`

JDK并发编程1

 
阅读更多

1. 各种同步控制工具的使用

1.1 ReentrantLock 

     ReentrantLock感觉上是synchronized的增强版,synchronized的特点是使用简单,一切交给JVM去处理,但是功能上是比较薄弱的。在JDK1.5之前,ReentrantLock的性能要好于synchronized,由于对JVM进行了优化,现在的JDK版本中,两者性能是不相上下的。如果是简单的实现,不要刻意去使用ReentrantLock。相比于synchronized,ReentrantLock在功能上更加丰富,它具有可重入、可中断、可限时、公平锁等特点。

首先我们通过一个例子来说明ReentrantLock最初步的用法:

package test;
import java.util.concurrent.locks.ReentrantLock;
public class Test implements Runnable
{
    public static ReentrantLock lock = new ReentrantLock();
    public static int i = 0;

    @Override
    public void run()
    {
        for (int j = 0; j < 10000000; j++)
        {
            lock.lock();
            try
            {
                i++;
            }
            finally
            {
                lock.unlock();
            }
        }
    }
    
    public static void main(String[] args) throws InterruptedException
    {
        Test test = new Test();
        Thread t1 = new Thread(test);
        Thread t2 = new Thread(test);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(i);
    }

}

 

     有两个线程都对i进行++操作,为了保证线程安全,使用了 ReentrantLock,从用法上可以看出, synchronized相比,ReentrantLock就稍微复杂一点。因为必须在finally中进行解锁操作,如果不 finally解锁,有可能代码出现异常锁没被释放,而synchronized是由JVM来释放锁。

    那么ReentrantLock到底有哪些优秀的特点呢?

1.1.1 可重入

单线程可以重复进入,但要重复退出

lock.lock();
lock.lock();
try
{
    i++;
            
}			
finally
{
    lock.unlock();
    lock.unlock();
}

 

       由于ReentrantLock是重入锁,所以可以反复得到相同的一把锁,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放(重入锁)。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个synchronized 块时,才释放锁。

public class Child extends Father implements Runnable{
    final static Child child = new Child();//为了保证锁唯一
    public static void main(String[] args) {
        for (int i = 0; i < 50; i++) {
            new Thread(child).start();
        }
    }
 
    public synchronized void doSomething() {
        System.out.println("1child.doSomething()");
        doAnotherThing(); // 调用自己类中其他的synchronized方法
    }
 
    private synchronized void doAnotherThing() {
        super.doSomething(); // 调用父类的synchronized方法
        System.out.println("3child.doAnotherThing()");
    }
 
    @Override
    public void run() {
        child.doSomething();
    }
}
class Father {
    public synchronized void doSomething() {
        System.out.println("2father.doSomething()");
    }
}

 

       我们可以看到一个线程进入不同的 synchronized方法,是不会释放之前得到的锁的。所以输出还是顺序输出。所以synchronized也是重入锁

  输出:

1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
...

 

1.1.2.可中断

         与synchronized不同的是,ReentrantLock对中断是有响应的。普通的lock.lock()是不能响应中断的,lock.lockInterruptibly()能够响应中断。

   我们模拟出一个死锁现场,然后用中断来处理死锁

package test;

import java.lang.management.ManagementFactory;
import java.lang.management.ThreadInfo;
import java.lang.management.ThreadMXBean;
import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
    public static ReentrantLock lock1 = new ReentrantLock();
    public static ReentrantLock lock2 = new ReentrantLock();

    int lock;

    public Test(int lock)
    {
        this.lock = lock;
    }

    @Override
    public void run()
    {
        try
        {
            if (lock == 1)
            {
                lock1.lockInterruptibly();
                try
                {
                    Thread.sleep(500);
                }
                catch (Exception e)
                {
                    // TODO: handle exception
                }
                lock2.lockInterruptibly();
            }
            else
            {
                lock2.lockInterruptibly();
                try
                {
                    Thread.sleep(500);
                }
                catch (Exception e)
                {
                    // TODO: handle exception
                }
                lock1.lockInterruptibly();
            }
        }
        catch (Exception e)
        {
            // TODO: handle exception
        }
        finally
        {
            if (lock1.isHeldByCurrentThread())
            {
                lock1.unlock();
            }
            if (lock2.isHeldByCurrentThread())
            {
                lock2.unlock();
            }
            System.out.println(Thread.currentThread().getId() + ":线程退出");
        }
    }

    public static void main(String[] args) throws InterruptedException
    {
        Test t1 = new Test(1);
        Test t2 = new Test(2);
        Thread thread1 = new Thread(t1);
        Thread thread2 = new Thread(t2);
        thread1.start();
        thread2.start();
        Thread.sleep(1000);
        //DeadlockChecker.check();
    }

    static class DeadlockChecker
    {
        private final static ThreadMXBean mbean = ManagementFactory
                .getThreadMXBean();
        final static Runnable deadlockChecker = new Runnable()
        {
            @Override
            public void run()
            {
                // TODO Auto-generated method stub
                while (true)
                {
                    long[] deadlockedThreadIds = mbean.findDeadlockedThreads();
                    if (deadlockedThreadIds != null)
                    {
                        ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockedThreadIds);
                        for (Thread t : Thread.getAllStackTraces().keySet())
                        {
                            for (int i = 0; i < threadInfos.length; i++)
                            {
                                if(t.getId() == threadInfos[i].getThreadId())
                                {
                                    t.interrupt();
                                }
                            }
                        }
                    }
                    try
                    {
                        Thread.sleep(5000);
                    }
                    catch (Exception e)
                    {
                        // TODO: handle exception
                    }
                }

            }
        };
        
        public static void check()
        {
            Thread t = new Thread(deadlockChecker);
            t.setDaemon(true);
            t.start();
        }
    }

}

 

    上述代码有可能会发生死锁,线程1得到lock1,线程2得到lock2,然后彼此又想获得对方的锁。

   我们用jstack查看运行上述代码后的情况



 

的确发现了一个死锁。DeadlockChecker.check();方法用来检测死锁,然后把死锁的线程中断。中断后,线程正常退出。

1.1.3.可限时

       超时不能获得锁,就返回false,不会永久等待构成死锁使用lock.tryLock(long timeout, TimeUnit unit)来实现可限时锁,参数为时间和单位。

举个例子来说明下可限时:

package test;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
    public static ReentrantLock lock = new ReentrantLock();

    @Override
    public void run()
    {
        try
        {
            if (lock.tryLock(5, TimeUnit.SECONDS))
            {
                Thread.sleep(6000);
            }
            else
            {
                System.out.println("get lock failed");
            }
        }
        catch (Exception e)
        {
        }
        finally
        {
            if (lock.isHeldByCurrentThread())
            {
                lock.unlock();
            }
        }
    }
    
    public static void main(String[] args)
    {
        Test t = new Test();
        Thread t1 = new Thread(t);
        Thread t2 = new Thread(t);
        t1.start();
        t2.start();
    }

}

 

使用两个线程来争夺一把锁,当某个线程获得锁后,sleep6秒,每个线程都只尝试5秒去获得锁。所以必定有一个线程无法获得锁。无法获得后就直接退出了。

输出:

get lock failed

 

1.1.4.公平锁

使用方式:

public ReentrantLock(boolean fair) 

public static ReentrantLock fairLock = new ReentrantLock(true);
 

 

一般意义上的锁是不公平的,不一定先来的线程能先得到锁,后来的线程就后得到锁。不公平的锁可能会产生饥饿现象。公平锁的意思就是,这个锁能保证线程是先来的先得到锁。虽然公平锁不会产生饥饿现象,但是公平锁的性能会比非公平锁差很多。

1.2 Condition

Condition与ReentrantLock的关系就类似于synchronized与Object.wait()/signal() await()方法会使当前线程等待,同时释放当前锁,当其他线程中使用signal()时或者signalAll()方法时,线 程会重新获得锁并继续执行。或者当线程被中断时,也能跳出等待。这和Object.wait()方法很相似。awaitUninterruptibly()方法与await()方法基本相同,但是它并不会再等待过程中响应中断。 singal()方法用于唤醒一个在等待中的线程。相对的singalAll()方法会唤醒所有在等待中的线程。这和Obejct.notify()方法很类似。

这里就不再详细介绍了。举个例子来说明:

package test;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
    public static ReentrantLock lock = new ReentrantLock();
    public static Condition condition = lock.newCondition();

    @Override
    public void run()
    {
        try
        {
            lock.lock();
            condition.await();
            System.out.println("Thread is going on");
        }
        catch (Exception e)
        {
            e.printStackTrace();
        }
        finally
        {
            lock.unlock();
        }
    }
    
    public static void main(String[] args) throws InterruptedException
    {
        Test t = new Test();
        Thread thread = new Thread(t);
        thread.start();
        Thread.sleep(2000);
        
        lock.lock();
        condition.signal();
        lock.unlock();
    }

}
 

 

上述例子很简单,让一个线程await住,让主线程去唤醒它。condition.await()/signal只能在得到锁以后使用。

1.3.Semaphore

对于锁来说,它是互斥的排他的。意思就是,只要我获得了锁,没人能再获得了。而对于Semaphore来说,它允许多个线程同时进入临界区。可以认为它是一个共享锁,但是共享的额度是有限制的,额度用完了,其他没有拿到额度的线程还是要阻塞在临界区外。当额度为1时,就相等于lock

下面举个例子:

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;


public class Test implements Runnable
{
    final Semaphore semaphore = new Semaphore(5);
    @Override
    public void run()
    {
        try
        {
            semaphore.acquire();
            Thread.sleep(2000);
            System.out.println(Thread.currentThread().getId() + " done");
        }
        catch (Exception e)
        {
            e.printStackTrace();
        }finally {
            semaphore.release();
        }
    }
    
    public static void main(String[] args) throws InterruptedException
    {
        ExecutorService executorService = Executors.newFixedThreadPool(20);
        final Test t = new Test();
        for (int i = 0; i < 20; i++)
        {
            executorService.submit(t);
        }
    }

}
 

 

有一个20个线程的线程池,每个线程都去 Semaphore的许可,Semaphore的许可只有5个,运行后可以看到,5个一批,一批一批地输出。

当然一个线程也可以一次申请多个许可

public void acquire(int permits) throws InterruptedException
 

 

1.4 ReadWriteLock

ReadWriteLock是区分功能的锁。读和写是两种不同的功能,读-读不互斥,读-写互斥,写-写互斥。这样的设计是并发量提高了,又保证了数据安全。

使用方式:

private static ReentrantReadWriteLock readWriteLock=new ReentrantReadWriteLock(); 
private static Lock readLock = readWriteLock.readLock(); 
private static Lock writeLock = readWriteLock.writeLock();

1.5 CountDownLatch

倒数计时器一种典型的场景就是火箭发射。在火箭发射前,为了保证万无一失,往往还要进行各项设备、仪器的检查。 只有等所有检查完毕后,引擎才能点火。这种场景就非常适合使用CountDownLatch。它可以使得点火线程,等待所有检查线程全部完工后,再执行

使用方式:

static final CountDownLatch end = new CountDownLatch(10);
end.countDown(); 
end.await();

 

示意图:



 

一个简单的例子:

package test;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Test implements Runnable
{
    static final CountDownLatch countDownLatch = new CountDownLatch(10);
    static final Test t = new Test();
    @Override
    public void run()
    {
        try
        {
            Thread.sleep(2000);
            System.out.println("complete");
            countDownLatch.countDown();
        }
        catch (Exception e)
        {
            e.printStackTrace();
        }
    }
    
    public static void main(String[] args) throws InterruptedException
    {
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        for (int i = 0; i < 10; i++)
        {
            executorService.execute(t);
        }
        countDownLatch.await();
        System.out.println("end");
        executorService.shutdown();
    }

}

 

主线程必须等待10个线程全部执行完才会输出"end"。

1.6 CyclicBarrier

CountDownLatch相似,也是等待某些线程都做完以后再执行。与CountDownLatch区别在于这个计数器可以反复使用。比如,假设我们将计数器设置为10。那么凑齐第一批1 0个线程后,计数器就会归零,然后接着凑齐下一批10个线程

使用方式:

public CyclicBarrier(int parties, Runnable barrierAction) 

barrierAction就是当计数器一次计数完成后,系统会执行的动作

await()

 

示意图:



 

下面举个例子:

package test;

import java.util.concurrent.CyclicBarrier;

public class Test implements Runnable
{
    private String soldier;
    private final CyclicBarrier cyclic;

    public Test(String soldier, CyclicBarrier cyclic)
    {
        this.soldier = soldier;
        this.cyclic = cyclic;
    }

    @Override
    public void run()
    {
        try
        {
            //等待所有士兵到齐
            cyclic.await();
            dowork();
            //等待所有士兵完成工作
            cyclic.await();
        }
        catch (Exception e)
        {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

    }

    private void dowork()
    {
        // TODO Auto-generated method stub
        try
        {
            Thread.sleep(3000);
        }
        catch (Exception e)
        {
            // TODO: handle exception
        }
        System.out.println(soldier + ": done");
    }

    public static class BarrierRun implements Runnable
    {

        boolean flag;
        int n;

        public BarrierRun(boolean flag, int n)
        {
            super();
            this.flag = flag;
            this.n = n;
        }

        @Override
        public void run()
        {
            if (flag)
            {
                System.out.println(n + "个任务完成");
            }
            else
            {
                System.out.println(n + "个集合完成");
                flag = true;
            }

        }

    }

    public static void main(String[] args)
    {
        final int n = 10;
        Thread[] threads = new Thread[n];
        boolean flag = false;
        CyclicBarrier barrier = new CyclicBarrier(n, new BarrierRun(flag, n));
        System.out.println("集合");
        for (int i = 0; i < n; i++)
        {
            System.out.println(i + "报道");
            threads[i] = new Thread(new Test("士兵" + i, barrier));
            threads[i].start();
        }
    }

}

 

打印结果:

集合
0报道
1报道
2报道
3报道
4报道
5报道
6报道
7报道
8报道
9报道
10个集合完成
士兵5: done
士兵7: done
士兵8: done
士兵3: done
士兵4: done
士兵1: done
士兵6: done
士兵2: done
士兵0: done
士兵9: done
10个任务完成

 

1.7 LockSupport

提供线程阻塞原语和suspend类似

LockSupport.park(); 
LockSupport.unpark(t1);

 

与suspend相比 不容易引起线程冻结LockSupport的思想呢,和 Semaphore有点相似,内部有一个许可,park的时候拿掉这个许可,unpark的时候申请这个许可。所以如果unpark在park之前,是不会发生线程冻结的。

下面的代码是[高并发Java 二] 多线程基础中suspend示例代码,在使用suspend时会发生死锁。

package test;

import java.util.concurrent.locks.LockSupport;
 
public class Test
{
    static Object u = new Object();
    static TestSuspendThread t1 = new TestSuspendThread("t1");
    static TestSuspendThread t2 = new TestSuspendThread("t2");
 
    public static class TestSuspendThread extends Thread
    {
        public TestSuspendThread(String name)
        {
            setName(name);
        }
 
        @Override
        public void run()
        {
            synchronized (u)
            {
                System.out.println("in " + getName());
                //Thread.currentThread().suspend();
                LockSupport.park();
            }
        }
    }
 
    public static void main(String[] args) throws InterruptedException
    {
        t1.start();
        Thread.sleep(100);
        t2.start();
//        t1.resume();
//        t2.resume();
        LockSupport.unpark(t1);
        LockSupport.unpark(t2);
        t1.join();
        t2.join();
    }
}

 

而使用 LockSupport则不会发生死锁。

另外

park()能够响应中断,但不抛出异常。中断响应的结果是,park()函数的返回,可以从Thread.interrupted()得到中断标志。在JDK当中有大量地方使用到了park,当然LockSupport的实现也是使用unsafe.park()来实现的。

public static void park() {
        unsafe.park(false, 0L);
    }

 

1.8 ReentrantLock 的实现

下面来介绍下ReentrantLock的实现,ReentrantLock的实现主要由3部分组成:

  • CAS状态
  • 等待队列
  • park()

ReentrantLock的父类中会有一个state变量来表示同步的状态

/**
     * The synchronization state.
     */
    private volatile int state;

 

通过CAS操作来设置state来获取锁,如果设置成了1,则将锁的持有者给当前线程

final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

 

如果拿锁不成功,则会做一个申请

public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

 

首先,再去申请下试试看tryAcquire,因为此时可能另一个线程已经释放了锁。如果还是没有申请到锁,就addWaiter,意思是把自己加到等待队列中去

private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

 

其间还会有多次尝试去申请锁,如果还是申请不到,就会被挂起

private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

 

同理,如果在unlock操作中,就是释放了锁,然后unpark,这里就不具体讲了。

2. 并发容器及典型源码分析

2.1 ConcurrentHashMap 

我们知道HashMap不是一个线程安全的容器,最简单的方式使HashMap变成线程安全就是使用Collections.synchronizedMap,它是对HashMap的一个包装

public static Map m=Collections.synchronizedMap(new HashMap());

 

同理对于List,Set也提供了相似方法。但是这种方式只适合于并发量比较小的情况。

我们来看下synchronizedMap的实现

private final Map<K,V> m;     // Backing Map
        final Object      mutex;        // Object on which to synchronize

        SynchronizedMap(Map<K,V> m) {
            if (m==null)
                throw new NullPointerException();
            this.m = m;
            mutex = this;
        }

        SynchronizedMap(Map<K,V> m, Object mutex) {
            this.m = m;
            this.mutex = mutex;
        }

        public int size() {
            synchronized (mutex) {return m.size();}
        }
        public boolean isEmpty() {
            synchronized (mutex) {return m.isEmpty();}
        }
        public boolean containsKey(Object key) {
            synchronized (mutex) {return m.containsKey(key);}
        }
        public boolean containsValue(Object value) {
            synchronized (mutex) {return m.containsValue(value);}
        }
        public V get(Object key) {
            synchronized (mutex) {return m.get(key);}
        }

        public V put(K key, V value) {
            synchronized (mutex) {return m.put(key, value);}
        }
        public V remove(Object key) {
            synchronized (mutex) {return m.remove(key);}
        }
        public void putAll(Map<? extends K, ? extends V> map) {
            synchronized (mutex) {m.putAll(map);}
        }
        public void clear() {
            synchronized (mutex) {m.clear();}
        }

 

它会将HashMap包装在里面,然后将HashMap的每个操作都加上synchronized。由于每个方法都是获取同一把锁(mutex),这就意味着,put和remove等操作是互斥的,大大减少了并发量。

下面来看下ConcurrentHashMap是如何实现的

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

 

在 ConcurrentHashMap内部有一个Segment段,它将大的HashMap切分成若干个段(小的HashMap),然后让数据在每一段上Hash,这样多个线程在不同段上的Hash操作一定是线程安全的,所以只需要同步同一个段上的线程就可以了,这样实现了锁的分离,大大增加了并发量。在使用ConcurrentHashMap.size时会比较麻烦,因为它要统计每个段的数据和,在这个时候,要把每一个段都加上锁,然后再做数据统计。这个就是把锁分离后的小小弊端,但是size方法应该是不会被高频率调用的方法。在实现上,不使用synchronized和lock.lock而是尽量使用trylock,同时在HashMap的实现上,也做了一点优化。这里就不提了。

2.2 BlockingQueue

BlockingQueue不是一个高性能的容器。但是它是一个非常好的共享数据的容器。是典型的生产者和消费者的实现。

示意图:



 

 

  • 大小: 18.6 KB
  • 大小: 18.8 KB
  • 大小: 24.4 KB
  • 大小: 30 KB
分享到:
评论

相关推荐

    汪文君高并发编程实战视频资源下载.txt

     高并发编程第三阶段31讲 JDK8-StampedLock详细介绍-上_.mp4  高并发编程第三阶段32讲 JDK8-StampedLock详细介绍-下.mp4  高并发编程第三阶段33讲 ForkJoin框架之RecursiveTask_.mp4  高并发编程第三阶段34讲 ...

    Java并发编程实战华章专业开发者书库 (Tim Peierls 等 美Brian Goetz).pdf

    这本书由拥有丰富经验的JDK并发大师及业界专家撰写,详细解释了Java 5.0和Java 6中引入的新并发功能,以及并发编程的一般性概念。 并发编程已经成为现代计算机科学不可或缺的一部分,尤其是在Java这样的多线程支持...

    深入理解高并发编程-核心技术原理

    【深入理解高并发编程-核心技术原理】是一本专注于讲解高并发编程核心概念和技术的书籍,由阿里P8级别的架构师及Mykit系列开源框架作者撰写。本书内容涵盖源码分析、基础案例、实战案例和面试相关知识,旨在帮助读者...

    java并发编程实战(英文版)

    ### Java并发编程实战知识点概述 #### 一、Java并发特性详解 在《Java并发编程实战》这本书中,作者深入浅出地介绍了Java 5.0和Java 6中新增的并发特性。这些特性旨在帮助开发者更高效、安全地编写多线程程序。书中...

    《Java并发编程的艺术》

    并发编程领域的扛鼎之作,作者是阿里和1号店的资深Java技术专家,对并发编程有非常深入的研究,《Java并发编程的艺术》是他们多年一线开发经验的结晶。本书的部分内容在出版早期发表在Java并发编程网和InfoQ等技术...

    汪文君高并发编程实战视频资源全集

     高并发编程第三阶段31讲 JDK8-StampedLock详细介绍-上_.mp4  高并发编程第三阶段32讲 JDK8-StampedLock详细介绍-下.mp4  高并发编程第三阶段33讲 ForkJoin框架之RecursiveTask_.mp4  高并发编程第三阶段34讲 ...

    深入理解高并发编程(冰河原创电子书)

    全网首个最全的免费开源的高并发电子书,内容涵盖源码分析、基础案例、实战案例、面试和系统架构,内含秒杀系统和分布式锁的完整架构过程,历时半年精打细磨,一经发布,火遍全网,至今全网累计下载60万+,无论是刚...

    java并发编程艺术

    《Java并发编程艺术》这本书是Java开发者深入理解多线程编程的重要参考资料。它全面而深入地探讨了Java平台上的并发编程技术,对于提升程序性能、优化系统资源利用以及解决多线程环境中的复杂问题有着极大的帮助。...

    java并发编程实践(中文版pdf全部40M分2部分上传)2

    《JAVA并发编程实践》既能够成为读者的理论支持,又可以作为构建可靠的、可伸缩的、可维护的并发程序的技术支持。《JAVA并发编程实践》并不仅仅提供并发API的清单及其机制,还提供了设计原则、模式和思想模型,使...

    java 并发编程实践 英文版 English

    《Java并发编程实践》一书深入探讨了Java平台在Java 5.0和Java 6中引入的并发特性,以及并发编程的一般性原理。本书不仅由参与设计和实现这些特性的团队撰写,而且得到了业界专家的高度评价,如Sun Microsystems的...

    Java并发编程的艺术

    并发编程领域的扛鼎之作,作者是阿里和1号店的资深Java技术专家,对并发编程有非常深入的研究,《Java并发编程的艺术》是他们多年一线开发经验的结晶。本书的部分内容在出版早期发表在Java并发编程网和InfoQ等技术...

    《Java并发编程实战》的高清完整PDF版

    《Java并发编程实战》这本书是Java开发者深入理解并发编程的重要参考资料。并发编程是现代软件开发中的核心技能之一,尤其是在多核处理器和分布式系统环境中。Java平台提供了强大的并发工具和框架,使得开发者能够...

    Java并发编程实践.pdf

    Java并发编程实践.pdf 本文档讲述了Java并发编程实践,特别是使用开源软件Amino构建并发应用程序。Amino是一个开源软件,具有可操作性、跨平台性、无锁数据结构等特点,适用于多核操作系统。下面是本文档的知识点...

    并发编程的艺术

    1. **第1章:Java并发编程的挑战**:介绍了并发编程的基本概念以及在实际开发中可能遇到的问题,为读者进入并发编程的世界做好铺垫。 2. **第2章:Java并发编程的底层实现原理**:探讨了CPU和JVM如何支撑Java并发...

    Java并发编程面试题整理150问

    Java并发编程是Java开发者在面试中常常遇到的重要领域,它涉及到多线程、同步机制、内存模型等多个方面。以下是对一些关键知识点的详细解释: 1. **线程与程序性能**: - 并发并不意味着多线程,启动过多线程可能...

    java并发编程经典书籍(英文版)

    Java并发编程是Java开发者必须掌握的关键技能之一,尤其是在多核处理器和分布式系统广泛使用的今天。以下是对标题和描述中提及的两本经典书籍——《Concurrent Programming in Java》和《Java Concurrency in ...

Global site tag (gtag.js) - Google Analytics