1. 线程池的基本使用
1.1.为什么需要线程池
平时的业务中,如果要使用多线程,那么我们会在业务开始前创建线程,业务结束后,销毁线程。但是对于业务来说,线程的创建和销毁是与业务本身无关的,只关心线程所执行的任务。因此希望把尽可能多的cpu用在执行任务上面,而不是用在与业务无关的线程创建和销毁上面。而线程池则解决了这个问题,线程池的作用就是将线程进行复用。
1.2.JDK为我们提供了哪些支持
JDK中的相关类图如上图所示。
其中要提到的几个特别的类。
Callable类和Runable类相似,但是区别在于Callable有返回值。
ThreadPoolExecutor是线程池的一个重要实现。
而Executors是一个工厂类。
1.3.线程池的使用
1.3.1.线程池的种类
- new FixedThreadPool 固定数量的线程池,线程池中的线程数量是固定的,不会改变。
- new SingleThreadExecutor 单一线程池,线程池中只有一个线程。
- new CachedThreadPool 缓存线程池,线程池中的线程数量不固定,会根据需求的大小进行改变。
- new ScheduledThreadPool 计划任务调度的线程池,用于执行计划任务,比如每隔5分钟怎么样
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); }
从方法上来看,显然 FixedThreadPool,SingleThreadExecutor,CachedThreadPool都是ThreadPoolExecutor的不同实例,只是参数不同。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
下面来简述下 ThreadPoolExecutor构造函数中参数的含义。
- corePoolSize 线程池中核心线程数的数目
- maximumPoolSize 线程池中最多能容纳多少个线程
- keepAliveTime 当现在线程数目大于corePoolSize时,超过keepAliveTime时间后,多出corePoolSize的那些线程将被终结。
- unit keepAliveTime的单位
- workQueue 当任务数量很大,线程池中线程无法满足时,提交的任务会被放到阻塞队列中,线程空闲下来则会不断从阻塞队列中取数据。
这样在来看上面所说的FixedThreadPool,它的线程的核心数目和最大容纳数目都是一样的,以至于在工作期间,并不会创建和销毁线程。当任务数量很大,线程池中的线程无法满足时,任务将被保存到LinkedBlockingQueue中,而LinkedBlockingQueue的大小是Integer.MAX_VALUE。这就意味着,任务不断地添加,会使内存消耗越来越大。
而CachedThreadPool则不同,它的核心线程数量是0,最大容纳数目是Integer.MAX_VALUE,它的阻塞队列是SynchronousQueue,这是一个特别的队列,它的大小是0。由于核心线程数量是0,所以必然要将任务添加到SynchronousQueue中,这个队列只有一个线程在从中添加数据,同时另一个线程在从中获取数据时,才能成功。独自往这个队列中添加数据会返回失败。当返回失败时,则线程池开始扩展线程,这就是为什么CachedThreadPool的线程数目是不固定的。当60s该线程仍未被使用时,线程则被销毁。
1.4.线程池使用的小例子
1.4.1.简单线程池
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class ThreadPoolDemo { public static class MyTask implements Runnable { @Override public void run() { System.out.println(System.currentTimeMillis() + "Thread ID:" + Thread.currentThread().getId()); try { Thread.sleep(1000); } catch (Exception e) { e.printStackTrace(); } } } public static void main(String[] args) { MyTask myTask = new MyTask(); ExecutorService es = Executors.newFixedThreadPool(5); for (int i = 0; i < 10; i++) { es.submit(myTask); } } }
由于使用的newFixedThreadPool(5),但是启动了10个线程,所以每次执行5个,并且 可以很明显的看到线程的复用,ThreadId是重复的,也就是前5个任务和后5个任务都是同一批线程去执行的。
这里用的是
es.submit(myTask);
还有一种提交方式:
es.execute(myTask);
区别在于submit会返回一个Future对象,这个将在以后介绍。
1.4.2.ScheduledThreadPool
import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; public class ThreadPoolDemo { public static void main(String[] args) { ScheduledExecutorService ses = Executors.newScheduledThreadPool(10); //如果前面的任务还未完成,则调度不会启动。 ses.scheduleWithFixedDelay(new Runnable() { @Override public void run() { try { Thread.sleep(1000); System.out.println(System.currentTimeMillis()/1000); } catch (Exception e) { // TODO: handle exception } } }, 0, 2, TimeUnit.SECONDS);//启动0秒后执行,然后周期2秒执行一次 } }
输出:
1454832514 1454832517 1454832520 1454832523 1454832526 ...
由于任务执行需要1秒,任务调度必须等待前一个任务完成。也就是这里的每隔2秒的意思是,前一个任务完成后2秒再开启新的一个任务。
2. 扩展和增强线程池
2.1.回调接口
线程池中有一些回调的api来给我们提供扩展的操作。
ExecutorService es = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>()){ @Override protected void beforeExecute(Thread t, Runnable r) { System.out.println("准备执行"); } @Override protected void afterExecute(Runnable r, Throwable t) { System.out.println("执行完成"); } @Override protected void terminated() { System.out.println("线程池退出"); } };
我们可以通过实现ThreadPoolExecutor的子类去覆盖ThreadPoolExecutor的beforeExecute,afterExecute,terminated方法来实现在线程执行前后,线程池退出时的日志管理或其他操作。
2.2.拒绝策略
有时候,任务非常繁重,导致系统负载太大。在上面说过,当任务量越来越大时,任务都将放到FixedThreadPool的阻塞队列中,导致内存消耗太大,最终导致内存溢出。这样的情况是应该要避免的。因此当我们发现线程数量要超过最大线程数量时,我们应该放弃一些任务。丢弃时,我们应该把任务记下来,而不是直接丢掉。
ThreadPoolExecutor中还有另一个构造函数。
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
threadFactory我们在后面再介绍。
而handler就是拒绝策略的实现,它会告诉我们,如果任务不能执行了,该怎么做。
共有以上4种策略。
AbortPolicy:如果不能接受任务了,则抛出异常。
CallerRunsPolicy:如果不能接受任务了,则让调用的线程去完成。
DiscardOldestPolicy:如果不能接受任务了,则丢弃最老的一个任务,由一个队列来维护。
DiscardPolicy:如果不能接受任务了,则丢弃任务。
ExecutorService es = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(), new RejectedExecutionHandler() { @Override public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) { System.out.println(r.toString() + "is discard"); } });
当然我们也可以自己实现RejectedExecutionHandler接口来自己定义拒绝策略。
2.3.自定义ThreadFactory刚刚已经看到了,在ThreadPoolExecutor的构造函数中可以指定threadFactory。线程池中的线程都是由线程工厂创建出来,我们可以自定义线程工厂。
默认的线程工厂:
static class DefaultThreadFactory implements ThreadFactory { private static final AtomicInteger poolNumber = new AtomicInteger(1); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; DefaultThreadFactory() { SecurityManager s = System.getSecurityManager(); group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup(); namePrefix = "pool-" + poolNumber.getAndIncrement() + "-thread-"; } public Thread newThread(Runnable r) { Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0); if (t.isDaemon()) t.setDaemon(false); if (t.getPriority() != Thread.NORM_PRIORITY) t.setPriority(Thread.NORM_PRIORITY); return t; } }
3. ForkJoin
3.1.思想
就是分而治之的思想。
fork/join类似MapReduce算法,两者区别是:Fork/Join 只有在必要时如任务非常大的情况下才分割成一个个小任务,而 MapReduce总是在开始执行第一步进行分割。看来,Fork/Join更适合一个JVM内线程级别,而MapReduce适合分布式系统。
4.2.使用接口
RecursiveAction:无返回值
RecursiveTask:有返回值
4.3.简单例子
import java.util.ArrayList; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.ForkJoinTask; import java.util.concurrent.RecursiveTask; public class CountTask extends RecursiveTask<Long>{ private static final int THRESHOLD = 10000; private long start; private long end; public CountTask(long start, long end) { super(); this.start = start; this.end = end; } @Override protected Long compute() { long sum = 0; boolean canCompute = (end - start) < THRESHOLD; if(canCompute) { for (long i = start; i <= end; i++) { sum = sum + i; } }else { //分成100个小任务 long step = (start + end)/100; ArrayList<CountTask> subTasks = new ArrayList<CountTask>(); long pos = start; for (int i = 0; i < 100; i++) { long lastOne = pos + step; if(lastOne > end ) { lastOne = end; } CountTask subTask = new CountTask(pos, lastOne); pos += step + 1; subTasks.add(subTask); subTask.fork();//把子任务推向线程池 } for (CountTask t : subTasks) { sum += t.join();//等待所有子任务结束 } } return sum; } public static void main(String[] args) { ForkJoinPool forkJoinPool = new ForkJoinPool(); CountTask task = new CountTask(0, 200000L); ForkJoinTask<Long> result = forkJoinPool.submit(task); try { long res = result.get(); System.out.println("sum = " + res); } catch (Exception e) { // TODO: handle exception e.printStackTrace(); } }}
上述例子描述了一个累加和的任务。将累加任务分成100个任务,每个任务只执行一段数字的累加和,最后join后,把每个任务计算出的和再累加起来。
4.4.实现要素
4.4.1.WorkQueue与ctl
每一个线程都会有一个工作队列
static final class WorkQueue
在工作队列中,会有一系列对线程进行管理的字段
volatile int eventCount; // encoded inactivation count; < 0 if inactive int nextWait; // encoded record of next event waiter int nsteals; // number of steals int hint; // steal index hint short poolIndex; // index of this queue in pool final short mode; // 0: lifo, > 0: fifo, < 0: shared volatile int qlock; // 1: locked, -1: terminate; else 0 volatile int base; // index of next slot for poll int top; // index of next slot for push ForkJoinTask<?>[] array; // the elements (initially unallocated) final ForkJoinPool pool; // the containing pool (may be null) final ForkJoinWorkerThread owner; // owning thread or null if shared volatile Thread parker; // == owner during call to park; else null volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin ForkJoinTask<?> currentSteal; // current non-local task being executed
这里要注意的是,JDK7和JDK8在ForkJoin的实现上有了很大的差别。我们这里介绍的是JDK8中的。 在线程池中,有时不是所有的线程都在执行的,部分线程会被挂起,那些挂起的线程会被存放到一个栈中。内部通过一个链表表示。
nextWait会指向下一个等待的线程。
poolIndex线程在线程池中的下标索引。
eventCount 在初始化时,eventCount与poolIndex有关。总共32位,第一位表示是否被激活,15位表示被挂起的次数eventCount,剩下的表示poolIndex。用一个字段来表示多个意思。
工作队列WorkQueue用ForkJoinTask<?>[] array来表示。而top,base来表示队列的两端,数据在这两者之间。
在ForkJoinPool中维护着ctl(64位long型)
volatile long ctl;
* Field ctl is a long packed with: * AC: Number of active running workers minus target parallelism (16 bits) * TC: Number of total workers minus target parallelism (16 bits) * ST: true if pool is terminating (1 bit) * EC: the wait count of top waiting thread (15 bits) * ID: poolIndex of top of Treiber stack of waiters (16 bits)
AC表示活跃的线程数减去并行度(大概就是CPU个数)
TC表示总的线程数减去并行度
ST表示线程池本身是否是激活的
EC表示顶端等待线程的挂起数
ID表示顶端等待线程的poolIndex
很明显ST+EC+ID就是我们刚刚所说的 eventCount 。
那么为什么明明5个变量,非要合成一个变量呢。其实用5个变量占用容量也差不多。
用一个变量代码的可读性上会差很多。
那么为什么用一个变量呢?其实这点才是最巧妙的地方,因为这5个变量是一个整体,在多线程中,如果用5个变量,那么当修改其中一个变量时,如何保证5个变量的整体性。那么用一个变量则就解决了这个问题。如果用锁解决,则会降低性能。
用一个变量则保证了数据的一致性和原子性。
在ForkJoin中队ctl的更改都是使用CAS操作,在前面系列的文章中已经介绍过,CAS是无锁的操作,性能很好。
由于CAS操作也只能针对一个变量,所以这种设计是最优的。
4.4.2.工作窃取
接下来要介绍下整个线程池的工作流程。
每个线程都会调用runWorker
final void runWorker(WorkQueue w) { w.growArray(); // allocate queue for (int r = w.hint; scan(w, r) == 0; ) { r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift } }
scan()函数是扫描是否有任务要做。
r是一个相对随机的数字。
private final int scan(WorkQueue w, int r) { WorkQueue[] ws; int m; long c = ctl; // for consistency check if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) { for (int j = m + m + 1, ec = w.eventCount;;) { WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t; if ((q = ws[(r - j) & m]) != null && (b = q.base) - q.top < 0 && (a = q.array) != null) { long i = (((a.length - 1) & b) << ASHIFT) + ABASE; if ((t = ((ForkJoinTask<?>) U.getObjectVolatile(a, i))) != null) { if (ec < 0) helpRelease(c, ws, w, q, b); else if (q.base == b && U.compareAndSwapObject(a, i, t, null)) { U.putOrderedInt(q, QBASE, b + 1); if ((b + 1) - q.top < 0) signalWork(ws, q); w.runTask(t); } } break; } else if (--j < 0) { if ((ec | (e = (int)c)) < 0) // inactive or terminating return awaitWork(w, c, ec); else if (ctl == c) { // try to inactivate and enqueue long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)); w.nextWait = e; w.eventCount = ec | INT_SIGN; if (!U.compareAndSwapLong(this, CTL, c, nc)) w.eventCount = ec; // back out } break; } } } return 0; }
我们接下来看看scan方法,scan的一个参数是WorkQueue,上面已经说过,每个线程都会拥有一个WorkQueue,那么多个线程的WorkQueue就会保存在workQueues里面,r是一个随机数,通过r来找到某一个WorkQueue,在WorkQueue里面有所要做的任务。然后通过WorkQueue的base,取得base的偏移量。
b = q.base .. long i = (((a.length - 1) & b) << ASHIFT) + ABASE; ..
然后通过偏移量得到最后一个的任务,运行这个任务
t = ((ForkJoinTask<?>)U.getObjectVolatile(a, i)) .. w.runTask(t); ..
通过这个大概的分析理解了过程,我们发现,当前线程调用scan方法后,不会执行当前的WorkQueue中的任务,而是通过一个随机数r,来得到其他 WorkQueue的任务。这就是orkJoinPool的主要的一个机理。当前线程不会只着眼于自己的任务,而是优先完成其他任务。这样做来,防止了饥饿现象的发生。这样就预防了某些线程因为卡死或者其他原因而无法及时完成任务,或者某个线程的任务量很大,其他线程却没事可做。然后来看看runTask方法
final void runTask(ForkJoinTask<?> task) { if ((currentSteal = task) != null) { ForkJoinWorkerThread thread; task.doExec(); ForkJoinTask<?>[] a = array; int md = mode; ++nsteals; currentSteal = null; if (md != 0) pollAndExecAll(); else if (a != null) { int s, m = a.length - 1; ForkJoinTask<?> t; while ((s = top - 1) - base >= 0 && (t = (ForkJoinTask<?>)U.getAndSetObject (a, ((m & s) << ASHIFT) + ABASE, null)) != null) { top = s; t.doExec(); } } if ((thread = owner) != null) // no need to do in finally clause thread.afterTopLevelExec(); } }
有一个有趣的命名:currentSteal,偷得的任务,的确是刚刚解释的那样。
task.doExec();
将会完成这个任务。完成了别人的任务以后,将会完成自己的任务。通过得到top来获得自己任务第一个任务
while ((s = top - 1) - base >= 0 && (t = (ForkJoinTask<?>)U.getAndSetObject(a, ((m & s) << ASHIFT) + ABASE, null)) != null) { top = s; t.doExec(); }
接下来,通过一个图来总结下刚刚线程池的流程
比如有T1,T2两个线程,T1会通过T2的base来获得T2的最后一个任务(当然实际上是通过一个随机数r来取得某个线程最后一个任务),T1也会通过自己的top来执行自己的第一个任务。反之,T2也会如此。拿其他线程的任务都是从base开始拿的,自己拿自己的任务是从top开始拿的。这样可以减少冲突如果没有找到其他任务
else if (--j < 0) { if ((ec | (e = (int)c)) < 0) // inactive or terminating return awaitWork(w, c, ec); else if (ctl == c) { // try to inactivate and enqueue long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)); w.nextWait = e; w.eventCount = ec | INT_SIGN; if (!U.compareAndSwapLong(this, CTL, c, nc)) w.eventCount = ec; // back out } break; }
那么首先会通过一系列运行来改变ctl的值,获得了nc,然后用CAS将新的值赋值。然后就调用awaitWork()将线程进入等待状态(调用的unsafe的park方法)。这里要说明的是改变ctl值这里,首先是将ctl中的AC-1,AC是占ctl的前16位,所以不能直接-1,而是通过AC_UNIT(0x1000000000000)来达到使ctl的前16位-1的效果。前面说过eventCount中有保存poolIndex,通过poolIndex以及WorkQueue中的nextWait,就能遍历所有的等待线程。
相关推荐
高并发编程第三阶段31讲 JDK8-StampedLock详细介绍-上_.mp4 高并发编程第三阶段32讲 JDK8-StampedLock详细介绍-下.mp4 高并发编程第三阶段33讲 ForkJoin框架之RecursiveTask_.mp4 高并发编程第三阶段34讲 ...
这本书由拥有丰富经验的JDK并发大师及业界专家撰写,详细解释了Java 5.0和Java 6中引入的新并发功能,以及并发编程的一般性概念。 并发编程已经成为现代计算机科学不可或缺的一部分,尤其是在Java这样的多线程支持...
【深入理解高并发编程-核心技术原理】是一本专注于讲解高并发编程核心概念和技术的书籍,由阿里P8级别的架构师及Mykit系列开源框架作者撰写。本书内容涵盖源码分析、基础案例、实战案例和面试相关知识,旨在帮助读者...
### Java并发编程实战知识点概述 #### 一、Java并发特性详解 在《Java并发编程实战》这本书中,作者深入浅出地介绍了Java 5.0和Java 6中新增的并发特性。这些特性旨在帮助开发者更高效、安全地编写多线程程序。书中...
它选取了Java并发编程中最核心的技术进行讲解,从JDK源码、JVM、CPU等多角度全面剖析和讲解了Java并发编程的框架、工具、原理和方法,对Java并发编程进行了最为深入和透彻的阐述。 《Java并发编程的艺术》内容涵盖...
《JAVA并发编程实践》既能够成为读者的理论支持,又可以作为构建可靠的、可伸缩的、可维护的并发程序的技术支持。《JAVA并发编程实践》并不仅仅提供并发API的清单及其机制,还提供了设计原则、模式和思想模型,使...
高并发编程第三阶段31讲 JDK8-StampedLock详细介绍-上_.mp4 高并发编程第三阶段32讲 JDK8-StampedLock详细介绍-下.mp4 高并发编程第三阶段33讲 ForkJoin框架之RecursiveTask_.mp4 高并发编程第三阶段34讲 ...
《Java并发编程艺术》这本书是Java开发者深入理解多线程编程的重要参考资料。它全面而深入地探讨了Java平台上的并发编程技术,对于提升程序性能、优化系统资源利用以及解决多线程环境中的复杂问题有着极大的帮助。...
全网首个最全的免费开源的高并发电子书,内容涵盖源码分析、基础案例、实战案例、面试和系统架构,内含秒杀系统和分布式锁的完整架构过程,历时半年精打细磨,一经发布,火遍全网,至今全网累计下载60万+,无论是刚...
《Java并发编程实践》一书深入探讨了Java平台在Java 5.0和Java 6中引入的并发特性,以及并发编程的一般性原理。本书不仅由参与设计和实现这些特性的团队撰写,而且得到了业界专家的高度评价,如Sun Microsystems的...
它选取了Java并发编程中最核心的技术进行讲解,从JDK源码、JVM、CPU等多角度全面剖析和讲解了Java并发编程的框架、工具、原理和方法,对Java并发编程进行了最为深入和透彻的阐述。, 《Java并发编程的艺术》内容涵盖...
《Java并发编程实战》这本书是Java开发者深入理解并发编程的重要参考资料。并发编程是现代软件开发中的核心技能之一,尤其是在多核处理器和分布式系统环境中。Java平台提供了强大的并发工具和框架,使得开发者能够...
Java并发编程实践.pdf 本文档讲述了Java并发编程实践,特别是使用开源软件Amino构建并发应用程序。Amino是一个开源软件,具有可操作性、跨平台性、无锁数据结构等特点,适用于多核操作系统。下面是本文档的知识点...
2. **第2章:Java并发编程的底层实现原理**:探讨了CPU和JVM如何支撑Java并发编程的实现,包括多核处理器、缓存一致性等核心概念。 3. **第3章:Java内存模型**:深入介绍了Java内存模型的工作机制,帮助读者理解...
Java并发编程是Java开发者在面试中常常遇到的重要领域,它涉及到多线程、同步机制、内存模型等多个方面。以下是对一些关键知识点的详细解释: 1. **线程与程序性能**: - 并发并不意味着多线程,启动过多线程可能...
Java并发编程是Java开发者必须掌握的关键技能之一,尤其是在多核处理器和分布式系统广泛使用的今天。以下是对标题和描述中提及的两本经典书籍——《Concurrent Programming in Java》和《Java Concurrency in ...