1、1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的
Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是
不同的。
3、3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的
性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level
manager)来调整优化SQL语句。
4、4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)
的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使
用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化
的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原
因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。
ORACLE数据库性能优化工具
常用的数据库性能优化工具有:
1、1、ORACLE数据库在线数据字典,ORACLE在线数据字典能够反映出ORACLE动态运行情况,对于调整数据库性能是很有帮助的。
2、2、操作系统工具,例如UNIX操作系统的vmstat,iostat等命令可以查看到系统系统级内存和硬盘I/O的使用情况,这些工具对于管理员弄清出系统瓶颈出现在什么地方有时候很有用。
3、3、SQL语言跟踪工具(SQL TRACE
FACILITY),SQL语言跟踪工具可以记录SQL语句的执行情况,管理员可以使用虚拟表来调整实例,使用SQL语句跟踪文件调整应用程序性能。
SQL语言跟踪工具将结果输出成一个操作系统的文件,管理员可以使用TKPROF工具查看这些文件。
4、4、ORACLE Enterprise Manager(OEM),这是一个图形的用户管理界面,用户可以使用它方便地进行数据库管理而不必记住复杂的ORACLE数据库管理的命令。
5、5、EXPLAIN PLAN——SQL语言优化命令,使用这个命令可以帮助程序员写出高效的SQL语言。
ORACLE数据库的系统性能评估
信息系统的类型不同,需要关注的数据库参数也是不同的。数据库管理员需要根据自己的信息系统的类型着重考虑不同的数据库参数。
1、1、在线事务处理信息系统(OLTP),这种类型的信息系统一般需要有大量的Insert、Update操作,典型的系统包括民航机票发售系
统、银行储蓄系统等。OLTP系统需要保证数据库的并发性、可靠性和最终用户的速度,这类系统使用的ORACLE数据库需要主要考虑下述参数:
l l 数据库回滚段是否足够?
l l 是否需要建立ORACLE数据库索引、聚集、散列?
l l 系统全局区(SGA)大小是否足够?
l l SQL语句是否高效?
2、2、数据仓库系统(Data Warehousing),这种信息系统的主要任务是从ORACLE的海量数据中进行查询,得到数据之间的某些规律。数据库管理员需要为这种类型的ORACLE数据库着重考虑下述参数:
l l 是否采用B*-索引或者bitmap索引?
l l 是否采用并行SQL查询以提高查询效率?
l l 是否采用PL/SQL函数编写存储过程?
l l 有必要的话,需要建立并行数据库提高数据库的查询效率
SQL语句的调整原则
SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率是很不相同的。程序员可以使用EXPLAIN PLAN语句来比较各种实现方案,并选出最优的实现方案。总得来讲,程序员写SQL语句需要满足考虑如下规则:
1、1、尽量使用索引。试比较下面两条SQL语句:
语句A:SELECT dname, deptno FROM dept WHERE deptno NOT IN
(SELECT deptno FROM emp);
语句B:SELECT dname, deptno FROM dept WHERE NOT EXISTS
(SELECT deptno FROM emp WHERE dept.deptno = emp.deptno);
这两条查询语句实现的结果是相同的,但是执行语句A的时候,ORACLE会对整个emp表进行扫描,没有使用建立在emp表上的deptno索
引,执行语句B的时候,由于在子查询中使用了联合查询,ORACLE只是对emp表进行的部分数据扫描,并利用了deptno列的索引,所以语句B的效率
要比语句A的效率高一些。
2、2、选择联合查询的联合次序。考虑下面的例子:
SELECT stuff FROM taba a, tabb b, tabc c
WHERE a.acol between :alow and :ahigh
AND b.bcol between :blow and :bhigh
AND c.ccol between :clow and :chigh
AND a.key1 = b.key1
AMD a.key2 = c.key2;
这个SQL例子中,程序员首先需要选择要查询的主表,因为主表要进行整个表数据的扫描,所以主表应该数据量最小,所以例子中表A的acol列的范围应该比表B和表C相应列的范围小。
3、3、在子查询中慎重使用IN或者NOT IN语句,使用where (NOT) exists的效果要好的多。
4、4、慎重使用视图的联合查询,尤其是比较复杂的视图之间的联合查询。一般对视图的查询最好都分解为对数据表的直接查询效果要好一些。
5、5、可以在参数文件中设置SHARED_POOL_RESERVED_SIZE参数,这个参数在SGA共享池中保留一个连续的内存空间,连续的内存空间有益于存放大的SQL程序包。
6、6、ORACLE公司提供的DBMS_SHARED_POOL程序可以帮助程序员将某些经常使用的存储过程“钉”在SQL区中而不被换出内存,程序员对于经常使用并且占用内存很多的存储过程“钉”到内存中有利于提高最终用户的响应时间。
CPU参数的调整
CPU是服务器的一项重要资源,服务器良好的工作状态是在工作高峰时CPU的使用率在90%以上。如果空闲时间CPU使用率就在90%以上,说明服务器缺乏CPU资源,如果工作高峰时CPU使用率仍然很低,说明服务器CPU资源还比较富余。
使用操作相同命令可以看到CPU的使用情况,一般UNIX操作系统的服务器,可以使用sar –u命令查看CPU的使用率,NT操作系统的服务器,可以使用NT的性能管理器来查看CPU的使用率。
数据库管理员可以通过查看v$sysstat数据字典中“CPU used by this
session”统计项得知ORACLE数据库使用的CPU时间,查看“OS User level CPU
time”统计项得知操作系统用户态下的CPU时间,查看“OS System call CPU
time”统计项得知操作系统系统态下的CPU时间,操作系统总的CPU时间就是用户态和系统态时间之和,如果ORACLE数据库使用的CPU时间占操作
系统总的CPU时间90%以上,说明服务器CPU基本上被ORACLE数据库使用着,这是合理,反之,说明服务器CPU被其它程序占用过多,ORACLE
数据库无法得到更多的CPU时间。
数据库管理员还可以通过查看v$sesstat数据字典来获得当前连接ORACLE数据库各个会话占用的CPU时间,从而得知什么会话耗用服务器CPU比较多。
出现CPU资源不足的情况是很多的:SQL语句的重解析、低效率的SQL语句、锁冲突都会引起CPU资源不足。
1、数据库管理员可以执行下述语句来查看SQL语句的解析情况:
SELECT * FROM V$SYSSTAT
WHERE NAME IN
('parse time cpu', 'parse time elapsed', 'parse count (hard)');
这里parse time cpu是系统服务时间,parse time elapsed是响应时间,用户等待时间
waite time = parse time elapsed – parse time cpu
由此可以得到用户SQL语句平均解析等待时间=waite time / parse count。这个平均等待时间应该接近于0,如果平均解析等待时间过长,数据库管理员可以通过下述语句
SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS FROM V$SQLAREA
ORDER BY PARSE_CALLS;
来发现是什么SQL语句解析效率比较低。程序员可以优化这些语句,或者增加ORACLE参数SESSION_CACHED_CURSORS的值。
2、数据库管理员还可以通过下述语句:
SELECT BUFFER_GETS, EXECUTIONS, SQL_TEXT FROM V$SQLAREA;
查看低效率的SQL语句,优化这些语句也有助于提高CPU的利用率。
3、3、数据库管理员可以通过v$system_event数据字典中的“latch
free”统计项查看ORACLE数据库的冲突情况,如果没有冲突的话,latch
free查询出来没有结果。如果冲突太大的话,数据库管理员可以降低spin_count参数值,来消除高的CPU使用率。
内存参数的调整
内存参数的调整主要是指ORACLE数据库的系统全局区(SGA)的调整。SGA主要由三部分构成:共享池、数据缓冲区、日志缓冲区。
1、 1、 共享池由两部分构成:共享SQL区和数据字典缓冲区,共享SQL区是存放用户SQL命令的区域,数据字典缓冲区存放数据库运行的动态信息。数据库管理员通过执行下述语句:
select (sum(pins - reloads)) / sum(pins) "Lib Cache" from v$librarycache;
来查看共享SQL区的使用率。这个使用率应该在90%以上,否则需要增加共享池的大小。数据库管理员还可以执行下述语句:
select (sum(gets - getmisses - usage - fixed)) / sum(gets) "Row Cache" from v$rowcache;
查看数据字典缓冲区的使用率,这个使用率也应该在90%以上,否则需要增加共享池的大小。
2、 2、 数据缓冲区。数据库管理员可以通过下述语句:
SELECT name, value FROM v$sysstat WHERE name IN ('db block gets', 'consistent gets','physical reads');
来查看数据库数据缓冲区的使用情况。查询出来的结果可以计算出来数据缓冲区的使用命中率=1 - ( physical reads / (db block gets + consistent gets) )。
这个命中率应该在90%以上,否则需要增加数据缓冲区的大小。
3、 3、 日志缓冲区。数据库管理员可以通过执行下述语句:
select name,value from v$sysstat where name in ('redo entries','redo log space requests');查看日志缓冲区的使用情况。查询出的结果可以计算出日志缓冲区的申请失败率:
申请失败率=requests/entries,申请失败率应该接近于0,否则说明日志缓冲区开设太小,需要增加ORACLE数据库的日志缓冲区。
分享到:
相关推荐
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1
房地产 -可视化管理课件.ppt
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文探讨了电动汽车(EV)对IEEE 33节点电网的影响,特别是汽车负荷预测与节点潮流网损、压损计算。通过蒙特卡洛算法模拟电动汽车负荷的时空特性,研究了四种不同场景下电动汽车接入电网的影响。具体包括:负荷接入前后的网损与电压计算、不同节点接入时的变化、不同时段充电的影响以及不同负荷大小对电网的影响。通过这些分析,揭示了电动汽车充电行为对电网的具体影响机制,为未来的电网规划和优化提供了重要参考。 适合人群:从事电力系统研究的专业人士、电网规划工程师、电动汽车行业从业者、能源政策制定者。 使用场景及目标:①评估电动汽车大规模接入对现有电网基础设施的压力;②优化电动汽车充电设施的布局和运营策略;③为相关政策和技术标准的制定提供科学依据。 其他说明:文中提供的Python代码片段用于辅助理解和验证理论分析,实际应用中需要更复杂的模型和详细的电网参数。
房地产 -【万科经典-第五园】第五园产品推介会.ppt
稳压器件.SchLib
1
模拟符号.SCHLIB
内容概要:本文详细介绍了如何在Simulink中构建并仿真三相电压型逆变器的SPWM调制和电压单闭环控制系统。首先,搭建了由六个IGBT组成的三相全桥逆变电路,并设置了LC滤波器和1000V直流电源。接着,利用PWM Generator模块生成SPWM波形,设置载波频率为2kHz,调制波为50Hz工频正弦波。为了实现精确的电压控制,采用了abc/dq变换将三相电压信号转换到旋转坐标系,并通过锁相环(PLL)进行同步角度跟踪。电压闭环控制使用了带有抗饱和处理的PI调节器,确保输出电压稳定。此外,文中还讨论了标幺值处理方法及其优势,以及如何通过FFT分析验证输出波形的质量。 适用人群:电力电子工程师、自动化控制专业学生、从事逆变器研究的技术人员。 使用场景及目标:适用于希望深入了解三相电压型逆变器控制原理和技术实现的研究人员和工程师。主要目标是掌握SPWM调制技术和电压单闭环控制的设计与调试方法,提高系统的稳定性和效率。 其他说明:文中提供了详细的建模步骤和参数设置指南,帮助读者快速上手并在实践中不断优化模型性能。同时,强调了一些常见的调试技巧和注意事项,如载波频率的选择、积分器防饱和处理等。
【蓝桥杯EDA】客观题解析
房地产 -物业 苏州设备房管理标准.ppt
3
房地产 -2024H1房地产市场总结与展望(新房篇).docx
内容概要:本文详细介绍了利用LabVIEW与PLC进行自动化数据交互的技术方案,涵盖参数管理、TCP通信、串口扫描、数据转移等方面。首先,通过配置文件(INI)实现参数的自动加载与保存,确保参数修改不影响程序运行。其次,在TCP通信方面采用异步模式和心跳包设计,增强通信稳定性,并加入CRC16校验避免数据丢失。对于串口扫描,则通过VISA配置实现状态触发,确保进出站检测的准确性。最后,针对不同类型的数据转移提出具体方法,如TDMS文件存储策略,确保高效可靠的数据处理。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉LabVIEW和PLC编程的从业者。 使用场景及目标:适用于需要将LabVIEW作为上位机与PLC进行数据交互的工业生产线环境,旨在提高系统的自动化程度、稳定性和易维护性。 其他说明:文中提供了多个实用代码片段和注意事项,帮助读者更好地理解和应用相关技术。
d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a
内容概要:本文档《NISP&CISP考试题库.pdf》汇集了大量关于信息安全专业领域的练习题,涵盖风险评估、安全策略、访问控制、恶意代码防范、加密技术、安全模型等多个方面。文档通过选择题的形式探讨了信息安全保障、风险管理和技术实施等核心内容,强调了信息安全保障的动态性和持续性,以及信息安全管理体系(ISMS)的重要性。文档还详细介绍了多种安全技术和标准,如ISO27001、GB/T 22080、SSE-CMM、CC标准等,并通过具体案例和场景分析,帮助读者理解如何在实际环境中应用这些标准和技术。 适用人群:文档适用于信息安全领域的从业者,尤其是准备参加NISP(国家信息安全水平考试)和CISP(注册信息安全专业人员)认证考试的考生,以及从事信息安全管理工作、对信息安全有兴趣的技术人员。 使用场景及目标:①帮助考生系统复习信息安全领域的基础知识和技能,为考试做准备;②为企业内部信息安全培训提供参考资料;③加深信息安全从业人员对安全标准和技术的理解,提升其在实际工作中的应用能力;④帮助信息安全管理者了解如何构建和维护有效的信息安全管理体系。 其他说明:文档不仅提供了理论知识,还结合了实际案例,有助于读者理解信息安全的复杂性和多样性。文档强调了信息安全的多层次、多维度特性,指出信息安全不仅依赖于技术手段,还需要结合管理措施和人员培训。此外,文档中的题目设计贴近实际工作场景,能够有效提升读者应对信息安全挑战的能力。
3dmax插件K_Tools.v2.6
内容概要:“华中杯”是由华中地区高校或相关机构举办的数学建模竞赛,旨在培养学生的创新能力和团队合作精神。比赛主要面向全国高校在校生(以本科生为主,部分赛事允许研究生参加),采用团队赛形式(3人一组),参赛队伍需在72小时内完成建模、编程及论文写作。竞赛一般在每年4月或5月举行,设有多个奖项,具体比例根据参赛队伍数量确定。; 适合人群:对数学建模感兴趣并希望提升自身能力的全国高校在校生(本科生为主,部分赛事允许研究生参加)。; 使用场景及目标:①帮助学生了解数学建模竞赛的形式与流程;②为参赛者提供备赛建议,如学习往届真题、掌握Matlab、Python、LaTeX等工具以及明确团队分工;③鼓励学生关注官方通知,确保获取最新赛程和规则信息。; 其他说明:2025年的具体赛程、规则可能会有所调整,请以“华中杯数学建模竞赛官网”或主办方通知为准。可通过学校数学系或相关社团获取报名信息。