproductively successful.

Similarly, the function of property in human societies is to prevent inter-human conflict by setting bounds that clearly separate peaceful behavior from aggression. It is sometimes fashionable to describe human property as an arbitrary social convention, but this is dead wrong. Anybody who has ever owned a dog who barked when strangers came near its owner's property has experienced the essential continuity between animal territoriality and human property. Our domesticated cousins of the wolf are instinctively smarter about this than a good many human political theorists.

Claiming property (like marking territory) is a performative act, a way of declaring what boundaries will be defended. Community support of property claims is a way to minimize friction and maximize cooperative behavior. These things remain true even when the "property claim" is much more abstract than a fence or a dog's bark, even when it's just the statement of the project maintainer's name in a README file. It's still an abstraction of territoriality, and (like other forms of property) our instinct-founded models of property are territorial ones evolved to assist conflict resolution.

This ethological analysis at first seems very abstract and difficult to relate to actual hacker behavior. But it has some important consequences. One is in explaining the popularity of World Wide Web sites, and especially why open-source projects with Web sites seem so much more 'real' and substantial than those without them.

Considered objectively, this seems hard to explain. Compared to the effort involved in originating and maintaining even a small program, a Web page is easy, so it's hard to consider a Web page evidence of substance or unusual effort.

Nor are the functional characteristics of the Web itself sufficient explanation. The communication functions of a Web page can be as well or better served by a combination of an FTP site, a mailing list, and Usenet postings. In fact it's quite unusual for a project's routine communications to be done over the Web rather than via a mailing list or newsgroup. Why, then, the popularity of Web sites as project homes?

The metaphor implicit in the term 'home page' provides an important clue. While founding an open-source project is a territorial claim in the noosphere (and customarily recognized as such) it is not a terribly compelling one on the psychological level. Software, after all, has no natural location and is instantly reproducible. It's assimilable to our instinctive notions of 'territory' and 'property', but only after some effort.

A project home page concretizes an abstract homesteading in the spac e of possible programs by expressing it as 'home' territory in the more spatially-organized realm of the World Wide Web. Descending from the noosphere to 'cyberspace' doesn't get us all the way to the real world of fences and barking dogs yet, but it does hook the abstract property claim more securely to our instinctive wiring about territory. And this is why projects with Web pages seem more 'real'.

This ethological analysis also encourages us to look more closely at mechanisms for handling conflict in the open-source culture. It leads us to expect that, in addition to maximizing reputation incentives, ownership customs should also have a role in preventing and resolving conflicts.

Causes of Conflict

In conflicts over open-source software we can identify four major issues:

  • Who gets to make binding decisions about a project?
  • Who gets credit or blame for what?
  • How to reduce duplication of effort and prevent rogue versions from complicating bug tracking?
  • What is the Right Thing, technically speaking?

If we take a second look at the "What is the Right Thing" issue, however, it tends to vanish. For any such question, either there is an objective way to decide what is accepted by all parties or there isn't. If there is, the game is over and everybody wins. If there isn't, it reduces to "who decides?"

Accordingly, the three problems a conflict-resolution theory has to resolve about a project are (A) where the buck stops on design decisions, (B) how to decide which contributors are credited and how, and (C) how to keep a project group and product from fissioning into multiple branches.

The role of ownership customs in resolving issues (A) and (C) is clear. Custom affirms that the owners of the project make the binding decisions. We have previously observed that custom also exerts heavy pressure against dilution of ownership by forking.

It's instructive to notice that these customs make sense even if one forgets the reputation game and examines them from within a pure 'craftmanship' model of the hacker culture. ......

评论

相关推荐

    Top Homesteading Blogs-crx插件

    语言:English ...草原家园1.4 Weedemandreap.com 1.5 Fresheggsdaily.com 1.6 Thefrugalchicken.com 1.7小房子生活1.8 Purelivingforlife.com 1.9现代家园1.10 Homestead-Honey.com 1.11 The Grownetwork....

    基于FPGA的四相八拍步进电机控制系统设计:集成交付、正反转、加速减速及调速功能

    内容概要:本文详细介绍了基于FPGA的四相八拍步进电机控制系统的开发过程。主要内容包括:1. 使用VHDL和Verilog编写LED显示屏驱动代码,用于显示角度、学号和姓名等信息;2. 实现步进电机的正反转控制,通过状态机管理相序变化;3. 开发加速减速控制模块,确保电机启动和停止时的平稳性;4. 设计调速功能,通过调节脉冲频率实现速度控制。此外,文中还讨论了调试过程中遇到的问题及其解决方案。 适合人群:对FPGA开发和步进电机控制感兴趣的电子工程师、嵌入式系统开发者以及相关专业的学生。 使用场景及目标:适用于需要高精度运动控制的应用场合,如工业自动化、机器人技术和精密仪器等领域。目标是帮助读者掌握FPGA控制步进电机的基本原理和技术细节。 其他说明:文中提供了详细的代码片段和调试经验分享,有助于读者更好地理解和应用所学知识。同时,作者还提到了一些实用技巧,如通过PWM调节实现多级变速,以及如何避免步进电机的共振问题。

    Android开发:基于SQLite的日历备忘录记事本项目详解与实现

    内容概要:本文详细介绍了基于Android Studio开发的日历备忘录记事本项目,涵盖日历查看、添加备忘录、闹钟提醒和删除备忘录等功能。项目使用SQLite数据库进行数据存储,通过CalendarView、EditText、Button等控件实现用户交互,并利用AlarmManager和PendingIntent实现闹钟提醒功能。此外,项目还包括数据库的设计与管理,如创建DatabaseHelper类来管理数据库操作,确保数据的安全性和完整性。文章还探讨了一些常见的开发技巧和注意事项,如时间戳的使用、手势监听的实现等。 适用人群:适用于初学者和有一定经验的Android开发者,尤其是希望深入了解Android开发基础知识和技术细节的人群。 使用场景及目标:该项目旨在帮助开发者掌握Android开发的基本技能,包括UI设计、数据库操作、闹钟提醒机制等。通过实际项目练习,开发者能够更好地理解和应用这些技术,提升自己的开发能力。 其他说明:文中提到一些进阶任务,如用Room替换SQLite、增加分类标签、实现云端同步等,鼓励开发者进一步扩展和优化项目。同时,项目源码公开,便于学习和参考。

    Matlab实现基于SVM-Adaboost支持向量机结合Adaboost集成学习时间序列预测的详细项目实例(含完整的程序,GUI设计和代码详解)

    内容概要:本文档详细介绍了一个基于SVM(支持向量机)和Adaboost集成学习的时间序列预测项目。该项目旨在通过结合这两种强大算法,提升时间序列预测的准确性和稳定性。文档涵盖了项目的背景、目标、挑战及其解决方案,重点介绍了模型架构、数据预处理、特征选择、SVM训练、Adaboost集成、预测与误差修正等环节。此外,文档还探讨了模型在金融市场、气象、能源需求、交通流量和医疗健康等多个领域的应用潜力,并提出了未来改进的方向,如引入深度学习、多任务学习、联邦学习等先进技术。 适合人群:具备一定机器学习基础的研究人员和工程师,特别是那些从事时间序列预测工作的专业人士。 使用场景及目标:①用于金融市场、气象、能源需求、交通流量和医疗健康等领域的复杂时间序列数据预测;②通过结合SVM和Adaboost,提升预测模型的准确性和稳定性;③处理噪声数据,降低计算复杂度,提高模型的泛化能力和实时预测能力。 其他说明:文档不仅提供了详细的理论解释,还附有完整的Matlab代码示例和GUI设计指导,帮助读者理解和实践。此外,文档还讨论了模型的部署与应用,包括系统架构设计、实时数据流处理、可视化界面、GPU加速推理等方面的技术细节。

    #游戏之追逐奶酪123

    #游戏之追逐奶酪123

    威纶通触摸屏配方管理系统解析:宏程序、数据结构与UI设计

    内容概要:本文详细介绍了威纶通触摸屏配方管理系统的实现方法及其应用场景。首先,文章讲解了配方管理的基本概念和技术背景,强调了配方管理在工业自动化中的重要性。接着,通过具体的宏程序代码示例,展示了如何实现配方的保存、加载以及安全校验等功能。文中还提到配方数据结构的设计,如使用寄存器地址偏移来确保数据不冲突,并通过CSV文件格式方便地管理和维护配方数据。此外,文章深入探讨了UI设计方面的内容,包括动态图层技术和按钮交互效果的应用,使得用户界面更加友好和直观。最后,作者分享了一些实际项目中的经验和技巧,如文件操作的异常处理和宏指令调试方法。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对触摸屏配方管理系统感兴趣的读者。 使用场景及目标:适用于需要频繁切换设备参数的生产环境,如食品加工、注塑成型等行业。通过使用威纶通触摸屏配方管理系统,可以提高工作效率,减少人为错误,同时简化设备调试和维护流程。 其他说明:附带的工具包提供了完整的宏指令注释版、图库资源和调试工具,帮助用户更好地理解和应用该系统。

    张彩明-图形学简明教程 配书资源

    张彩明-图形学简明教程 PPT课件

    计算机术语.pdf

    计算机术语.pdf

    基于改进粒子群算法的微电网多目标优化调度模型与算法分析

    内容概要:本文详细介绍了利用改进粒子群算法(IPSO)进行微电网多目标优化调度的方法和技术。首先指出了传统粒子群算法(PSO)存在的局限性,如初始化随机性和易陷入局部最优等问题。接着提出了多种改进措施,包括混沌映射初始化、动态权重调整、自适应变异以及引入帕累托前沿机制等。文中通过具体的代码实例展示了这些改进的具体实现,并通过实验验证了改进后的算法在处理微电网优化调度问题时的有效性,尤其是在应对风光发电不确定性方面表现突出。此外,文章还讨论了实际应用场景中的约束处理方法,如功率平衡约束的修复策略,确保理论与实践相结合。 适合人群:对智能优化算法及其在电力系统特别是微电网中的应用感兴趣的科研人员、工程师及研究生。 使用场景及目标:适用于需要对微电网进行多目标优化调度的研究和工程项目,旨在提高微电网运行效率,降低成本并减少环境污染。通过学习本文提供的改进算法和技术手段,能够更好地理解和掌握如何针对特定业务场景定制化地改进经典优化算法。 其他说明:文章不仅提供了详细的理论分析和算法改进思路,还包括了大量的代码片段和实验结果,有助于读者深入理解并快速应用于实际项目中。

    S7-1200 PLC与组态王实现7车位3x3立体车库控制系统

    内容概要:本文详细介绍了基于西门子S7-1200 PLC和组态王的7车位3x3升降横移立体车库控制系统的设计与实现。主要内容涵盖IO分配、梯形图程序、接线图、组态画面设计以及安全防护逻辑等方面。文中强调了硬件互锁、软件互锁、模块化编程、精确控制和平移控制等关键技术点,并分享了一些调试经验和注意事项。此外,还讨论了光电传感器误触发、急停按钮处理、故障记录等实际应用中的挑战及其解决方案。 适合人群:从事工业自动化领域的工程师和技术人员,特别是熟悉PLC编程和组态软件使用的专业人员。 使用场景及目标:适用于需要设计和实施立体车库控制系统的工程项目。目标是帮助读者掌握S7-1200 PLC与组态王的具体应用方法,提高系统可靠性和安全性。 其他说明:文中提供了详细的代码片段和配置示例,有助于读者更好地理解和实践相关技术。同时,作者分享了许多宝贵的实战经验,对于初学者和有一定经验的技术人员都非常有价值。

    数据结构解析:线性表顺序表示的原理、操作及应用

    内容概要:本文详细介绍了线性表及其顺序表示的概念、原理和操作。线性表作为一种基础数据结构,通过顺序表示将元素按顺序存储在连续的内存空间中。文中解释了顺序表示的定义与原理,探讨了顺序表与数组的关系,并详细描述了顺序表的基本操作,包括初始化、插入、删除和查找。此外,文章分析了顺序表的优点和局限性,并讨论了其在数据库索引、图像处理和嵌入式系统中的实际应用。最后,对比了顺序表和链表的性能特点,帮助读者根据具体需求选择合适的数据结构。 适合人群:计算机科学专业的学生、软件开发人员以及对数据结构感兴趣的自学者。 使用场景及目标:①理解线性表顺序表示的原理和实现;②掌握顺序表的基本操作及其时间复杂度;③了解顺序表在实际应用中的优势和局限性;④学会根据应用场景选择合适的数据结构。 其他说明:本文不仅提供了理论知识,还附带了具体的代码实现,有助于读者更好地理解和实践线性表的相关概念和技术。

    计算机数学1 -5 重言式与蕴含式.pdf

    计算机数学1 -5 重言式与蕴含式.pdf

    风电永磁直驱发电并网系统的控制策略与仿真建模

    内容概要:本文详细介绍了风电永磁直驱发电并网系统的构成及其关键控制部分。首先探讨了真实的风速模型构建方法,利用MATLAB生成带有随机扰动和突风成分的风速曲线,用于模拟自然界的风况。接着深入解析了永磁电机的转速控制机制,特别是最大功率点跟踪(MPPT)算法的具体实现方式,以及如何通过PI控制器调节电磁转矩。随后讨论了并网过程中LCL滤波器的设计要点,确保谐波失真小于3%的同时保持系统稳定性。此外,还涉及到了网侧变流器的锁相环(PLL)设计,增强了其在电网电压跌落情况下的快速跟踪能力。最后讲述了整套系统联调时遇到的问题及解决方案,如协同惯量控制策略应对电网扰动等。 适合人群:从事风力发电研究的技术人员、高校相关专业师生、对新能源发电感兴趣的工程爱好者。 使用场景及目标:适用于希望深入了解永磁直驱风力发电系统的工作原理和技术细节的人群。目标是掌握从风速建模到最终并网控制的完整流程,能够独立进行系统仿真和优化。 其他说明:文中提供了大量具体的代码示例,涵盖MATLAB、Python、C等多种编程语言,有助于读者更好地理解和实践所介绍的内容。

    《基于yolov8的昆虫检测识别检测项目》(包含源码、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,包含核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、数据集、部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.dataset.txt文件,仅供学习参考, 切勿用于商业用途。

    辞郁报表设计器(2025-03-30)

    本程序使用于:思迅软件、科脉软件、百威软件、泰格软件、嬴通软件等。 安装配置完连接参数后,用默认管理员账号:辞郁,密码:ciyu登录,主界面左上角,双击输入管理员辞郁密码:ciyu 进入设计模式。下载内容中有详细示例截图。 辞郁POP打印工具是一款专业的打印解决方案,主要针对零售行业的商品POP促销单。它支持多种零售软件系统,包括但不限于思迅软件、科脉软件、百威软件、泰格软件和嬴通软件。这种工具的出现极大地便利了零售业者在商品推广和营销方面的操作,通过快速生成并打印商品促销单,帮助商家更好地吸引顾客、提升销售业绩。

    基于蒙特卡洛法的电动汽车负荷预测模型及其MATLAB实现与分析

    内容概要:本文详细介绍了利用蒙特卡洛法对电动汽车负荷进行预测的方法。首先解释了基本原理,即通过建立电动汽车出行时间、行驶里程和充电时间的概率模型,采用蒙特卡洛法进行抽样并累加每辆车的充电负荷,从而得出负荷预测结果。随后展示了具体的MATLAB代码实现,包括初始化参数设置、蒙特卡洛仿真循环、结果处理和可视化。代码中涉及到随机数生成、概率分布、数组操作等关键技术点。通过对不同类型的电动汽车(如私家车和出租车)进行建模,模拟了它们的充电行为,并分析了充电负荷的时间分布特点。最后讨论了模型的可扩展性和改进方向,如引入智能充电策略等。 适合人群:对电力系统、电动汽车技术和蒙特卡洛仿真方法感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和评估电动汽车对电网的影响,帮助规划和设计充电基础设施,确保电网稳定运行。同时,也为进一步优化充电策略提供了理论支持。 其他说明:文中提供的MATLAB代码可以作为学习和研究的基础,用户可以根据具体情况进行修改和完善。此外,还提到了一些常见的编程技巧和注意事项,有助于提高代码质量和效率。

    基于Python的电网故障仿真:序分量分析与应用

    内容概要:本文详细介绍了如何利用Python进行电网故障仿真,重点在于不同类型故障(单相接地、相间短路、相间短路接地)下的序分量分析。文中首先准备了必要的工具包,定义了系统参数,并通过具体的代码实例展示了如何计算和可视化各种故障状态下的正序、负序和零序分量。此外,还讨论了不同类型的故障对序分量的具体影响及其在继电保护中的应用。通过这些仿真,能够更好地理解和预测保护装置的动作特性。 适合人群:从事电力系统分析、继电保护设计以及相关领域的工程师和技术人员。 使用场景及目标:适用于研究和开发电力系统的故障检测和保护机制,帮助工程师们优化继电保护装置的参数设置,提高电力系统的稳定性和可靠性。 其他说明:文章强调了仿真过程中需要注意的关键点,如接地电阻设置、变压器接线方式、线路参数单位等,确保仿真结果的准确性。同时,提供了多个代码片段作为参考,便于读者快速上手实践。

    使用量子退火来优化6G网络中的路径选择-Quantum Annealing to optimize path selection in a 6G network-matlab

    6G中基于量子计算的路由 该代码使用量子退火来优化6G网络中的路径选择 基于图的网络,在考虑干扰和拥塞的同时,根据最短路径优化路由路径。

    S7-1200 PLC系统中Modbus RTU轮询、PLC间数据交互及流量PID控制的技术实现

    内容概要:本文详细介绍了基于西门子S7-1200 PLC系统的三个核心技术实现:Modbus RTU轮询、PLC间数据交互以及流量PID控制。对于Modbus RTU轮询,作者通过构建设备地址池并利用数组索引作为指针来高效管理39个不同类型设备的通信,确保了稳定的轮询机制。PLC间的S7通讯则通过精心规划DB块映射,实现了高效可靠的数据交换。而在流量PID控制方面,作者不仅解决了流量计信号毛刺的问题,还引入了前馈补偿以应对阀门间的耦合效应,最终达到了精确的流量控制。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些正在使用或计划使用S7-1200 PLC进行复杂项目开发的人士。 使用场景及目标:适用于需要处理大量Modbus设备轮询、实现PLC间高效数据交互以及精准流量控制的工业自动化项目。目标是在提高系统稳定性的同时,优化各个功能模块的工作效率。 其他说明:文中提供了丰富的代码片段和实践经验分享,帮助读者更好地理解和应用相关技术。同时强调了一些容易忽视的关键细节,如设备地址池的设计、DB块的正确配置以及PID参数调整等。

    基于三菱PLC的注塑机控制系统设计:梯形图编程与触摸屏组态详解

    内容概要:本文详细介绍了基于三菱PLC的注塑机控制系统的设计方法,涵盖接线图与IO分配、梯形图程序设计以及触摸屏组态设计。首先明确了注塑机的基本控制需求如温度、压力和时间控制,然后具体讲解了PLC与注塑机各部件之间的连接方式,包括温度传感器、加热器等设备的接口配置。接着深入探讨了梯形图编程的具体实现,提供了多个实用的例子,如急停控制、温度控制等。对于触摸屏组态部分,则强调了如何利用三菱专用软件创建直观的操作界面,确保操作员可以方便地监控和调整各项参数。最后讨论了系统集成与测试的方法,确保所有组件协同工作无误。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和触摸屏应用有一定了解的人群。 使用场景及目标:适用于希望深入了解三菱PLC在注塑机控制中的应用,掌握从硬件选型、程序编写到最终调试全过程的专业人士。目标是帮助读者构建一个高效稳定的注塑机控制系统。 其他说明:文中提到许多实际操作经验和常见错误避免措施,有助于初学者快速入门并减少开发过程中遇到的问题。此外,还涉及到了一些高级特性,如通过Modbus TCP协议接入MES系统,为后续扩展提供了思路。

Global site tag (gtag.js) - Google Analytics