`
liyonghui160com
  • 浏览: 779902 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

海量Web日志分析 用Hadoop提取KPI统计指标

阅读更多

 

前言

Web日志包含着网站最重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值等。一般中型的网站(10W的PV以上),每天会产生1G以上Web日志文件。大型或超大型的网站,可能每小时就会产生10G的数据量。

对于日志的这种规模的数据,用Hadoop进行日志分析,是最适合不过的了。

目录

    Web日志分析概述
    需求分析:KPI指标设计
    算法模型:Hadoop并行算法
    架构设计:日志KPI系统架构
    程序开发1:用Maven构建Hadoop项目
    程序开发2:MapReduce程序实现

1. Web日志分析概述

Web日志由Web服务器产生,可能是Nginx, Apache, Tomcat等。从Web日志中,我们可以获取网站每类页面的PV值(PageView,页面访问量)、独立IP数;稍微复杂一些的,可以计算得出用户所检索的关键词排行榜、用户停留时间最高的页面等;更复杂的,构建广告点击模型、分析用户行为特征等等。

在Web日志中,每条日志通常代表着用户的一次访问行为,例如下面就是一条nginx日志:


222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

拆解为以下8个变量

    remote_addr: 记录客户端的ip地址, 222.68.172.190
    remote_user: 记录客户端用户名称, –
    time_local: 记录访问时间与时区, [18/Sep/2013:06:49:57 +0000]
    request: 记录请求的url与http协议, “GET /images/my.jpg HTTP/1.1″
    status: 记录请求状态,成功是200, 200
    body_bytes_sent: 记录发送给客户端文件主体内容大小, 19939
    http_referer: 用来记录从那个页面链接访问过来的, “http://www.angularjs.cn/A00n”
    http_user_agent: 记录客户浏览器的相关信息, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36″

注:要更多的信息,则要用其它手段去获取,通过js代码单独发送请求,使用cookies记录用户的访问信息。

利用这些日志信息,我们可以深入挖掘网站的秘密了。

海量数据的情况

当数据量每天以10G、100G增长的时候,单机处理能力已经不能满足需求。我们就需要增加系统的复杂性,用计算机集群,存储阵列来解决。在Hadoop出现之前,海量数据存储,和海量日志分析都是非常困难的。只有少数一些公司,掌握着高效的并行计算,分步式计算,分步式存储的核心技术。

Hadoop的出现,大幅度的降低了海量数据处理的门槛,让小公司甚至是个人都能力,搞定海量数据。并且,Hadoop非常适用于日志分析系统。

2.需求分析:KPI指标设计

下面我们将从一个公司案例出发来全面的解释,如何用进行海量Web日志分析,提取KPI数据。

案例介绍
某电子商务网站,在线团购业务。每日PV数100w,独立IP数5w。用户通常在工作日上午10:00-12:00和下午15:00-18:00访问量最大。日间主要是通过PC端浏览器访问,休息日及夜间通过移动设备访问较多。网站搜索浏量占整个网站的80%,PC用户不足1%的用户会消费,移动用户有5%会消费。

通过简短的描述,我们可以粗略地看出,这家电商网站的经营状况,并认识到愿意消费的用户从哪里来,有哪些潜在的用户可以挖掘,网站是否存在倒闭风险等。

KPI指标设计(举个例子)

    PV(PageView): 页面访问量统计
    IP: 页面独立IP的访问量统计
    Time: 用户每小时PV的统计
    Source: 用户来源域名的统计
    Browser: 用户的访问设备统计

注:商业保密限制,无法提供电商网站的日志。
下面的内容,将以我的个人网站为例提取数据进行分析。

3.算法模型:Hadoop并行算法
并行算法的设计:
注:找到第一节有定义的8个变量

PV(PageView): 页面访问量统计

    Map过程{key:$request,value:1}
    Reduce过程{key:$request,value:求和(sum)}

IP: 页面独立IP的访问量统计

    Map: {key:$request,value:$remote_addr}
    Reduce: {key:$request,value:去重再求和(sum(unique))}

Time: 用户每小时PV的统计

    Map: {key:$time_local,value:1}
    Reduce: {key:$time_local,value:求和(sum)}

Source: 用户来源域名的统计

    Map: {key:$http_referer,value:1}
    Reduce: {key:$http_referer,value:求和(sum)}

Browser: 用户的访问设备统计

    Map: {key:$http_user_agent,value:1}
    Reduce: {key:$http_user_agent,value:求和(sum)}



 

上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

    日志是由业务系统产生的,我们可以设置web服务器每天产生一个新的目录,目录下面会产生多个日志文件,每个日志文件64M。
    设置系统定时器CRON,夜间在0点后,向HDFS导入昨天的日志文件。
    完成导入后,设置系统定时器,启动MapReduce程序,提取并计算统计指标。
    完成计算后,设置系统定时器,从HDFS导出统计指标数据到数据库,方便以后的即使查询。



 

上面这幅图,我们可以看得更清楚,数据是如何流动的。蓝色背景的部分是在Hadoop中的,接下来我们的任务就是完成MapReduce的程序实现。


6.程序开发2:MapReduce程序实现

开发流程:

    对日志行的解析
    Map函数实现
    Reduce函数实现
    启动程序实现

1). 对日志行的解析
新建文件:org.conan.myhadoop.mr.kpi.KPI.java


package org.conan.myhadoop.mr.kpi;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

/*
 * KPI Object
 */
public class KPI {
    private String remote_addr;// 记录客户端的ip地址
    private String remote_user;// 记录客户端用户名称,忽略属性"-"
    private String time_local;// 记录访问时间与时区
    private String request;// 记录请求的url与http协议
    private String status;// 记录请求状态;成功是200
    private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
    private String http_referer;// 用来记录从那个页面链接访问过来的
    private String http_user_agent;// 记录客户浏览器的相关信息

    private boolean valid = true;// 判断数据是否合法
   
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("valid:" + this.valid);
        sb.append("\nremote_addr:" + this.remote_addr);
        sb.append("\nremote_user:" + this.remote_user);
        sb.append("\ntime_local:" + this.time_local);
        sb.append("\nrequest:" + this.request);
        sb.append("\nstatus:" + this.status);
        sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
        sb.append("\nhttp_referer:" + this.http_referer);
        sb.append("\nhttp_user_agent:" + this.http_user_agent);
        return sb.toString();
    }

    public String getRemote_addr() {
        return remote_addr;
    }

    public void setRemote_addr(String remote_addr) {
        this.remote_addr = remote_addr;
    }

    public String getRemote_user() {
        return remote_user;
    }

    public void setRemote_user(String remote_user) {
        this.remote_user = remote_user;
    }

    public String getTime_local() {
        return time_local;
    }

    public Date getTime_local_Date() throws ParseException {
        SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
        return df.parse(this.time_local);
    }
   
    public String getTime_local_Date_hour() throws ParseException{
        SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
        return df.format(this.getTime_local_Date());
    }

    public void setTime_local(String time_local) {
        this.time_local = time_local;
    }

    public String getRequest() {
        return request;
    }

    public void setRequest(String request) {
        this.request = request;
    }

    public String getStatus() {
        return status;
    }

    public void setStatus(String status) {
        this.status = status;
    }

    public String getBody_bytes_sent() {
        return body_bytes_sent;
    }

    public void setBody_bytes_sent(String body_bytes_sent) {
        this.body_bytes_sent = body_bytes_sent;
    }

    public String getHttp_referer() {
        return http_referer;
    }
   
    public String getHttp_referer_domain(){
        if(http_referer.length()<8){
            return http_referer;
        }
       
        String str=this.http_referer.replace("\"", "").replace("http://", "").replace("https://", "");
        return str.indexOf("/")>0?str.substring(0, str.indexOf("/")):str;
    }

    public void setHttp_referer(String http_referer) {
        this.http_referer = http_referer;
    }

    public String getHttp_user_agent() {
        return http_user_agent;
    }

    public void setHttp_user_agent(String http_user_agent) {
        this.http_user_agent = http_user_agent;
    }

    public boolean isValid() {
        return valid;
    }

    public void setValid(boolean valid) {
        this.valid = valid;
    }

    public static void main(String args[]) {
        String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");

        kpi.setRemote_addr(arr[0]);
        kpi.setRemote_user(arr[1]);
        kpi.setTime_local(arr[3].substring(1));
        kpi.setRequest(arr[6]);
        kpi.setStatus(arr[8]);
        kpi.setBody_bytes_sent(arr[9]);
        kpi.setHttp_referer(arr[10]);
        kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
        System.out.println(kpi);

        try {
            SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss", Locale.US);
            System.out.println(df.format(kpi.getTime_local_Date()));
            System.out.println(kpi.getTime_local_Date_hour());
            System.out.println(kpi.getHttp_referer_domain());
        } catch (ParseException e) {
            e.printStackTrace();
        }
    }

}

 

从日志文件中,取一行通过main函数写一个简单的解析测试。

控制台输出:


222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
valid:true
remote_addr:222.68.172.190
remote_user:-
time_local:18/Sep/2013:06:49:57
request:/images/my.jpg
status:200
body_bytes_sent:19939
http_referer:"http://www.angularjs.cn/A00n"
http_user_agent:"Mozilla/5.0 (Windows
2013.09.18:06:49:57
2013091806
www.angularjs.cn

我们看到日志行,被正确的解析成了kpi对象的属性。我们把解析过程,单独封装成一个方法。


  

 private static KPI parser(String line) {
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");
        if (arr.length > 11) {
            kpi.setRemote_addr(arr[0]);
            kpi.setRemote_user(arr[1]);
            kpi.setTime_local(arr[3].substring(1));
            kpi.setRequest(arr[6]);
            kpi.setStatus(arr[8]);
            kpi.setBody_bytes_sent(arr[9]);
            kpi.setHttp_referer(arr[10]);
           
            if (arr.length > 12) {
                kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
            } else {
                kpi.setHttp_user_agent(arr[11]);
            }

            if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大于400,HTTP错误
                kpi.setValid(false);
            }
        } else {
            kpi.setValid(false);
        }
        return kpi;
    }

 

对map方法,reduce方法,启动方法,我们单独写一个类来实现

下面将分别介绍MapReduce的实现类:

    PV:org.conan.myhadoop.mr.kpi.KPIPV.java
    IP: org.conan.myhadoop.mr.kpi.KPIIP.java
    Time: org.conan.myhadoop.mr.kpi.KPITime.java
    Browser: org.conan.myhadoop.mr.kpi.KPIBrowser.java

1). PV:org.conan.myhadoop.mr.kpi.KPIPV.java


package org.conan.myhadoop.mr.kpi;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class KPIPV {

    public static class KPIPVMapper extends MapReduceBase implements Mapper {
        private IntWritable one = new IntWritable(1);
        private Text word = new Text();

        @Override
        public void map(Object key, Text value, OutputCollector output, Reporter reporter) throws IOException {
            KPI kpi = KPI.filterPVs(value.toString());
            if (kpi.isValid()) {
                word.set(kpi.getRequest());
                output.collect(word, one);
            }
        }
    }

    public static class KPIPVReducer extends MapReduceBase implements Reducer {
        private IntWritable result = new IntWritable();

        @Override
        public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            result.set(sum);
            output.collect(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        String input = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/";
        String output = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv";

        JobConf conf = new JobConf(KPIPV.class);
        conf.setJobName("KPIPV");
        conf.addResource("classpath:/hadoop/core-site.xml");
        conf.addResource("classpath:/hadoop/hdfs-site.xml");
        conf.addResource("classpath:/hadoop/mapred-site.xml");

        conf.setMapOutputKeyClass(Text.class);
        conf.setMapOutputValueClass(IntWritable.class);

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(KPIPVMapper.class);
        conf.setCombinerClass(KPIPVReducer.class);
        conf.setReducerClass(KPIPVReducer.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(input));
        FileOutputFormat.setOutputPath(conf, new Path(output));

        JobClient.runJob(conf);
        System.exit(0);
    }
}

 

在程序中会调用KPI类的方法

KPI kpi = KPI.filterPVs(value.toString());

通过filterPVs方法,我们可以实现对PV,更多的控制。

在KPK.java中,增加filterPVs方法


  

 /**
     * 按page的pv分类
     */
    public static KPI filterPVs(String line) {
        KPI kpi = parser(line);
        Set pages = new HashSet();
        pages.add("/about");
        pages.add("/black-ip-list/");
        pages.add("/cassandra-clustor/");
        pages.add("/finance-rhive-repurchase/");
        pages.add("/hadoop-family-roadmap/");
        pages.add("/hadoop-hive-intro/");
        pages.add("/hadoop-zookeeper-intro/");
        pages.add("/hadoop-mahout-roadmap/");

        if (!pages.contains(kpi.getRequest())) {
            kpi.setValid(false);
        }
        return kpi;
    }

 

在filterPVs方法,我们定义了一个pages的过滤,就是只对这个页面进行PV统计。

我们运行一下KPIPV.java


2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-10-9 11:53:28 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000000_0' done.
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task initialize
信息:  Using ResourceCalculatorPlugin : null
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Merging 1 sorted segments
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Down to the last merge-pass, with 1 segments left of total size: 213 bytes
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task commit
信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-10-9 11:53:30 org.apache.hadoop.mapred.FileOutputCommitter commitTask
信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv
2013-10-9 11:53:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 0%
2013-10-9 11:53:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: reduce > reduce
2013-10-9 11:53:33 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_r_000000_0' done.
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 100%
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Job complete: job_local_0001
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息: Counters: 20
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Input Format Counters
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Read=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Output Format Counters
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Written=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   FileSystemCounters
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_READ=545
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_READ=6051514
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_WRITTEN=83472
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_WRITTEN=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   Map-Reduce Framework
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output materialized bytes=217
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input records=14619
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce shuffle bytes=0
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Spilled Records=16
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output bytes=2004
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Total committed heap usage (bytes)=376569856
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input bytes=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     SPLIT_RAW_BYTES=110
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine input records=76
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input groups=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output records=76

用hadoop命令查看HDFS文件


~ hadoop fs -cat /user/hdfs/log_kpi/pv/part-00000

/about  5
/black-ip-list/ 2
/cassandra-clustor/     3
/finance-rhive-repurchase/      13
/hadoop-family-roadmap/ 13
/hadoop-hive-intro/     14
/hadoop-mahout-roadmap/ 20
/hadoop-zookeeper-intro/        6

这样我们就得到了,刚刚日志文件中的,指定页面的PV值。



  • 大小: 10.5 KB
  • 大小: 33 KB
分享到:
评论

相关推荐

    查看进程信息,方便排查问题

    查看进程信息,方便排查问题

    IDA Pro分析STM32F1xx插件

    IDA Pro分析STM32F1xx插件

    基于SSH的线上医疗报销系统.zip-毕设&课设&实训&大作业&竞赛&项目

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    matlab的小型的微电网仿真模型文件

    小型的微电网仿真模型,简单模拟了光伏,家庭负载变化的使用情况

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电网 评估 参考文档:《自写文档,联系我看》参考选址定容模型部分; 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入配电网的位置,接入配电网的有功功率以及无功功率的大小,通过牛顿拉夫逊法求解分布式电源接入后的电网潮流,从而评价分布式电源接入前后的电压、线路潮流等参数是否发生变化,评估配电网的运行方式。 代码非常精品,是研究含分布式电源接入的电网潮流计算的必备程序 ,分布式电源; 配电网; 接入影响分析; 潮流计算; 牛顿拉夫逊法; 电压评估; 必备程序。,基于MATLAB的分布式电源对配电网影响评估系统

    基于Unity-Bolt开发的游戏demo.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    重庆市农村信用合作社 农商行数字银行系统建设方案.ppt

    重庆市农村信用合作社 农商行数字银行系统建设方案.ppt

    光伏并网逆变器设计方案与高效实现:结合matlab电路仿真、DSP代码及环流抑制策略,光伏并网逆变器设计方案:结合matlab电路文件与DSP程序代码,实现高效并联环流抑制策略,光伏并网逆变器设计方案

    光伏并网逆变器设计方案与高效实现:结合matlab电路仿真、DSP代码及环流抑制策略,光伏并网逆变器设计方案:结合matlab电路文件与DSP程序代码,实现高效并联环流抑制策略,光伏并网逆变器设计方案,附有相关的matlab电路文件,以及DSP的程序代码,方案、仿真文件、代码三者结合使用效果好,事半功倍。 备注:赠送逆变器并联环流matlab文件,基于矢量控制的环流抑制策略和下垂控制的环流抑制 ,光伏并网逆变器设计方案; MATLAB电路文件; DSP程序代码; 方案、仿真文件、代码结合使用; 并联环流抑制策略; 下垂控制的环流抑制,光伏并网逆变器优化设计:方案、仿真与DSP程序代码三合一,并赠送并联环流抑制策略Matlab文件

    Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测(含模型描述及示例代码)

    内容概要:本文介绍了通过 Matlab 实现鲸鱼优化算法(WOA)与门控循环单元(GRU)结合的多输入分类预测模型。文章首先概述了时间序列预测的传统方法局限性以及引入 WOA 的优势。然后,重点阐述了项目背景、目标、挑战及其独特之处。通过详细介绍数据预处理、模型构建、训练和评估步骤,最终展示了模型的效果预测图及应用实例。特别强调利用 WOA 改善 GRU 的参数设置,提高了多输入时间序列预测的准确性与鲁棒性。 适合人群:对时间序列分析有兴趣的研究者,从事金融、能源、制造业等行业数据分析的专业人士,具备一定的机器学习基础知识和技术经验。 使用场景及目标:本项目旨在开发一个高度准确和稳定的多变量时间序列预测工具,能够用于金融市场预测、能源需求规划、生产调度优化等领域,为企业和个人提供科学决策依据。 其他说明:项目提供的源代码和详细的开发指南有助于学习者快速掌握相关技能,并可根据实际需求调整模型参数以适应不同的业务情境。

    基于vue+elment-ui+node.js的后台管理系统 .zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    Python 实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测(含模型描述及示例代码)

    内容概要:本文介绍了Python中基于双向长短期记忆网络(BiLSTM)与AdaBoost相结合的多输入分类预测模型的设计与实现。BiLSTM擅长捕捉时间序列的双向依赖关系,而AdaBoost则通过集成弱学习器来提高分类精度和稳定性。文章详述了该项目的背景、目标、挑战、特色和应用场景,并提供了详细的模型构建流程、超参数优化以及视觉展示的方法和技术要点。此外,还附有完整的效果预测图表程序和具体示例代码,使读者可以快速上手构建属于自己的高效稳定的时间序列预测系统。 适合人群:对深度学习特别是时序数据分析感兴趣的开发者或者科研工作者;正在探索高级机器学习技术和寻求解决方案的企业分析师。 使用场景及目标:适用于希望提升时间序列或多输入数据类别判定准确度的业务情境,比如金融市场的走势预估、医学图像分析中的病变区域判读或是物联网环境监测下设备状态预警等任务。目的是为了创建更加智能且可靠的预测工具,在实际应用中带来更精准可靠的结果。 其他说明:文中提供的所有Python代码片段和方法都可以直接运用于实践中,并可根据特定的问题进行相应调整和扩展,进一步改进现有系统的效能并拓展新的功能特性。

    maven-script-interpreter-javadoc-1.0-7.el7.x64-86.rpm.tar.gz

    1、文件内容:maven-script-interpreter-javadoc-1.0-7.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/maven-script-interpreter-javadoc-1.0-7.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    在云服务器上搭建MQTT服务器(超详细,一步到位)

    在云服务器上搭建MQTT服务器(超详细,一步到位)

    复现改进的L-SHADE差分进化算法求解最优化问题详解:附MATLAB源码与测试函数集,复现改进的L-SHADE差分进化算法求解最优化问题详解:MATLAB源码与测试集全攻略,复现改进的L-SHADE

    复现改进的L-SHADE差分进化算法求解最优化问题详解:附MATLAB源码与测试函数集,复现改进的L-SHADE差分进化算法求解最优化问题详解:MATLAB源码与测试集全攻略,复现改进的L-SHADE差分进化算法求最优化问题 对配套文献所提出的改进的L-SHADE差分进化算法求解最优化问题的的复现,提供完整MATLAB源代码和测试函数集,到手可运行,运行效果如图2所示。 代码所用测试函数集与文献相同:对CEC2014最优化测试函数集中的全部30个函数进行了测试验证,运行结果与文献一致。 ,复现; 改进的L-SHADE差分进化算法; 最优化问题求解; MATLAB源代码; 测试函数集; CEC2014最优化测试函数集,复现改进L-SHADE算法:最优化问题的MATLAB求解与验证

    天津大学:深度解读DeepSeek原理与效应.pdf

    天津大学:深度解读DeepSeek原理与效应.pdf 1.大语言模型发展路线图 2.DeepSeek V2-V3/R1技术原理 3DeepSeek效应 4.未来展望

    光伏混合储能微电网能量管理系统模型:基于MPPT控制的光伏发电与一阶低通滤波算法的混合储能系统优化管理,光伏混合储能微电网能量优化管理与稳定运行系统,光伏-混合储能微电网能量管理系统模型

    光伏混合储能微电网能量管理系统模型:基于MPPT控制的光伏发电与一阶低通滤波算法的混合储能系统优化管理,光伏混合储能微电网能量优化管理与稳定运行系统,光伏-混合储能微电网能量管理系统模型 系统主要由光伏发电模块、mppt控制模块、混合储能系统模块、直流负载模块、soc限值管理控制模块、hess能量管理控制模块。 光伏发电系统采用mppt最大跟踪控制,实现光伏功率的稳定输出;混合储能系统由蓄电池和超级电容组合构成,并采用一阶低通滤波算法实现两种储能介质间的功率分配,其中蓄电池响应目标功率中的低频部分,超级电容响应目标功率中的高频部分,最终实现对目标功率的跟踪响应;SOC限值管理控制,根据储能介质的不同特性,优化混合储能功率分配,进一步优化蓄电池充放电过程,再根据超级电容容量特点,设计其荷电状态区分管理策略,避免过充过放,维持系统稳定运行;最后,综合混合储能和系统功率平衡,针对光伏储能微电网的不同工况进行仿真实验,验证控制策略的有效性。 本模型完整无错,附带对应复现文献paper,容易理解,可塑性高 ,光伏; 混合储能系统; 能量管理; MPPT控制; 直流负载;

    Matlab算法下的A星路径规划改进版:提升搜索效率,优化拐角并路径平滑处理,Matlab下的A星算法改进:提升搜索效率、冗余拐角优化及路径平滑处理,Matlab算法代码 A星算法 路径规划A* As

    Matlab算法下的A星路径规划改进版:提升搜索效率,优化拐角并路径平滑处理,Matlab下的A星算法改进:提升搜索效率、冗余拐角优化及路径平滑处理,Matlab算法代码 A星算法 路径规划A* Astar算法仿真 传统A*+改进后的A*算法 Matlab代码 改进: ①提升搜索效率(引入权重系数) ②冗余拐角优化(可显示拐角优化次数) ③路径平滑处理(引入梯度下降算法配合S-G滤波器) ,Matlab算法代码; A星算法; 路径规划A*; Astar算法仿真; 传统A*; 改进A*算法; 提升搜索效率; 冗余拐角优化; 路径平滑处理; 权重系数; S-G滤波器。,Matlab中的A*算法:传统与改进的路径规划仿真研究

    探索与Cursor协作创建一个完整的前后端分离的项目的最佳实践,提示词指南

    项目开发所用的主要提示词模板

    基于OpenVINO.NET实现的人脸检测。.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    电力系统暂态稳定性仿真分析:Matlab编程与Simulink模型下的各类故障影响研究,电力系统暂态稳定性仿真分析:Matlab编程与Simulink模型下的各类故障影响研究,电力系统暂态稳定性Mat

    电力系统暂态稳定性仿真分析:Matlab编程与Simulink模型下的各类故障影响研究,电力系统暂态稳定性仿真分析:Matlab编程与Simulink模型下的各类故障影响研究,电力系统暂态稳定性Matlab编程 Simulink仿真 单机无穷大系统发生各类(三相短路,单相接地,两相接地,两相相间短路)等短路故障,各类(单相断线,两相断线,三相断线)等断线故障,暂态稳定仿真分析 Simulink搭建电力系统暂态仿真模型 通过仿真,观察串联电抗器,并联补偿器,自动重合闸,以及故障切除快慢对暂态稳定性的影响 ,电力系统暂态稳定性; Matlab编程; Simulink仿真; 短路故障; 断线故障; 暂态稳定仿真分析; 仿真模型搭建; 电抗器影响; 补偿器影响; 自动重合闸; 故障切除时间。,Matlab编程与Simulink仿真在电力系统暂态稳定性分析中的应用

Global site tag (gtag.js) - Google Analytics