事务性Topologies是包含在Storm0.7.0版本中的新特性,它激活消息语义来确保你以一种安全的方式重放元组并且它们只会被处理一次。没有事务性topologies的支持,你不可能以一种完全精确、可扩展和容错的方式计数。
事务性Topologies是建立标准Storm spout和bolts之上的一个抽象。
设计
在事务性topology中,Storm使用并行和顺序元组处理的混合模式。Spout产生的批量的元组被bolts并行的处理。这些bolts中的一部分被认为是提交者,它们以某种严格排序的方式提交处理过的批量元组。这意味着如果你有两个批量,每个批量包含五个元组,两边的元组会被bolts以并行的方式处理,但是提交者bolts直到第一个元组被提交成功后才会提交第二个元组。
当处理事务性Topology时,可以从源重放批量的元组,甚至有时候是多次重放是非常重要的。所以确保你的数据源--你的spout将要连接的那个--具备这个能力。
这可以被描述成两个不同的步骤,或者阶段:
处理阶段
完全并行的阶段,许多批量被同时执行。
提交阶段
严格排序的阶段,第二个批量直到第一个批量被提交成功后才提交。
把这两个阶段称为Storm事务。
storm使用zookeeper来保存事务元数据。缺省的情况下就使用为topology服务的那个zookeeper来保存元数据。你可以通过覆盖配置键transactional.zookeeper.servers 和 transactional.zookeeper.port.来更改。
事务实战
为看清事务怎样工作,你将建立一个Twitter分析工具。你会读取存储在Redis中的tweets,通过一系列bolts处理他们,然后存储--在另一个Redis数据库中--所有标签和它们在tweets中的频率的列表,所有用户和他们出现在tweets中的总计的列表和一个用户及他们标签和频率的列表。
正如你看到的, TweetsTransactionalSpout 会连接你的tweet数据库并向拓扑分发批次。 UserSplitterBolt 和 HashTagSplitterBolt 两个 bolt ,从 spout 接收元组。 UserSplitterBolt 解析tweets并查找用户——以@开头的单词——然后把这些单词分发到名为 users 的自定义数据流组。 HashtagSplitterBolt 从tweet查找 # 开头的单词,并把它们分发到名为 hashtags 的自定义数据流组。第三个 bolt , UserHashtagJoinBolt ,接收前面提到的两个数据流组,并计算具名用户的一条tweet内的话题数量。为了计数并分发计算结果,这是个 BaseBatchBolt (稍后有更多介绍)。
最后一个bolt—— RedisCommitterBolt ——接收以上三个 bolt 的数据流组。它为每样东西计数,并在对一个批次完成处理时,把所有结果保存到redis。这是一种特殊的 bolt ,叫做提交者,在本章后面做更多讲解。
用 TransactionalTopologyBuilder 构建拓扑,代码如下:
TransactionalTopologyBuilder builder= new TransactionalTopologyBuilder("test", "spout", new TweetsTransactionalSpout()); builder.setBolt("users-splitter", new UserSplitterBolt(), 4).shuffleGrouping("spout"); buildeer.setBolt("hashtag-splitter", new HashtagSplitterBolt(), 4).shuffleGrouping("spout"); builder.setBolt("users-hashtag-manager", new UserHashtagJoinBolt(), r) .fieldsGrouping("users-splitter", "users", new Fields("tweet_id")) .fieldsGrouping("hashtag-splitter", "hashtags", new Fields("tweet_id")); builder.setBolt("redis-commiter", new RedisCommiterBolt()) .globalGrouping("users-splitter", "users") .globalGrouping("hashtag-splitter", "hashtags") .globalGrouping("user-hashtag-merger");
接下来就看看如何在一个事务性拓扑中实现 spout 。
Spout
一个事务性拓扑的 spout 与标准 spout 完全不同。
public class TweetsTransactionalSpout extends BaseTransactionalSpout<TransactionMetadata>{
正如你在这个类定义中看到的,TweetsTransactionalSpout继承了带范型的 BaseTransactionalSpout 。指定的范型类型的对象是事务元数据集合。它将在后面的代码中用于从数据源分发批次。
在这个例子中, TransactionMetadata 定义如下:
public class TransactionMetadata implements Serializable { private static final long serialVersionUID = 1L; long from; int quantity; public TransactionMetadata(long from, int quantity) { this.from = from; this.quantity = quantity; } }
该类的对象维护着两个属性 from 和 quantity ,它们用来生成批次。
spout 的最后需要实现下面的三个方法:
@Override public ITransactionalSpout.Coordinator<TransactionMetadata> getCoordinator( Map conf, TopologyContext context) { return new TweetsTransactionalSpoutCoordinator(); } @Override public backtype.storm.transactional.ITransactionalSpout.Emitter<TransactionMetadata> getEmitter(Map conf, TopologyContext contest) { return new TweetsTransactionalSpoutEmitter(); } @Override public void declareOutputFields(OuputFieldsDeclarer declarer) { declarer.declare(new Fields("txid", "tweet_id", "tweet")); }
getCoordinator 方法,告诉Storm用来协调生成批次的类。 getEmitter ,负责读取批次并把它们分发到拓扑中的数据流组。最后,就像之前做过的,需要声明要分发的域。
RQ类
为了让例子简单点,我们决定用一个类封装所有对Redis的操作。
public class RQ { public static final String NEXT_READ = "NEXT_READ"; public static final String NEXT_WRITE = "NEXT_WRITE"; Jedis jedis; public RQ() { jedis = new Jedis("localhost"); } public long getavailableToRead(long current) { return getNextWrite() - current; } public long getNextRead() { String sNextRead = jedis.get(NEXT_READ); if(sNextRead == null) { return 1; } return Long.valueOf(sNextRead); } public long getNextWrite() { return Long.valueOf(jedis.get(NEXT_WRITE)); } public void close() { jedis.disconnect(); } public void setNextRead(long nextRead) { jedis.set(NEXT_READ, ""+nextRead); } public List<String> getMessages(long from, int quantity) { String[] keys = new String[quantity]; for (int i = 0; i < quantity; i++) { keys[i] = ""+(i+from); } return jedis.mget(keys); } }
仔细阅读每个方法,确保自己理解了它们的用处。
协调者Coordinator
下面是本例的协调者实现。
public static class TweetsTransactionalSpoutCoordinator implements ITransactionalSpout.Coordinator<TransactionMetadata> { TransactionMetadata lastTransactionMetadata; RQ rq = new RQ(); long nextRead = 0; public TweetsTransactionalSpoutCoordinator() { nextRead = rq.getNextRead(); } @Override public TransactionMetadata initializeTransaction(BigInteger txid, TransactionMetadata prevMetadata) { long quantity = rq.getAvailableToRead(nextRead); quantity = quantity > MAX_TRANSACTION_SIZE ? MAX_TRANSACTION_SIZE : quantity; TransactionMetadata ret = new TransactionMetadata(nextRead, (int)quantity); nextRead += quantity; return ret; } @Override public boolean isReady() { return rq.getAvailableToRead(nextRead) > 0; } @Override public void close() { rq.close(); } }
值得一提的是, 在整个拓扑中只会有一个提交者实例 。创建提交者实例时,它会从redis读取一个从1开始的序列号,这个序列号标识要读取的tweet下一条。
第一个方法是 isReady 。在 initializeTransaction 之前调用它确认数据源已就绪并可读取。此方法应当相应的返回 true 或 false 。在此例中,读取tweets数量并与已读数量比较。它们之间的不同就在于可读tweets数。如果它大于0,就意味着还有tweets未读。
最后,执行 initializeTransaction 。正如你看到的,它接收 txid 和 prevMetadata 作为参数。第一个参数是Storm生成的事务ID,作为批次的惟一性标识。 prevMetadata 是协调器生成的前一个事务元数据对象。
在这个例子中,首先确认有多少tweets可读。只要确认了这一点,就创建一个TransactionMetadata对象,标识读取的第一个tweet(译者注:对象属性 from ),以及读取的tweets数量(译者注:对象属性 quantity )。
元数据对象一经返回,Storm把它跟 txid 一起保存在zookeeper。这样就确保了一旦发生故障,Storm可以利用分发器(译者注: Emitter ,见下文)重新发送批次。
Emitter
创建事务性 spout 的最后一步是实现分发器(Emitter)。实现如下:
public static class TweetsTransactionalSpoutEmitter implements ITransactionalSpout.Emitter<TransactionMetadata> { RQ rq = new RQ(); public TweetsTransactionalSpoutEmitter() {} @Override public void emitBatch(TransactionAttempt tx, TransactionMetadata coordinatorMeta, BatchOutputCollector collector) { rq.setNextRead(coordinatorMeta.from+coordinatorMeta.quantity); List<String> messages = rq.getMessages(coordinatorMeta.from,coordinatorMeta.quantity); long tweetId = coordinatorMeta.from; for (String message : messages) { collector.emit(new Values(tx, ""+tweetId, message)); tweetId++; } } @Override public void cleanupBefore(BigInteger txid) {} @Override public void close() { rq.close(); } }
分发器从数据源读取数据并从数据流组发送数据。分发器应当问题能够为相同的事务id和事务元数据发送相同的批次。这样,如果在处理批次的过程中发生了故 障,Storm就能够利用分发器重复相同的事务id和事务元数据,并确保批次已经重复过了。Storm会在 TransactionAttempt 对象里为尝试次数增加计数(译者注: attempt id )。这样就能知道批次已经重复过了。
在这里 emitBatch 是个重要方法。在这个方法中,使用传入的元数据对象从redis得到tweets,同时增加redis维持的已读tweets数。当然它还会把读到的tweets分发到拓扑。
Bolts
首先看一下这个拓扑中的标准 bolt :
public class UserSplitterBolt implements IBasicBolt{ private static final long serialVersionUID = 1L; @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declareStream("users", new Fields("txid","tweet_id","user")); } @Override public Map<String, Object> getComponentConfiguration() { return null; } @Override public void prepare(Map stormConf, TopologyContext context) {} @Override public void execute(Tuple input, BasicOutputCollector collector) { String tweet = input.getStringByField("tweet"); String tweetId = input.getStringByField("tweet_id"); StringTokenizer strTok = new StringTokenizer(tweet, " "); HashSet<String> users = new HashSet<String>(); while(strTok.hasMoreTokens()) { String user = strTok.nextToken(); //确保这是个真实的用户,并且在这个tweet中没有重复 if(user.startsWith("@") && !users.contains(user)) { collector.emit("users", new Values(tx, tweetId, user)); users.add(user); } } } @Override public void cleanup(){} }
正如本章前面提到的, UserSplitterBolt 接收元组,解析tweet文本,分发@开头的单词————tweeter用户。 HashtagSplitterBolt 的实现也非常相似。
public class HashtagSplitterBolt implements IBasicBolt{ private static final long serialVersionUID = 1L; @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declareStream("hashtags", new Fields("txid","tweet_id","hashtag")); } @Override public Map<String, Object> getComponentConfiguration() { return null; } @Override public void prepare(Map stormConf, TopologyContext context) {} @Oerride public void execute(Tuple input, BasicOutputCollector collector) { String tweet = input.getStringByField("tweet"); String tweetId = input.getStringByField("tweet_id"); StringTokenizer strTok = new StringTokenizer(tweet, " "); TransactionAttempt tx = (TransactionAttempt)input.getValueByField("txid"); HashSet<String> words = new HashSet<String>(); while(strTok.hasMoreTokens()) { String word = strTok.nextToken(); if(word.startsWith("#") && !words.contains(word)){ collector.emit("hashtags", new Values(tx, tweetId, word)); words.add(word); } } } @Override public void cleanup(){} }
现在看看 UserHashTagJoinBolt 的实现。首先要注意的是它是一个 BaseBatchBolt 。这意味着, execute 方法会操作接收到的元组,但是不会分发新的元组。批次完成时,Storm会调用 finishBatch 方法。
public void execute(Tuple tuple) { String source = tuple.getSourceStreamId(); String tweetId = tuple.getStringByField("tweet_id"); if("hashtags".equals(source)) { String hashtag = tuple.getStringByField("hashtag"); add(tweetHashtags, tweetId, hashtag); } else if("users".equals(source)) { String user = tuple.getStringByField("user"); add(userTweets, user, tweetId); } }
既然要结合tweet中提到的用户为出现的所有话题计数,就需要加入前面的 bolts 创建的两个数据流组。这件事要以批次为单位进程,在批次处理完成时,调用 finishBatch 方法。
@Override public void finishBatch() { for(String user:userTweets.keySet()){ Set<String> tweets = getUserTweets(user); HashMap<String, Integer> hashtagsCounter = new HashMap<String, Integer>(); for(String tweet:tweets){ Set<String> hashtags=getTweetHashtags(tweet); if(hashtags!=null){ for(String hashtag:hashtags){ Integer count=hashtagsCounter.get(hashtag); if(count==null){count=0;} count++; hashtagsCounter.put(hashtag,count); } } } for(String hashtag:hashtagsCounter.keySet()){ int count=hashtagsCounter.get(hashtag); collector.emit(new Values(id,user,hashtag,count)); } } }
这个方法计算每对用户-话题出现的次数,并为之生成和分发元组。
你可以在GitHub上找到并下载完整代码。(译者注:https://github.com/storm-book/examples-ch08-transactional-topologies这个仓库里没有代码,谁知道哪里有代码麻烦说一声。)
提交者 bolts
我们已经学习了,批次通过协调器和分发器怎样在拓扑中传递。在拓扑中,这些批次中的元组以并行的,没有特定次序的方式处理。
协调者bolts 是一类特殊的批处理 bolts ,它们实现了 IComh mitter 或者通过 TransactionalTopologyBuilder 调用 setCommiterBolt 设置了提交者 bolt 。它们与其它的批处理 bolts 最大的不同在于,提交者 bolts 的 finishBatch 方法在提交就绪时执行。这一点发生在之前所有事务都已成功提交之后。另外, finishBatch 方法是顺序执行的。因此如果同时有事务ID1和事务ID2两个事务同时执行,只有在ID1没有任何差错的执行了 finishBatch 方法之后,ID2才会执行该方法。
下面是这个类的实现
public class RedisCommiterCommiterBolt extends BaseTransactionalBolt implements ICommitter { public static final String LAST_COMMITED_TRANSACTION_FIELD = "LAST_COMMIT"; TransactionAttempt id; BatchOutputCollector collector; Jedis jedis; @Override public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, TransactionAttempt id) { this.id = id; this.collector = collector; this.jedis = new Jedis("localhost"); } HashMap<String, Long> hashtags = new HashMap<String,Long>(); HashMap<String, Long> users = new HashMap<String, Long>(); HashMap<String, Long> usersHashtags = new HashMap<String, Long>(); private void count(HashMap<String, Long> map, String key, int count) { Long value = map.get(key); if(value == null){value = (long)0;} value += count; map.put(key,value); } @Override public void execute(Tuple tuple) { String origin = tuple. getSourceComponent(); if("sers-splitter".equals(origin)) { String user = tuple.getStringByField("user"); count(users, user, 1); } else if("hashtag-splitter".equals(origin)) { String hashtag = tuple.getStringByField("hashtag"); count(hashtags, hashtag, 1); } else if("user-hashtag-merger".quals(origin)) { String hashtag = tuple.getStringByField("hashtag"); String user = tuple.getStringByField("user"); String key = user + ":" + hashtag; Integer count = tuple.getIntegerByField("count"); count(usersHashtags, key, count); } } @Override public void finishBatch() { String lastCommitedTransaction = jedis.get(LAST_COMMITED_TRANSACTION_FIELD); String currentTransaction = ""+id.getTransactionId(); if(currentTransaction.equals(lastCommitedTransaction)) {return;} Transaction multi = jedis.multi(); multi.set(LAST_COMMITED_TRANSACTION_FIELD, currentTransaction); Set<String> keys = hashtags.keySet(); for (String hashtag : keys) { Long count = hashtags.get(hashtag); //$redis->hIncrBy('h', 'x', 2); //将名称为h的hash中x的value增加2 multi.hincrBy("hashtags", hashtag, count); } keys = users.keySet(); for (String user : keys) { Long count =users.get(user); multi.hincrBy("users",user,count); } keys = usersHashtags.keySet(); for (String key : keys) { Long count = usersHashtags.get(key); multi.hincrBy("users_hashtags", key, count); } multi.exec(); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {} }
这个实现很简单,但是在 finishBatch 有一个细节。
... multi.set(LAST_COMMITED_TRANSACTION_FIELD, currentTransaction); ...
在这里向数据库保存提交的最后一个事务ID。为什么要这样做?记住,如果事务失败了,Storm将会尽可能多的重复必要的次数。如果你不确定已经处理了这个事务,你就会多算,事务拓扑也就没有用了。所以请记住:保存最后提交的事务ID,并在提交前检查。
分区的事务 Spouts
对一个 spout 来说,从一个分区集合中读取批次是很普通的。接着这个例子,你可能有很多redis数据库,而tweets可能会分别保存在这些redis数据库里。通过实现 IPartitionedTransactionalSpout ,Storm提供了一些工具用来管理每个分区的状态并保证重播的能力。
下面我们修改 TweetsTransactionalSpout ,使它可以处理数据分区。
首先,继承 BasePartitionedTransactionalSpout ,它实现了 IPartitionedTransactionalSpout 。
public class TweetsPartitionedTransactionalSpout extends BasePartitionedTransactionalSpout<TransactionMetadata> { ... }
然后告诉Storm谁是你的协调器。
public static class TweetsPartitionedTransactionalCoordinator implements Coordinator { @Override public int numPartitions() { return 4; } @Override public boolean isReady() { return true; } @Override public void close() {} }
在这个例子里,协调器很简单。numPartitions方法,告诉Storm一共有多少分区。而且你要注意,不要返回任何元数据。对于 IPartitionedTransactionalSpout ,元数据由分发器直接管理。
下面是分发器的实现:
public static class TweetsPartitionedTransactionalEmitter implements Emitter<TransactionMetadata> { PartitionedRQ rq = new ParttionedRQ(); @Override public TransactionMetadata emitPartitionBatchNew(TransactionAttempt tx, BatchOutputCollector collector, int partition, TransactionMetadata lastPartitioonMeta) { long nextRead; if(lastPartitionMeta == null) { nextRead = rq.getNextRead(partition); }else{ nextRead = lastPartitionMeta.from + lastPartitionMeta.quantity; rq.setNextRead(partition, nextRead); //移动游标 } long quantity = rq.getAvailableToRead(partition, nextRead); quantity = quantity > MAX_TRANSACTION_SIZE ? MAX_TRANSACTION_SIZE : quantity; TransactionMetadata metadata = new TransactionMetadata(nextRead, (int)quantity); emitPartitionBatch(tx, collector, partition, metadata); return metadata; } @Override public void emitPartitionBatch(TransactionAttempt tx, BatchOutputCollector collector, int partition, TransactionMetadata partitionMeta) { if(partitionMeta.quantity <= 0){ return; } List<String> messages = rq.getMessages(partition, partitionMeta.from, partitionMeta.quantity); long tweetId = partitionMeta.from; for (String msg : messages) { collector.emit(new Values(tx, ""+tweetId, msg)); tweetId++; } } @Override public void close() {} }
这里有两个重要的方法, emitPartitionBatchNew ,和 emitPartitionBatch 。对于 emitPartitionBatchNew ,从Storm接收分区参数,该参数决定应该从哪个分区读取批次。在这个方法中,决定获取哪些tweets,生成相应的元数据对象,调用 emitPartitionBatch ,返回元数据对象,并且元数据对象会在方法返回时立即保存到zookeeper。
Storm会为每一个分区发送相同的事务ID,表示一个事务贯穿了所有数据分区。通过 emitPartitionBatch 读取分区中的tweets,并向拓扑分发批次。如果批次处理失败了,Storm将会调用 emitPartitionBatch 利用保存下来的元数据重复这个批次。
NOTE: 完整的源码请见: https://github.com/storm-book/examples-ch08-transactional-topologies (译者注:原文如此,实际上这个仓库里什么也没有)
模糊的事务性拓扑
到目前为止,你可能已经学会了如何让拥有相同事务ID的批次在出错时重播。但是在有些场景下这样做可能就不太合适了。然后会发生什么呢?
事实证明,你仍然可以实现在语义上精确的事务,不过这需要更多的开发工作,你要记录由Storm重复的事务之前的状态。既然能在不同时刻为相同的事务ID得到不同的元组,你就需要把事务重置到之前的状态,并从那里继续。
比如说,如果你为收到的所有tweets计数,你已数到5,而最后的事务ID是321,这时你多数了8个。你要维护以下三个值—— previousCount=5,currentCount=13,以及lastTransactionId=321。假设事物ID321又发分了一次, 而你又得到了4个元组,而不是之前的8个,提交器会探测到这是相同的事务ID,它将会把结果重置到 previousCount 的值5,并在此基础上加4,然后更新 currentCount 为9。
另外,在之前的一个事务被取消时,每个并行处理的事务都要被取消。这是为了确保你没有丢失任何数据。
你的 spout 可以实现 IOpaquePartitionedTransactionalSpout ,而且正如你看到的,协调器和分发器也很简单。
public static class TweetsOpaquePartitionedTransactionalSpoutCoordinator implements IOpaquePartitionedTransactionalSpout.Coordinator { @Override public boolean isReady() { return true; } } public static class TweetsOpaquePartitionedTransactionalSpoutEmitter implements IOpaquePartitionedTransactionalSpout.Emitter<TransactionMetadata> { PartitionedRQ rq = new PartitionedRQ(); @Override public TransactionMetadata emitPartitionBatch(TransactionAttempt tx, BatchOutputCollector collector, int partion, TransactionMetadata lastPartitonMeta) { long nextRead; if(lastPartitionMeta == null) { nextRead = rq.getNextRead(partition); }else{ nextRead = lastPartitionMeta.from + lastPartitionMeta.quantity; rq.setNextRead(partition, nextRead);//移动游标 } long quantity = rq.getAvailabletoRead(partition, nextRead); quantity = quantity > MAX_TRANSACTION_SIZE ? MAX_TRANSACTION_SIZE : quantity; TransactionMetadata metadata = new TransactionMetadata(nextRead, (int)quantity); emitMessages(tx, collector, partition, metadata); return metadata; } private void emitMessage(TransactionAttempt tx, BatchOutputCollector collector, int partition, TransactionMetadata partitionMeta) { if(partitionMeta.quantity <= 0){return;} List<String> messages = rq.getMessages(partition, partitionMeta.from, partitionMeta.quantity); long tweetId = partitionMeta.from; for(String msg : messages) { collector.emit(new Values(tx, ""+tweetId, msg)); tweetId++; } } @Override public int numPartitions() { return 4; } @Override public void close() {} }
最有趣的方法是 emitPartitionBatch ,它获取之前提交的元数据。你要用它生成批次。这个批次不需要与之前的那个一致,你可能根本无法创建完全一样的批次。剩余的工作由提交器 bolts 借助之前的状态完成。
相关推荐
内容概要:本文详细介绍了欧姆龙NJ系列PLC与多个品牌总线设备(如汇川伺服、雷赛步进控制器、SMC电缸等)的控制程序及其配置方法。重点讨论了PDO映射、参数配置、单位转换、故障排查等方面的实际经验和常见问题。文中提供了具体的代码示例,帮助读者理解和掌握这些复杂系统的调试技巧。此外,还特别强调了不同品牌设备之间的兼容性和注意事项,以及如何避免常见的配置错误。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC与总线设备集成工作的专业人士。 使用场景及目标:适用于需要将欧姆龙NJ PLC与其他品牌总线设备集成在一起的应用场景,如工厂自动化生产线、机器人控制等。主要目标是提高系统的可靠性和效率,减少调试时间和成本。 其他说明:文章不仅提供了理论知识,还包括大量来自实际项目的实践经验,有助于读者更好地应对现实中的挑战。建议读者在实践中不断积累经验,逐步掌握各种设备的特点和最佳实践。
数字化企业转型大数据解决方案.pptx
内容概要:本文详细介绍了利用MATLAB实现多智能体系统一致性算法在电力系统分布式经济调度中的应用。文中通过具体的MATLAB代码展示了如何将发电机组和柔性负荷视为智能体,通过局部通信和协商达成全局最优调度。核心算法通过迭代更新增量成本和增量效益,使各个节点在无中央指挥的情况下自行调整功率,最终实现经济最优分配。此外,文章还讨论了通信拓扑对收敛速度的影响以及一些工程优化技巧,如稀疏矩阵存储和自适应参数调整。 适合人群:从事电力系统调度、分布式控制系统设计的研究人员和技术人员,尤其是对多智能体系统和MATLAB编程有一定了解的人群。 使用场景及目标:适用于希望提高电力系统调度效率、降低成本并增强系统鲁棒性的应用场景。主要目标是在分布式环境下实现快速、稳定的经济调度,同时减少通信量和计算资源消耗。 其他说明:文章提供了详细的代码示例和测试结果,展示了算法的实际性能和优势。对于进一步研究和实际应用具有重要参考价值。
获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放。
内容概要:本文详细介绍了如何利用MATLAB进行价格型需求响应的研究,特别是电价弹性矩阵的构建与优化。文章首先解释了电价弹性矩阵的概念及其重要性,接着展示了如何通过MATLAB代码实现弹性矩阵的初始化、负荷变化量的计算以及优化方法。文中还讨论了如何通过非线性约束和目标函数最小化峰谷差,确保用户用电舒适度的同时实现负荷的有效调节。此外,文章提供了具体的代码实例,包括原始负荷曲线与优化后负荷曲线的对比图,以及基于历史数据的参数优化方法。 适合人群:从事电力系统优化、能源管理及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解并掌握价格型需求响应机制的专业人士,旨在帮助他们更好地理解和应用电价弹性矩阵,优化电力系统的负荷分布,提高能源利用效率。 其他说明:文章强调了实际应用中的注意事项,如弹性矩阵的动态校准和用户价格敏感度的滞后效应,提供了实用的技术细节和实践经验。
CSP-J 2021 初赛真题.pdf
内容概要:本文详细介绍了如何利用麻雀优化算法(SSA)与长短期记忆网络(LSTM)相结合,在MATLAB环境中构建一个用于时间序列单输入单输出预测的模型。首先简述了SSA和LSTM的基本原理,接着逐步讲解了从数据准备、预处理、模型构建、参数优化到最后的预测与结果可视化的完整流程。文中提供了详细的MATLAB代码示例,确保读者能够轻松复现实验。此外,还讨论了一些关键参数的选择方法及其对模型性能的影响。 适合人群:对时间序列预测感兴趣的科研人员、研究生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要对单变量时间序列数据进行高精度预测的应用场合,如金融、能源等领域。通过本篇文章的学习,读者将掌握如何使用MATLAB实现SSA优化LSTM模型的具体步骤和技术要点。 其他说明:为了提高模型的泛化能力,文中特别强调了数据预处理的重要性,并给出了具体的实现方式。同时,针对可能出现的问题,如过拟合、梯度爆炸等,也提供了一些建议性的解决方案。
内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。
本文详细介绍了Scala语言的基础知识和特性。Scala是一种运行在JVM上的编程语言,兼具面向对象和函数式编程的特点,适合大数据处理。其环境配置需注意Java版本和路径问题。语言基础涵盖注释、变量、数据类型、运算符和流程控制。函数特性包括高阶函数、柯里化、闭包、尾递归等。面向对象方面,Scala支持继承、抽象类、特质等,并通过包、类和对象实现代码组织和管理,同时提供了单例对象和伴生对象的概念。
内容概要:本文详细探讨了石墨烯-金属强耦合拉比分裂现象的研究,主要借助Comsol多物理场仿真软件进行模拟。文章首先介绍了拉比分裂的基本概念,即当石墨烯与金属相互靠近时,原本单一的共振模式会分裂成两个,这种现象背后的电磁学和量子力学原理对于开发新型光电器件、高速通信设备等意义重大。接着阐述了Comsol在研究中的重要作用,包括构建石墨烯-金属相互作用模型、设置材料属性、定义边界条件、划分网格以及求解模型的具体步骤。此外,还展示了具体的建模示例代码,并对模拟结果进行了深入分析,解释了拉比分裂现象的形成机理。最后强调了该研究对未来技术创新的重要价值。 适合人群:从事物理学、材料科学、光电工程等领域研究的专业人士,尤其是对石墨烯-金属强耦合感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解石墨烯-金属强耦合拉比分裂现象的研究人员,旨在帮助他们掌握Comsol仿真工具的应用技巧,提高研究效率,推动相关领域的创新发展。 其他说明:文中提供的代码片段和建模思路可供读者参考实践,但需要注意实际应用时需根据具体情况调整参数配置。
内容概要:本文详细介绍了基于FPGA的电机控制系统的设计与实现,重点探讨了Verilog和Nios II软核相结合的方式。具体来说,编码器模块利用Verilog实现了高精度的四倍频计数,解决了AB相信号的跳变问题;坐标变换部分则由Nios II软核负责,通过C语言实现Clarke变换和Park变换,提高了计算效率;SVPWM生成模块采用了Verilog硬件加速,优化了调制波的生成时间和波形质量。此外,文章还讨论了Nios II和Verilog之间的高效交互方式,如自定义指令和DMA传输,以及中断处理机制,确保系统的实时性和稳定性。文中提到的一些优化技巧,如定点数运算、查表法、流水线设计等,进一步提升了系统的性能。 适合人群:具有一定FPGA和嵌入式开发经验的研发人员,尤其是对电机控制感兴趣的工程师。 使用场景及目标:适用于需要高性能、低延迟的电机控制应用场景,如工业自动化、机器人、无人机等领域。目标是帮助读者掌握FPGA与Nios II结合的电机控制方法,提高系统的实时性和可靠性。 其他说明:文章提供了详细的代码片段和优化建议,有助于读者理解和实践。同时,文中提及了一些常见的调试问题及其解决方案,如符号位处理不当导致的电机反转、数据溢出等问题,提醒读者在实际项目中加以注意。
内容概要:本文档《ATK-DLRK3568嵌入式Qt开发实战V1.2》是正点原子出品的一份面向初学者的嵌入式Qt开发指南,主要内容涵盖嵌入式Linux环境下Qt的安装配置、C++基础、Qt基础、多线程编程、网络编程、多媒体开发、数据库操作以及项目实战案例。文档从最简单的“Hello World”程序开始,逐步引导读者熟悉Qt开发环境的搭建、常用控件的使用、信号与槽机制、UI设计、数据处理等关键技术点。此外,文档还提供了详细的项目实战案例,如车牌识别系统的开发,帮助读者将理论知识应用于实际项目中。 适合人群:具备一定Linux和C++基础,希望快速入门嵌入式Qt开发的初学者或有一定开发经验的研发人员。 使用场景及目标: 1. **环境搭建**:学习如何在Ubuntu环境下搭建Qt开发环境,包括安装必要的工具和库。 2. **基础知识**:掌握C++面向对象编程、Qt基础控件的使用、信号与槽机制等核心概念。 3. **高级功能**:理解多线程编程、网络通信、多媒体处理、数据库操作等高级功能的实现方法。 4. **项目实战**:通过具体的项目案例(如车牌识别系统),巩固
内容概要:文章深入探讨了宇树科技人形机器人的技术实力、市场表现及未来前景,揭示其背后是科技创新还是市场炒作。宇树科技,成立于2016年,由90后创业者王兴兴创办,从四足机器人(如Laikago、AlienGo、A1)成功跨越到人形机器人(如H1和G1)。H1具有出色的运动能力和高精度导航技术,G1则专注于娱乐陪伴场景,具备模拟人手操作的能力。市场方面,宇树科技人形机器人因春晚表演而走红,但目前仅限于“极客型”用户购买,二手市场租赁价格高昂。文章认为,宇树科技的成功既源于技术突破,也离不开市场炒作的影响。未来,宇树科技将在工业、服务业、娱乐等多个领域拓展应用,但仍需克服成本、稳定性和安全等方面的挑战。 适合人群:对人工智能和机器人技术感兴趣的科技爱好者、投资者以及相关行业的从业者。 使用场景及目标:①了解宇树科技人形机器人的技术特点和发展历程;②分析其市场表现及未来应用前景;③探讨科技创新与市场炒作之间的关系。 阅读建议:本文详细介绍了宇树科技人形机器人的技术细节和市场情况,读者应关注其技术创新点,同时理性看待市场炒作现象,思考人形机器人的实际应用价值和发展潜力。
C#3-的核心代码以及练习题相关
内容概要:本文详细介绍了一种将麻雀搜索算法(SSA)用于优化支持向量机(SVM)分类的方法,并以红酒数据集为例进行了具体实现。首先介绍了数据预处理步骤,包括从Excel读取数据并进行特征和标签的分离。接着阐述了适应度函数的设计,采用五折交叉验证计算准确率作为评价标准。然后深入探讨了麻雀算法的核心迭代过程,包括参数初始化、种群更新规则以及如何通过指数衰减和随机扰动来提高搜索效率。此外,文中还提到了一些实用技巧,如保存最优参数以避免重复计算、利用混淆矩阵可视化分类结果等。最后给出了完整的代码框架及其在GitHub上的开源地址。 适合人群:具有一定MATLAB编程基础的研究人员和技术爱好者,尤其是对机器学习算法感兴趣的人士。 使用场景及目标:适用于需要解决多分类问题的数据科学家或工程师,旨在提供一种高效且易于使用的SVM参数优化方法,帮助用户获得更高的分类准确性。 其他说明:该方法不仅限于红酒数据集,在其他类似的数据集中同样适用。用户只需确保数据格式正确即可轻松替换数据源。
内容概要:本文详细介绍了如何在MATLAB/Simulink环境中搭建四分之一车被动悬架双质量(二自由度)模型。该模型主要用于研究车辆悬架系统在垂直方向上的动态特性,特别是针对路面不平度引起的车轮和车身振动。文中不仅提供了具体的建模步骤,包括输入模块、模型主体搭建和输出模块的设计,还展示了如何通过仿真分析来评估悬架性能,如乘坐舒适性和轮胎接地性。此外,文章还讨论了一些常见的建模技巧和注意事项,如选择合适的求解器、处理代数环等问题。 适合人群:从事汽车动力学研究的科研人员、高校学生以及对车辆悬架系统感兴趣的工程师。 使用场景及目标:①用于教学目的,帮助学生理解车辆悬架系统的理论知识;②用于科研实验,验证不同的悬架设计方案;③用于工业应用,优化实际车辆的悬架系统设计。 其他说明:本文提供的模型基于MATLAB 2016b及以上版本,确保读者能够顺利重现所有步骤并获得预期结果。同时,文中附带了大量的代码片段和具体的操作指南,便于读者快速上手。
内容概要:本文详细介绍了如何使用COMSOL软件进行光子晶体板谷态特性的建模与仿真。首先,定义了晶格常数和其他关键参数,如六边形蜂窝结构的创建、材料属性的设定以及周期性边界的配置。接下来,重点讲解了网格剖分的方法,强调了自适应网格和边界层细化的重要性。随后,讨论了如何通过参数扫描和频域分析来探索谷态特征,特别是在布里渊区高对称点附近观察到的能量带隙和涡旋结构。最后,提供了关于仿真收敛性和优化技巧的建议,确保结果的可靠性和准确性。 适合人群:从事光子学、电磁学及相关领域的研究人员和技术人员,尤其是对拓扑光子学感兴趣的学者。 使用场景及目标:适用于希望深入了解光子晶体板谷态特性的科研工作者,旨在帮助他们掌握COMSOL的具体应用方法,从而更好地进行相关实验和理论研究。 其他说明:文中不仅提供了详细的代码示例,还穿插了许多形象生动的比喻,使复杂的物理概念变得通俗易懂。同时,强调了仿真过程中需要注意的技术细节,如网格划分、边界条件设置等,有助于避免常见错误并提高仿真的成功率。
内容概要:本文详细介绍了利用有限差分时域法(FDTD)对金纳米球进行米氏散射仿真的全过程。首先,通过Python脚本设置了仿真环境,包括网格精度、材料参数、光源配置等。接着,展示了如何通过近场积分计算散射截面和吸收截面,并进行了远场角分布的仿真。文中还讨论了常见错误及其解决方法,如网格精度不足、边界条件不当等问题。最终,将仿真结果与米氏解析解进行了对比验证,确保了仿真的准确性。 适合人群:从事微纳光学研究的科研人员、研究生以及相关领域的工程师。 使用场景及目标:适用于需要精确模拟纳米颗粒与电磁波相互作用的研究项目,旨在提高仿真精度并验证理论模型。通过本文的学习,可以掌握FDTD仿真的具体实施步骤和技术要点。 其他说明:本文不仅提供了详细的代码示例,还分享了许多实践经验,帮助读者避免常见的仿真陷阱。同时强调了参数选择的重要性,特别是在纳米尺度下,每一个参数都需要精心调整以获得准确的结果。
基数
2ddddddddddddddddddddddddddd